
Package ‘tidybulk’
January 30, 2026

Type Package

Title Brings transcriptomics to the tidyverse

Version 2.0.1

Description This is a collection of utility functions that allow
to perform exploration of and calculations to RNA sequencing data, in
a modular, pipe-friendly and tidy fashion.

License GPL-3

Depends R (>= 4.4.0), ttservice (>= 0.3.6)

Imports tibble, dplyr (>= 1.1.0), magrittr, tidyr, stringr, rlang,
purrr, tidyselect, stats, parallel, utils, lifecycle, scales,
ggplot2, SummarizedExperiment, GenomicRanges, methods,
S4Vectors, crayon, Matrix

Suggests BiocStyle, testthat, vctrs, AnnotationDbi, BiocManager,
Rsubread, e1071, edgeR, limma, org.Hs.eg.db, org.Mm.eg.db, sva,
GGally, knitr, qpdf, covr, Seurat, KernSmooth, Rtsne, widyr,
clusterProfiler, msigdbr, DESeq2, broom, survival, boot,
betareg, tidyHeatmap, pasilla, ggrepel, devtools, functional,
survminer, tidySummarizedExperiment, markdown, uwot,
matrixStats, preprocessCore, igraph, EGSEA, IRanges, here,
glmmSeq, pbapply, pbmcapply, lme4, glmmTMB, MASS, pkgconfig,
enrichplot, patchwork, airway

VignetteBuilder knitr

RdMacros lifecycle

Biarch true

biocViews AssayDomain, Infrastructure, RNASeq, DifferentialExpression,
GeneExpression, Normalization, Clustering, QualityControl,
Sequencing, Transcription, Transcriptomics

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

LazyDataCompression xz

URL https://github.com/stemangiola/tidybulk

BugReports https://github.com/stemangiola/tidybulk/issues

git_url https://git.bioconductor.org/packages/tidybulk

1

https://github.com/stemangiola/tidybulk
https://github.com/stemangiola/tidybulk/issues

2 Contents

git_branch RELEASE_3_22

git_last_commit 8c311d7

git_last_commit_date 2025-11-11

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Stefano Mangiola [aut, cre],
Maria Doyle [ctb]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

Contents
.rotate_dimensions_se . 3
adjust_abundance . 4
aggregate_duplicates . 6
as_matrix . 9
as_SummarizedExperiment . 9
check_if_counts_is_na . 10
check_if_duplicated_genes . 11
cluster_elements . 11
deconvolve_cellularity . 13
describe_transcript . 15
fill_missing_abundance . 17
get_bibliography . 18
get_X_cibersort . 19
identify_abundant . 20
impute_missing_abundance . 22
keep_abundant . 24
keep_abundant,RangedSummarizedExperiment-method 26
keep_abundant,SummarizedExperiment-method . 27
keep_variable . 28
log10_reverse_trans . 29
logit_trans . 30
pivot_sample . 30
pivot_transcript . 32
quantile_normalise_abundance . 33
reduce_dimensions . 35
remove_redundancy . 37
resolve_complete_confounders_of_non_interest . 40
resolve_complete_confounders_of_non_interest,SummarizedExperiment-method 41
rotate_dimensions . 42
scale_abundance . 44
scale_x_log10_reverse . 46
scale_y_log10_reverse . 47
test_differential_abundance . 48
test_differential_expression . 53
test_gene_enrichment . 58
test_gene_overrepresentation . 61
test_gene_rank . 63
test_stratification_cellularity,SummarizedExperiment-method 66
tximeta_summarizeToGene_object . 67

.rotate_dimensions_se 3

vignette_manuscript_signature_boxplot . 67
vignette_manuscript_signature_tsne . 67
vignette_manuscript_signature_tsne2 . 68
X_cibersort . 68

Index 69

.rotate_dimensions_se Rotate two coordinate columns and append the rotated axes

Description

This internal helper applies a planar rotation to two numeric columns that represent a low-dimensional
embedding (for example PCA or UMAP coordinates) stored in either ‘colData()‘ or ‘rowData()‘ of
a ‘SummarizedExperiment‘. It returns the original object with two additional columns containing
the rotated values. The user specifies the rotation angle in degrees and may provide custom names
for the new columns; otherwise sensible defaults are generated.

Usage

.rotate_dimensions_se(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL

)

Arguments

.data A ‘SummarizedExperiment‘ (or derivative) holding the coordinates to be ro-
tated.

dimension_1_column

Symbol or bare column name for the first axis (e.g. ‘UMAP_1‘).
dimension_2_column

Symbol or bare column name for the second axis (e.g. ‘UMAP_2‘).
rotation_degrees

Numeric scalar in the closed interval \([-360, 360]\) indicating the anti-clockwise
rotation angle.

.element Optional quoted column holding sample or feature labels (unused, retained for
compatibility).

of_samples Logical. If ‘TRUE‘ (default) the function rotates columns in ‘colData()‘. If
‘FALSE‘ it operates on ‘rowData()‘.

dimension_1_column_rotated

Optional symbol to name the new first rotated coordinate column.
dimension_2_column_rotated

Optional symbol to name the new second rotated coordinate column.

4 adjust_abundance

Value

The input ‘SummarizedExperiment‘ with two extra metadata columns containing the rotated axes.

adjust_abundance Adjust transcript abundance for unwanted variation

Description

adjust_abundance() takes as input A ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and returns a consistent object (to the input) with an additional
adjusted abundance column. This method uses scaled counts if present.

Usage

adjust_abundance(
.data,
.formula = NULL,
.factor_unwanted = NULL,
.factor_of_interest = NULL,
abundance = assayNames(.data)[1],
.abundance = NULL,
method = "combat_seq",
...,
log_transform = NULL,
transform = NULL,
inverse_transform = NULL

)

S4 method for signature 'SummarizedExperiment'
adjust_abundance(
.data,
.formula = NULL,
.factor_unwanted = NULL,
.factor_of_interest = NULL,
abundance = assayNames(.data)[1],
.abundance = NULL,
method = "combat_seq",
...,
log_transform = NULL,
transform = NULL,
inverse_transform = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
adjust_abundance(
.data,
.formula = NULL,
.factor_unwanted = NULL,
.factor_of_interest = NULL,

adjust_abundance 5

abundance = assayNames(.data)[1],
.abundance = NULL,
method = "combat_seq",
...,
log_transform = NULL,
transform = NULL,
inverse_transform = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.formula DEPRECATED - A formula with no response variable, representing the desired
linear model where the first covariate is the factor of interest and the second
covariate is the unwanted variation (of the kind ~ factor_of_interest + batch)

.factor_unwanted

A tidy select, e.g. column names without double quotation. c(batch, country)
These are the factor that we want to adjust for, including unwanted batcheffect,
and unwanted biological effects.

.factor_of_interest

A tidy select, e.g. column names without double quotation. c(treatment) These
are the factor that we want to preserve.

abundance The name of the transcript/gene abundance column (character, preferred)

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

method A character string. Methods include combat_seq (default), combat and limma_remove_batch_effect.

... Further parameters passed to the function sva::ComBat

log_transform DEPRECATED - A boolean, whether the value should be log-transformed (e.g.,
TRUE for RNA sequencing data)

transform DEPRECATED - A function that will tranform the counts, by default it is log1p
for RNA sequencing data, but for avoinding tranformation you can use identity

inverse_transform

DEPRECATED - A function that is the inverse of transform (e.g. expm1 is
inverse of log1p). This is needed to tranform back the counts after analysis.

Details

‘r lifecycle::badge("maturing")‘

This function adjusts the abundance for (known) unwanted variation. At the moment just an un-
wanted covariate is allowed at a time using Combat (DOI: 10.1093/bioinformatics/bts034)

Underlying method: sva::ComBat(data, batch = my_batch, mod = design, prior.plots = FALSE, ...)

Value

A consistent object (to the input) with additional columns for the adjusted counts as ‘<COUNT
COLUMN>_adjusted‘

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

6 aggregate_duplicates

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Zhang, Y., Parmigiani, G., & Johnson, W. E. (2020). ComBat-seq: batch effect adjustment for RNA-
seq count data. NAR Genomics and Bioinformatics, 2(3), lqaa078. doi:10.1093/nargab/lqaa078

Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression
data using empirical Bayes methods. Biostatistics, 8(1), 118–127. doi:10.1093/biostatistics/kxj037

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research, 43(7), e47. doi:10.1093/nar/gkv007

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- as.factor(SummarizedExperiment::colData(airway)$dex)

cm = airway
Create a balanced two-level batch within each condition to avoid confounding
cond <- SummarizedExperiment::colData(cm)$condition
cm$batch <- rep(NA_character_, ncol(cm))
for (lev in unique(cond)) {

idx <- which(cond == lev)
cm$batch[idx] <- rep(c('A','B'), length.out = length(idx))

}
cm$batch <- as.factor(cm$batch)

cm |>
identify_abundant() |>
adjust_abundance(.factor_unwanted = batch, .factor_of_interest = condition, method="combat_seq")

aggregate_duplicates Aggregates multiple counts from the same samples (e.g., from iso-
forms), concatenates other character columns, and averages other nu-
meric columns

Description

aggregate_duplicates() takes as input A ‘tbl‘ (with at least three columns for sample, feature and
transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and returns a consistent object (to the input) with aggregated
transcripts that were duplicated.

aggregate_duplicates 7

Usage

aggregate_duplicates(
.data,
.transcript = NULL,
feature = NULL,
.abundance = NULL,
aggregation_function = sum,
keep_integer = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
aggregate_duplicates(
.data,
.transcript = NULL,
feature = NULL,
.abundance = NULL,
aggregation_function = sum,
keep_integer = TRUE,
...

)

S4 method for signature 'RangedSummarizedExperiment'
aggregate_duplicates(
.data,
.transcript = NULL,
feature = NULL,
.abundance = NULL,
aggregation_function = sum,
keep_integer = TRUE,
...

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.transcript DEPRECATED The name of the transcript/gene column (deprecated, use ‘fea-
ture‘ instead)

feature The name of the feature column as a character string

.abundance The name of the transcript/gene abundance column
aggregation_function

A function for counts aggregation (e.g., sum, median, or mean)

keep_integer A boolean. Whether to force the aggregated counts to integer

... Additional arguments passed to the aggregation function

Details

‘r lifecycle::badge("maturing")‘

8 aggregate_duplicates

This function aggregates duplicated transcripts (e.g., isoforms, ensembl). For example, we often
have to convert ensembl symbols to gene/transcript symbol, but in doing so we have to deal with
duplicates. ‘aggregate_duplicates‘ takes a tibble and column names (as symbols; for ‘sample‘,
‘transcript‘ and ‘count‘) as arguments and returns a tibble with aggregate transcript with the same
name. All the rest of the column are appended, and factors and boolean are appended as characters.

Underlying custom method: data |> filter(n_aggr > 1) |> group_by(!!.sample,!!.transcript) |> dplyr::mutate(!!.abundance
:= !!.abundance |> aggregation_function())

Value

A consistent object (to the input) with aggregated transcript abundance and annotation

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M. T., &
Carey, V. J. (2013). Software for computing and annotating genomic ranges. PLoS Computational
Biology, 9(8), e1003118. doi:10.1371/journal.pcbi.1003118

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A Grammar of
Data Manipulation. R package version 1.1.0. https://CRAN.R-project.org/package=dplyr

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

Create a aggregation column
airway = airway
SummarizedExperiment::rowData(airway)$gene_name = rownames(airway)

aggregate_duplicates(
airway,

feature = "gene_name"
)

as_matrix 9

as_matrix Get matrix from tibble

Description

Get matrix from tibble

Usage

as_matrix(tbl, rownames = NULL, do_check = TRUE)

Arguments

tbl A tibble

rownames The column name of the input tibble that will become the rownames of the
output matrix

do_check A boolean

Value

A matrix

Examples

library(tibble)
tibble(.feature = "CD3G", count=1) |> as_matrix(rownames=.feature)

as_SummarizedExperiment

as_SummarizedExperiment

Description

as_SummarizedExperiment() creates a ‘SummarizedExperiment‘ object from a ‘tbl‘ or ‘tidybulk‘
tbl formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |

Usage

as_SummarizedExperiment(
.data,
.sample = NULL,
.transcript = NULL,
.abundance = NULL

)

S4 method for signature 'tbl_df'
as_SummarizedExperiment(
.data,

10 check_if_counts_is_na

.sample = NULL,

.transcript = NULL,

.abundance = NULL
)

Arguments

.data A tibble

.sample The name of the sample column

.transcript The name of the transcript/gene column

.abundance The name of the transcript/gene abundance column

Value

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M. T., &
Carey, V. J. (2013). Software for computing and annotating genomic ranges. PLoS Computational
Biology, 9(8), e1003118. doi:10.1371/journal.pcbi.1003118

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A Grammar of
Data Manipulation. R package version 1.1.0. https://CRAN.R-project.org/package=dplyr

Examples

Convert tibble to SummarizedExperiment
library(tibble)
tibble(.sample = "A", .transcript = "CD3G", count = 1) |>
as_SummarizedExperiment(.sample = .sample, .transcript = .transcript, .abundance = count)

check_if_counts_is_na Check whether there are NA counts

Description

Check whether there are NA counts

Usage

check_if_counts_is_na(.data, abundance, .abundance = NULL)

Arguments

.data A tibble of read counts
abundance A character name of the read count column
.abundance A character name of the read count column (DEPRECATED)

check_if_duplicated_genes 11

Value

A tbl

check_if_duplicated_genes

Check whether there are duplicated genes/transcripts

Description

Check whether there are duplicated genes/transcripts

Usage

check_if_duplicated_genes(
.data,
.sample = sample,
.transcript = transcript,
.abundance = `read count`

)

Arguments

.data A tibble of read counts

.sample A character name of the sample column

.transcript A character name of the transcript/gene column

.abundance A character name of the read count column

Value

A tbl

cluster_elements Get clusters of elements (e.g., samples or transcripts)

Description

cluster_elements() takes as input A ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and identify clusters in the data.

Usage

cluster_elements(.data, method, of_samples = TRUE, transform = log1p, ...)

S4 method for signature 'SummarizedExperiment'
cluster_elements(.data, method, of_samples = TRUE, transform = log1p, ...)

S4 method for signature 'RangedSummarizedExperiment'
cluster_elements(.data, method, of_samples = TRUE, transform = log1p, ...)

12 cluster_elements

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

method A character string. The cluster algorithm to use, at the moment k-means is the
only algorithm included.

of_samples A boolean. In case the input is a tidybulk object, it indicates Whether the ele-
ment column will be sample or transcript column

transform A function that will tranform the counts, by default it is log1p for RNA sequenc-
ing data, but for avoinding tranformation you can use identity

... Further parameters passed to the function kmeans

Details

‘r lifecycle::badge("maturing")‘

identifies clusters in the data, normally of samples. This function returns a tibble with additional
columns for the cluster annotation. At the moment only k-means (DOI: 10.2307/2346830) and SNN
clustering (DOI:10.1016/j.cell.2019.05.031) is supported, the plan is to introduce more clustering
methods.

Underlying method for kmeans do.call(kmeans(.data, iter.max = 1000, ...)

Underlying method for SNN .data |> Seurat::CreateSeuratObject() |> Seurat::ScaleData(display.progress
= TRUE,num.cores = 4, do.par = TRUE) |> Seurat::FindVariableFeatures(selection.method = "vst")
|> Seurat::RunPCA(npcs = 30) |> Seurat::FindNeighbors() |> Seurat::FindClusters(method = "igraph",
...)

Value

A tbl object with additional columns with cluster labels

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14),
281-297. doi:10.1007/978-3-642-05177-7_26

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell tran-
scriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36(5),
411-420. doi:10.1038/nbt.4096

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

deconvolve_cellularity 13

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

Not run:
cluster_elements(airway, centers = 2, method="kmeans")

End(Not run)

deconvolve_cellularity

Get cell type proportions from samples

Description

deconvolve_cellularity() takes as input A ‘tbl‘ (with at least three columns for sample, feature and
transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and returns a consistent object (to the input) with the estimated
cell type abundance for each sample

Usage

deconvolve_cellularity(
.data,
.abundance = NULL,
reference = NULL,
method = "cibersort",
prefix = "",
feature_column = NULL,
...

)

S4 method for signature 'SummarizedExperiment'
deconvolve_cellularity(
.data,
.abundance = NULL,
reference = NULL,
method = "cibersort",
prefix = "",
feature_column = NULL,
...

)

S4 method for signature 'RangedSummarizedExperiment'
deconvolve_cellularity(
.data,
.abundance = NULL,
reference = NULL,
method = "cibersort",
prefix = "",
feature_column = NULL,

14 deconvolve_cellularity

...
)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.abundance The name of the transcript/gene abundance column

reference A data frame. The methods cibersort and llsr can accept a custom rectangular
dataframe with genes as rows names, cell types as column names and gene-
transcript abundance as values. If NULL, the default reference for each algo-
rithm will be used. For cibersort and llsr, the default is obtained via ‘get_X_cibersort()‘.
For llsr will be LM22.

method A character string. The method to be used. Available methods: "cibersort",
"llsr", "epic", "mcp_counter", "quantiseq", "xcell". If a vector is provided, an
error will be thrown. Default is all available methods.

prefix A character string. The prefix you would like to add to the result columns. It is
useful if you want to reshape data.

feature_column A character string. The name of a column in rowData to use as feature names
instead of rownames. If NULL (default), rownames are used.

... Further parameters passed to the function Cibersort

Details

‘r lifecycle::badge("maturing")‘

This function infers the cell type composition of our samples (with the algorithm Cibersort; New-
man et al., 10.1038/nmeth.3337).

Underlying method: CIBERSORT(Y = data, X = reference, ...)

Value

A consistent object (to the input) including additional columns for each cell type estimated

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn,
M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles.
Nature Methods, 12(5), 453-457. doi:10.1038/nmeth.3337

Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife, 6,
e26476. doi:10.7554/eLife.26476

describe_transcript 15

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

Map ENSEMBL rownames to SYMBOLs for compatibility with reference signatures

library(tidySummarizedExperiment)
library(org.Hs.eg.db)

Not run:
airway |>
mutate(gene_symbol = AnnotationDbi::mapIds(

org.Hs.eg.db::org.Hs.eg.db,
keys = .feature,
keytype = 'ENSEMBL',
column = 'SYMBOL',
multiVals = 'first'

)) |>
mutate(gene_symbol = ifelse(is.na(gene_symbol) | gene_symbol == '', .feature, gene_symbol)) |>
deconvolve_cellularity(feature_column = 'gene_symbol', cores = 1)

End(Not run)

Alternatively, if you already have a feature column in rowData
se_with_features <- airway
rowData(se_with_features)$gene_symbol <- rownames(se_with_features)
se_with_features |> deconvolve_cellularity(feature_column = 'gene_symbol', cores = 1)

Using a custom reference matrix
custom_ref <- get_X_cibersort() # Get the default Cibersort reference
se_with_features |> deconvolve_cellularity(reference = custom_ref, feature_column = 'gene_symbol', cores = 1)

describe_transcript Get DESCRIPTION from gene SYMBOL for Human and Mouse

Description

Get DESCRIPTION from gene SYMBOL for Human and Mouse

describe_transcript

describe_transcript

describe_transcript

16 describe_transcript

Usage

describe_transcript(.data)

.describe_transcript_SE(.data)

S4 method for signature 'SummarizedExperiment'
describe_transcript(.data)

S4 method for signature 'RangedSummarizedExperiment'
describe_transcript(.data)

Arguments

.data A tt or tbl object.

Value

A tbl

A ‘SummarizedExperiment‘ object

A consistent object (to the input) including additional columns for transcript symbol

A consistent object (to the input) including additional columns for transcript symbol

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Carlson, M. (2019). org.Hs.eg.db: Genome wide annotation for Human. R package version 3.8.2.

Carlson, M. (2019). org.Mm.eg.db: Genome wide annotation for Mouse. R package version 3.8.2.

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

describe_transcript(airway)

fill_missing_abundance 17

fill_missing_abundance

Fill transcript abundance if missing from sample-transcript pairs

Description

fill_missing_abundance() takes as input A ‘tbl‘ (with at least three columns for sample, feature and
transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and returns a consistent object (to the input) with new obser-
vations

Usage

fill_missing_abundance(
.data,
.sample = NULL,
.transcript = NULL,
.abundance = NULL,
fill_with

)

Arguments

.data A ‘tbl‘ formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |

.sample The name of the sample column

.transcript The name of the transcript column

.abundance The name of the transcript abundance column

fill_with A numerical abundance with which fill the missing data points

Details

[Questioning]

This function fills the abundance of missing sample-transcript pair using the median of the sample
group defined by the formula

Value

A consistent object (to the input) non-sparse abundance

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

18 get_bibliography

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

print("Not run for build time.")

airway |> fill_missing_abundance(fill_with = 0)

get_bibliography Produces the bibliography list of your workflow

Description

get_bibliography() takes as input a ‘tidybulk‘

Usage

get_bibliography(.data)

S4 method for signature 'SummarizedExperiment'
get_bibliography(.data)

S4 method for signature 'RangedSummarizedExperiment'
get_bibliography(.data)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

Details

‘r lifecycle::badge("maturing")‘

This methods returns the bibliography list of your workflow from the metadata of a tidybulk ob-
ject (metadata(.)$tidybulk$methods_used) or from the internals for backward compatibility (attr(.,
"internals"))

Value

NULL. It prints a list of bibliography references for the software used through the workflow.

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

get_X_cibersort 19

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

get_bibliography(airway)

get_X_cibersort Get Cibersort reference data

Description

This function loads and returns the X_cibersort reference matrix used for cell type deconvolution
with the Cibersort and LLSR methods. The reference matrix contains gene expression signatures
for 22 immune cell types.

Usage

get_X_cibersort()

Value

The X_cibersort reference matrix with genes as rows and cell types as columns

References

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn,
M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles.
Nature Methods, 12(5), 453-457. doi:10.1038/nmeth.3337

Examples

Get the default Cibersort reference matrix
ref_matrix <- get_X_cibersort()

Use with deconvolve_cellularity
se |> deconvolve_cellularity(reference = get_X_cibersort(), method = "cibersort")

20 identify_abundant

identify_abundant Identify abundant transcripts/genes

Description

Identifies transcripts/genes that are consistently expressed above a threshold across samples. This
function adds a logical column ‘.abundant‘ to indicate which features pass the filtering criteria.

Usage

identify_abundant(
.data,
abundance = assayNames(.data)[1],
design = NULL,
formula_design = NULL,
minimum_counts = 10,
minimum_proportion = 0.7,
minimum_count_per_million = NULL,
factor_of_interest = NULL,
...,
.abundance = NULL

)

S4 method for signature 'SummarizedExperiment'
identify_abundant(
.data,
abundance = assayNames(.data)[1],
design = NULL,
formula_design = NULL,
minimum_counts = 10,
minimum_proportion = 0.7,
minimum_count_per_million = NULL,
factor_of_interest = NULL,
...,
.abundance = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
identify_abundant(
.data,
abundance = assayNames(.data)[1],
design = NULL,
formula_design = NULL,
minimum_counts = 10,
minimum_proportion = 0.7,
minimum_count_per_million = NULL,
factor_of_interest = NULL,
...,
.abundance = NULL

)

identify_abundant 21

Arguments

.data A ‘tbl‘ or ‘SummarizedExperiment‘ object containing transcript/gene abundance
data

abundance The name of the transcript/gene abundance column (character, preferred)

design A design matrix for more complex experimental designs. If provided, this is
passed to filterByExpr instead of factor_of_interest.

formula_design ...

minimum_counts ...
minimum_proportion

...
minimum_count_per_million

Minimum CPM cutoff to use for filtering (passed to CPM.Cutoff in filterBy-
Expr). If provided, this will override the minimum_counts parameter. Default is
NULL (uses edgeR default).

factor_of_interest

The name of the column containing groups/conditions for filtering. Used by
edgeR’s filterByExpr to define sample groups. DEPRECATED: Use ’design’
or ’formula_design’ instead. This argument will be removed in a future release.

... Further arguments.

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

Details

‘r lifecycle::badge("maturing")‘

This function uses edgeR’s filterByExpr() function to identify consistently expressed features. A
feature is considered abundant if it has CPM > minimum_counts in at least minimum_proportion
of samples in at least one experimental group (defined by factor_of_interest or design).

Value

Returns the input object with an additional logical column ‘.abundant‘ indicating which features
passed the abundance threshold criteria.

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10), 4288-
4297. DOI: 10.1093/bioinformatics/btp616

22 impute_missing_abundance

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

Basic usage
airway |> identify_abundant()

With custom thresholds
airway |> identify_abundant(

minimum_counts = 5,
minimum_proportion = 0.5

)

Using a factor of interest
airway |> identify_abundant(factor_of_interest = condition)

impute_missing_abundance

impute transcript abundance if missing from sample-transcript pairs

Description

impute_missing_abundance() takes as input A ‘tbl‘ (with at least three columns for sample, feature
and transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional
sample-transcript pairs with imputed transcript abundance.

Usage

impute_missing_abundance(
.data,
.formula,
suffix = "",
force_scaling = FALSE,
...,
abundance = assayNames(.data)[1],
.abundance = NULL

)

S4 method for signature 'SummarizedExperiment'
impute_missing_abundance(
.data,
.formula,
suffix = "",
force_scaling = FALSE,
...,

impute_missing_abundance 23

abundance = assayNames(.data)[1],
.abundance = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
impute_missing_abundance(
.data,
.formula,
suffix = "",
force_scaling = FALSE,
...,
abundance = assayNames(.data)[1],
.abundance = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.formula A formula with no response variable, representing the desired linear model
where the first covariate is the factor of interest and the second covariate is the
unwanted variation (of the kind ~ factor_of_interest + batch)

suffix A character string. This is added to the imputed count column names. If empty
the count column are overwritten

force_scaling A boolean. In case a abundance-containing column is not scaled (columns with
_scale suffix), setting force_scaling = TRUE will result in a scaling by library
size, to compensating for a possible difference in sequencing depth.

... Further arguments.

abundance The name of the transcript/gene abundance column (character, preferred)

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

Details

‘r lifecycle::badge("maturing")‘

This function imputes the abundance of missing sample-transcript pair using the median of the
sample group defined by the formula

Value

A consistent object (to the input) non-sparse abundance

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

24 keep_abundant

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

library(airway)
data(airway)
airway <- airway[1:100, 1:5]

airway |>
impute_missing_abundance(.formula = ~ dex)

keep_abundant Filter to keep only abundant transcripts/genes

Description

Filters the data to keep only transcripts/genes that are consistently expressed above a threshold
across samples. This is a filtering version of identify_abundant() that removes low-abundance fea-
tures instead of just marking them.

This function is similar to identify_abundant() but instead of adding an .abundant column, it filters
out the low-abundance features directly.

Usage

keep_abundant(
.data,
abundance = assayNames(.data)[1],
design = NULL,
formula_design = NULL,
minimum_counts = 10,
minimum_proportion = 0.7,
minimum_count_per_million = NULL,
factor_of_interest = NULL,
...,
.abundance = NULL

)

Arguments

.data A ‘tbl‘ or ‘SummarizedExperiment‘ object containing transcript/gene abundance
data

abundance The name of the transcript/gene abundance column (character, preferred)

design A design matrix for more complex experimental designs. If provided, this is
passed to filterByExpr instead of factor_of_interest.

formula_design A formula for creating the design matrix

keep_abundant 25

minimum_counts The minimum count threshold for a feature to be considered abundant
minimum_proportion

The minimum proportion of samples in which a feature must be abundant
minimum_count_per_million

The minimum count per million threshold
factor_of_interest

The name of the column containing groups/conditions for filtering. DEPRE-
CATED: Use ’design’ or ’formula_design’ instead.

... Further arguments.

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

Details

Filter to keep only abundant transcripts/genes

[Questioning]
This function uses edgeR’s filterByExpr() function to identify and keep consistently expressed fea-
tures. A feature is kept if it has CPM > minimum_counts in at least minimum_proportion of samples
in at least one experimental group (defined by factor_of_interest or design).

This function is similar to identify_abundant() but instead of adding an .abundant column, it filters
out the low-abundance features directly.

Value

Returns a filtered version of the input object containing only the features that passed the abundance
threshold criteria.

Returns a filtered version of the input object containing only the features that passed the abundance
threshold criteria.

References

McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10), 4288-
4297. DOI: 10.1093/bioinformatics/btp616

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

Basic usage
airway |> keep_abundant()

With custom thresholds
airway |> keep_abundant(

minimum_counts = 5,
minimum_proportion = 0.5

26 keep_abundant,RangedSummarizedExperiment-method

)

Using a factor of interest
airway |> keep_abundant(factor_of_interest = condition)

keep_abundant,RangedSummarizedExperiment-method

keep_abundant

Description

keep_abundant

Usage

S4 method for signature 'RangedSummarizedExperiment'
keep_abundant(
.data,
abundance = assayNames(.data)[1],
design = NULL,
formula_design = NULL,
minimum_counts = 10,
minimum_proportion = 0.7,
minimum_count_per_million = NULL,
factor_of_interest = NULL,
...,
.abundance = NULL

)

Arguments

.data A ‘tbl‘ or ‘SummarizedExperiment‘ object containing transcript/gene abundance
data

abundance, .abundance
The name of the transcript/gene abundance column (character, preferred)

design A design matrix for more complex experimental designs. If provided, this is
passed to filterByExpr instead of factor_of_interest.

formula_design A formula for creating the design matrix
minimum_counts The minimum count threshold for a feature to be considered abundant
minimum_proportion

The minimum proportion of samples in which a feature must be abundant
minimum_count_per_million

The minimum count per million threshold
factor_of_interest

The name of the column containing groups/conditions for filtering. DEPRE-
CATED: Use ’design’ or ’formula_design’ instead.

... Further arguments.

Value

A ‘SummarizedExperiment‘ object

keep_abundant,SummarizedExperiment-method 27

keep_abundant,SummarizedExperiment-method

keep_abundant

Description

keep_abundant

Usage

S4 method for signature 'SummarizedExperiment'
keep_abundant(
.data,
abundance = assayNames(.data)[1],
design = NULL,
formula_design = NULL,
minimum_counts = 10,
minimum_proportion = 0.7,
minimum_count_per_million = NULL,
factor_of_interest = NULL,
...,
.abundance = NULL

)

Arguments

.data A ‘tbl‘ or ‘SummarizedExperiment‘ object containing transcript/gene abundance
data

abundance, .abundance
The name of the transcript/gene abundance column (character, preferred)

design A design matrix for more complex experimental designs. If provided, this is
passed to filterByExpr instead of factor_of_interest.

formula_design A formula for creating the design matrix

minimum_counts The minimum count threshold for a feature to be considered abundant
minimum_proportion

The minimum proportion of samples in which a feature must be abundant
minimum_count_per_million

The minimum count per million threshold
factor_of_interest

The name of the column containing groups/conditions for filtering. DEPRE-
CATED: Use ’design’ or ’formula_design’ instead.

... Further arguments.

Value

A ‘SummarizedExperiment‘ object

28 keep_variable

keep_variable Keep variable transcripts

Description

keep_variable() takes as input A ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional
columns for the statistics from the hypothesis test.

Usage

keep_variable(
.data,
.abundance = NULL,
top = 500,
transform = log1p,
log_transform = TRUE

)

S4 method for signature 'SummarizedExperiment'
keep_variable(.data, top = 500, transform = log1p)

S4 method for signature 'RangedSummarizedExperiment'
keep_variable(.data, top = 500, transform = log1p)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.abundance The name of the transcript/gene abundance column
top Integer. Number of top transcript to consider
transform A function that will tranform the counts, by default it is log1p for RNA sequenc-

ing data, but for avoinding tranformation you can use identity
log_transform DEPRECATED. Use transform instead.

Details

‘r lifecycle::badge("maturing")‘

At the moment this function uses edgeR https://doi.org/10.1093/bioinformatics/btp616

Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

Underlying method: s <- rowMeans((x - rowMeans(x)) ^ 2) o <- order(s, decreasing = TRUE) x <-
x[o[1L:top], , drop = FALSE] variable_trancripts = rownames(x)

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

https://doi.org/10.1093/bioinformatics/btp616

log10_reverse_trans 29

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

keep_variable(airway, top = 500)

log10_reverse_trans Log10 reverse transformation for ggplot2

Description

Creates a transformation that applies -log10(x) to data, useful for visualizing p-values or other
values where smaller values should be displayed larger.

Usage

log10_reverse_trans()

Value

A transformation object that can be used with ggplot2’s scale functions

Examples

Not run:
library(ggplot2)
Example usage with p-values
ggplot(data, aes(x = pvalue)) +

geom_histogram() +
scale_x_continuous(trans = log10_reverse_trans())

End(Not run)

30 pivot_sample

logit_trans logit scale

Description

it perform logit scaling with right axis formatting. To not be used directly but with ggplot (e.g.
scale_y_continuous(trans = "log10_reverse"))

Usage

logit_trans()

Details

‘r lifecycle::badge("maturing")‘

Value

A scales object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

Examples

library(ggplot2)
library(tibble)

tibble(pvalue = c(0.001, 0.05, 0.1), fold_change = 1:3) |>
ggplot(aes(fold_change , pvalue)) +
geom_point() +
scale_y_continuous(trans = "log10_reverse")

pivot_sample Extract sample-wise information

Description

pivot_sample() takes as input a ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and returns a ‘tbl‘ with only sample-related columns

pivot_sample 31

Usage

pivot_sample(.data)

S4 method for signature 'SummarizedExperiment'
pivot_sample(.data)

S4 method for signature 'RangedSummarizedExperiment'
pivot_sample(.data)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

Details

‘r lifecycle::badge("maturing")‘

This functon extracts only sample-related information for downstream analysis (e.g., visualisation).
It is disruptive in the sense that it cannot be passed anymore to tidybulk function.

Value

A ‘tbl‘ with transcript-related information

A consistent object (to the input)

A consistent object (to the input)

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

library(airway)
data(airway)
airway <- airway[1:100, 1:5]

pivot_sample(airway)

32 pivot_transcript

pivot_transcript Extract transcript-wise information

Description

pivot_transcript() takes as input a ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and returns a ‘tbl‘ with only transcript-related columns

Usage

pivot_transcript(.data)

S4 method for signature 'SummarizedExperiment'
pivot_transcript(.data)

S4 method for signature 'RangedSummarizedExperiment'
pivot_transcript(.data)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

Details

‘r lifecycle::badge("maturing")‘

This functon extracts only transcript-related information for downstream analysis (e.g., visualisa-
tion). It is disruptive in the sense that it cannot be passed anymore to tidybulk function.

Value

A ‘tbl‘ with transcript-related information

A consistent object (to the input)

A consistent object (to the input)

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

quantile_normalise_abundance 33

library(airway)
data(airway)
airway <- airway[1:100, 1:5]

pivot_transcript(airway)

quantile_normalise_abundance

Normalise by quantiles the counts of transcripts/genes

Description

quantile_normalise_abundance() takes as input A ‘tbl‘ (with at least three columns for sample,
feature and transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to
tibble with library(tidySummarizedExperiment)) and Scales transcript abundance compansating for
sequencing depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-
3-r25).

Usage

quantile_normalise_abundance(
.data,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL

)

S4 method for signature 'SummarizedExperiment'
quantile_normalise_abundance(
.data,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
quantile_normalise_abundance(
.data,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

34 quantile_normalise_abundance

.abundance The name of the transcript/gene abundance column

method A character string. Either "limma_normalize_quantiles" for limma::normalizeQuantiles
or "preprocesscore_normalize_quantiles_use_target" for preprocessCore::normalize.quantiles.use.target
for large-scale datasets.

target_distribution

A numeric vector. If NULL the target distribution will be calculated by prepro-
cessCore. This argument only affects the "preprocesscore_normalize_quantiles_use_target"
method.

Details

‘r lifecycle::badge("maturing")‘

Tranform the feature abundance across samples so to have the same quantile distribution (using
preprocessCore).

Underlying method

If ‘limma_normalize_quantiles‘ is chosen

.data |>limma::normalizeQuantiles()

If ‘preprocesscore_normalize_quantiles_use_target‘ is chosen

.data |> preprocessCore::normalize.quantiles.use.target(target = preprocessCore::normalize.quantiles.determine.target(.data)
)

Value

A tbl object with additional columns with scaled data as ‘<NAME OF COUNT COLUMN>_scaled‘

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research, 43(7), e47. doi:10.1093/nar/gkv007

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

airway |>
quantile_normalise_abundance()

reduce_dimensions 35

reduce_dimensions Dimension reduction of the transcript abundance data

Description

reduce_dimensions() takes as input A ‘tbl‘ (with at least three columns for sample, feature and
transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and calculates the reduced dimensional space of the transcript
abundance.

Usage

reduce_dimensions(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
.dims = 2,
top = 500,
of_samples = TRUE,
transform = log1p,
scale = TRUE,
...,
log_transform = NULL

)

S4 method for signature 'SummarizedExperiment'
reduce_dimensions(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
.dims = 2,
top = 500,
of_samples = TRUE,
transform = log1p,
scale = TRUE,
...,
log_transform = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
reduce_dimensions(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
.dims = 2,

36 reduce_dimensions

top = 500,
of_samples = TRUE,
transform = log1p,
scale = TRUE,
...,
log_transform = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.element The name of the element column (normally samples).

.feature The name of the feature column (normally transcripts/genes)

.abundance The name of the column including the numerical value the clustering is based
on (normally transcript abundance)

method A character string. The dimension reduction algorithm to use (PCA, MDS,
tSNE).

.dims An integer. The number of dimensions your are interested in (e.g., 4 for return-
ing the first four principal components).

top An integer. How many top genes to select for dimensionality reduction
of_samples A boolean. In case the input is a tidybulk object, it indicates Whether the ele-

ment column will be sample or transcript column
transform A function that will tranform the counts, by default it is log1p for RNA sequenc-

ing data, but for avoinding tranformation you can use identity
scale A boolean for method="PCA", this will be passed to the ‘prcomp‘ function. It

is not included in the ... argument because although the default for ‘prcomp‘ if
FALSE, it is advisable to set it as TRUE.

... Further parameters passed to the function prcomp if you choose method="PCA"
or Rtsne if you choose method="tSNE", or uwot::tumap if you choose method="umap"

log_transform DEPRECATED - A boolean, whether the value should be log-transformed (e.g.,
TRUE for RNA sequencing data)

Details

‘r lifecycle::badge("maturing")‘

This function reduces the dimensions of the transcript abundances. It can use multi-dimensional
scaling (MDS; DOI.org/10.1186/gb-2010-11-3-r25), principal component analysis (PCA), or tSNE
(Jesse Krijthe et al. 2018)

Underlying method for PCA: prcomp(scale = scale, ...)

Underlying method for MDS: limma::plotMDS(ndim = .dims, plot = FALSE, top = top)

Underlying method for tSNE: Rtsne::Rtsne(data, ...)

Underlying method for UMAP:

df_source = .data |>

Filter NA symbol filter(!!.feature |> is.na() |> not()) |>

Prepare data frame distinct(!!.feature,!!.element,!!.abundance) |>

Filter most variable genes keep_variable_transcripts(top) |> reduce_dimensions(method="PCA",
.dims = calculate_for_pca_dimensions) |> as_matrix(rownames = quo_name(.element)) |> uwot::tumap(...)

remove_redundancy 37

Value

A tbl object with additional columns for the reduced dimensions

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Krijthe, J. H. (2015). Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut
Implementation. R package version 0.15.

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. arXiv preprint arXiv:1802.03426.

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

counts.MDS =
airway |>
identify_abundant() |>
reduce_dimensions(method="MDS", .dims = 3)

counts.PCA =
airway |>
identify_abundant() |>
reduce_dimensions(method="PCA", .dims = 3)

remove_redundancy Drop redundant elements (e.g., samples) for which feature (e.g., tran-
script/gene) abundances are correlated

Description

remove_redundancy() takes as input A ‘tbl‘ (with at least three columns for sample, feature and
transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) for correlation method or | <DIMENSION 1> | <DIMENSION
2> | <...> | for reduced_dimensions method, and returns a consistent object (to the input) with
dropped elements (e.g., samples).

38 remove_redundancy

Usage

remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
transform = identity,
Dim_a_column,
Dim_b_column,
log_transform = NULL

)

S4 method for signature 'SummarizedExperiment'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
transform = identity,
Dim_a_column = NULL,
Dim_b_column = NULL,
log_transform = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
remove_redundancy(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
correlation_threshold = 0.9,
top = Inf,
transform = identity,
Dim_a_column = NULL,
Dim_b_column = NULL,
log_transform = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-

remove_redundancy 39

brary(tidySummarizedExperiment))

.element The name of the element column (normally samples).

.feature The name of the feature column (normally transcripts/genes)

.abundance The name of the column including the numerical value the clustering is based
on (normally transcript abundance)

method A character string. The method to use, correlation and reduced_dimensions are
available. The latter eliminates one of the most proximar pairs of samples in
PCA reduced dimensions.

of_samples A boolean. In case the input is a tidybulk object, it indicates Whether the ele-
ment column will be sample or transcript column

correlation_threshold

A real number between 0 and 1. For correlation based calculation.

top An integer. How many top genes to select for correlation based method

transform A function that will tranform the counts, by default it is log1p for RNA sequenc-
ing data, but for avoinding tranformation you can use identity

Dim_a_column A character string. For reduced_dimension based calculation. The column of
one principal component

Dim_b_column A character string. For reduced_dimension based calculation. The column of
another principal component

log_transform DEPRECATED - A boolean, whether the value should be log-transformed (e.g.,
TRUE for RNA sequencing data)

Details

‘r lifecycle::badge("maturing")‘

This function removes redundant elements from the original data set (e.g., samples or transcripts).
For example, if we want to define cell-type specific signatures with low sample redundancy. This
function returns a tibble with dropped redundant elements (e.g., samples). Two redundancy esti-
mation approaches are supported: (i) removal of highly correlated clusters of elements (keeping a
representative) with method="correlation"; (ii) removal of most proximal element pairs in a reduced
dimensional space.

Underlying method for correlation: widyr::pairwise_cor(sample, transcript,count, sort = TRUE,
diag = FALSE, upper = FALSE)

Underlying custom method for reduced dimensions: select_closest_pairs = function(df) couples <-
df |> head(n = 0) while (df |> nrow() > 0) pair <- df |> arrange(dist) |> head(n = 1) couples <-
couples |> bind_rows(pair) df <- df |> filter(¡sample 1‘

couples

Value

A tbl object with with dropped redundant elements (e.g., samples).

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

40 resolve_complete_confounders_of_non_interest

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

airway |>
identify_abundant() |>

remove_redundancy(
.element = sample,
.feature = transcript,
.abundance = count,
method = "correlation"
)

resolve_complete_confounders_of_non_interest

Resolve Complete Confounders of Non-Interest

Description

This function identifies and resolves complete confounders among specified factors of non-interest
within a ‘SummarizedExperiment‘ object. Complete confounders occur when the levels of one
factor are entirely predictable based on the levels of another factor. Such relationships can interfere
with downstream analyses by introducing redundancy or collinearity.

Usage

resolve_complete_confounders_of_non_interest(se, ...)

Arguments

se A ‘SummarizedExperiment‘ object. This object contains assay data, row data
(e.g., gene annotations), and column data (e.g., sample annotations).

... Factors of non-interest (column names from ‘colData(se)‘) to examine for com-
plete confounders.

Details

The function systematically examines pairs of specified factors and determines whether they are
completely confounded. If a pair of factors is found to be confounded, one of the factors is ad-
justed or removed to resolve the issue. The adjusted ‘SummarizedExperiment‘ object is returned,
preserving all assays and metadata except the resolved factors.

Complete confounders of non-interest can create dependencies between variables that may bias
statistical models or violate their assumptions. This function systematically addresses this by: 1.
Creating new columns with the suffix "___altered" for each specified factor to preserve original

resolve_complete_confounders_of_non_interest,SummarizedExperiment-method 41

values 2. Identifying pairs of factors in the specified columns that are fully confounded 3. Resolving
confounding by adjusting one of the factors in the "___altered" columns

The function creates new columns with the "___altered" suffix to store the modified values while
preserving the original data. This allows users to compare the original and adjusted values if needed.

The resolution strategy depends on the analysis context and can be modified in the helper function
‘resolve_complete_confounders_of_non_interest_pair_SE()‘. By default, the function adjusts one
of the confounded factors in the "___altered" columns.

Value

A ‘SummarizedExperiment‘ object with resolved confounders. The object retains its structure,
including assays and metadata, but the column data (‘colData‘) is updated with new "___altered"
columns containing the resolved factors.

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

library(SummarizedExperiment) library(dplyr)

Sample annotations sample_annotations <- data.frame(sample_id = paste0("Sample", seq(1, 9)),
factor_of_interest = c(rep("treated", 4), rep("untreated", 5)), A = c("a1", "a2", "a1", "a2", "a1",
"a2", "a1", "a2", "a3"), B = c("b1", "b1", "b2", "b1", "b1", "b1", "b2", "b1", "b3"), C = c("c1", "c1",
"c1", "c1", "c1", "c1", "c1", "c1", "c3"), stringsAsFactors = FALSE)

Simulated assay data assay_data <- matrix(rnorm(100 * 9), nrow = 100, ncol = 9)

Row data (e.g., gene annotations) row_data <- data.frame(gene_id = paste0("Gene", seq_len(100)))

Create SummarizedExperiment object se <- SummarizedExperiment(assays = list(counts = as-
say_data), rowData = row_data, colData = DataFrame(sample_annotations))

Apply the function to resolve confounders se_resolved <- resolve_complete_confounders_of_non_interest(se,
A, B, C)

View the updated column data colData(se_resolved)

See Also

SummarizedExperiment for creating and handling ‘SummarizedExperiment‘ objects.

Examples

Load necessary libraries

resolve_complete_confounders_of_non_interest,SummarizedExperiment-method

resolve_complete_confounders_of_non_interest

Description

resolve_complete_confounders_of_non_interest

resolve_complete_confounders_of_non_interest

42 rotate_dimensions

Usage

S4 method for signature 'SummarizedExperiment'
resolve_complete_confounders_of_non_interest(se, ...)

S4 method for signature 'RangedSummarizedExperiment'
resolve_complete_confounders_of_non_interest(se, ...)

Arguments

se A ‘SummarizedExperiment‘ object

... Factors of non-interest (column names from ‘colData(se)‘) to examine for com-
plete confounders

Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

rotate_dimensions Rotate two dimensions (e.g., principal components) of an arbitrary
angle

Description

rotate_dimensions() takes as input a ‘tbl‘ formatted as | <DIMENSION 1> | <DIMENSION 2> |
<...> | and calculates the rotated dimensional space of the transcript abundance.

Usage

rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL

)

S4 method for signature 'SummarizedExperiment'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,

rotate_dimensions 43

dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

dimension_1_column

A character string. The column of the dimension 1
dimension_2_column

A character string. The column of the dimension 2
rotation_degrees

A real number between 0 and 360

.element The name of the element column (normally samples).

of_samples A boolean. In case the input is a tidybulk object, it indicates Whether the ele-
ment column will be sample or transcript column

dimension_1_column_rotated

A character string. The column of the rotated dimension 1 (optional)
dimension_2_column_rotated

A character string. The column of the rotated dimension 2 (optional)

Details

‘r lifecycle::badge("maturing")‘

This function to rotate two dimensions such as the reduced dimensions.

Underlying custom method: rotation = function(m, d) r = d * pi / 180 ((bind_rows(c(‘1‘ = cos(r),
‘2‘ = -sin(r)), c(‘1‘ = sin(r), ‘2‘ = cos(r))) |> as_matrix())

Value

A tbl object with additional columns for the reduced dimensions. additional columns for the ro-
tated dimensions. The rotated dimensions will be added to the original data set as ‘<NAME OF
DIMENSION> rotated <ANGLE>‘ by default, or as specified in the input arguments.

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

44 scale_abundance

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

counts.MDS =
airway |>
identify_abundant() |>
reduce_dimensions(method="MDS", .dims = 3)

counts.MDS.rotated = rotate_dimensions(counts.MDS, `Dim1`, `Dim2`, rotation_degrees = 45, .element = sample)

scale_abundance Scale the counts of transcripts/genes

Description

scale_abundance() takes as input A ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and Scales transcript abundance compansating for sequencing
depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25).

Usage

scale_abundance(
.data,
abundance = assayNames(.data)[1],
method = "TMM",
reference_sample = NULL,
.subset_for_scaling = NULL,
suffix = "_scaled",
reference_selection_function = NULL,
...,
.abundance = NULL

)

S4 method for signature 'SummarizedExperiment'
scale_abundance(
.data,
abundance = assayNames(.data)[1],

scale_abundance 45

method = "TMM",
reference_sample = NULL,
.subset_for_scaling = NULL,
suffix = "_scaled",
reference_selection_function = NULL,
...,
.abundance = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
scale_abundance(
.data,
abundance = assayNames(.data)[1],
method = "TMM",
reference_sample = NULL,
.subset_for_scaling = NULL,
suffix = "_scaled",
reference_selection_function = NULL,
...,
.abundance = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

abundance The name of the transcript/gene abundance column (character, preferred)

method A character string. The scaling method passed to the back-end function (i.e.,
edgeR::calcNormFactors; "TMM","TMMwsp","RLE","upperquartile")

reference_sample

A character string. The name of the reference sample. If NULL the sample with
highest total read count will be selected as reference.

.subset_for_scaling

A gene-wise quosure condition. This will be used to filter rows (features/genes)
of the dataset. For example

suffix A character string to append to the scaled abundance column name. Default is
"_scaled".

reference_selection_function

DEPRECATED. please use reference_sample.

... Further arguments.

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

Details

‘r lifecycle::badge("maturing")‘

Scales transcript abundance compensating for sequencing depth (e.g., with TMM algorithm, Robin-
son and Oshlack doi.org/10.1186/gb-2010-11-3-r25). Lowly transcribed transcripts/genes (defined
with minimum_counts and minimum_proportion parameters) are filtered out from the scaling pro-
cedure. The scaling inference is then applied back to all unfiltered data.

46 scale_x_log10_reverse

Underlying method edgeR::calcNormFactors(.data, method = c("TMM","TMMwsp","RLE","upperquartile"))

Value

A tbl object with additional columns with scaled data as ‘<NAME OF COUNT COLUMN>_scaled‘

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology, 11(3), R25. doi:10.1186/gb-2010-11-3-r25

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

airway |>
identify_abundant() |>
scale_abundance()

scale_x_log10_reverse scale_x_log10_reverse

Description

A wrapper function that provides evenly spaced ticks with scientific notation for log10 reverse trans-
formed x-axis. This is particularly useful for plots showing p-values or other values where smaller
values should be displayed larger. The function applies a log10 transformation and reverses the
axis to better visualize p-values without hard transforming the data, while maintaining the original
p-value scale for interpretation. This allows you to see the full range of p-values with proper scaling
while keeping the original values readable.

Usage

scale_x_log10_reverse(breaks = 5, digits = 2, ...)

scale_y_log10_reverse 47

Arguments

breaks Number of breaks to display (default: 5)

digits Number of digits for scientific notation (default: 2)

... Additional arguments passed to scale_x_continuous

Details

‘r lifecycle::badge("maturing")‘

Value

A ggplot2 scale object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

Examples

library(ggplot2)
library(tibble)

Create test data
test_data <- tibble(

pvalue = c(0.0001, 0.001, 0.01, 0.05, 0.1, 0.5),
fold_change = 1:6

)

Use the wrapper function
test_data |>

ggplot(aes(pvalue, fold_change)) +
geom_point() +
scale_x_log10_reverse()

scale_y_log10_reverse scale_y_log10_reverse

Description

A wrapper function that provides evenly spaced ticks with scientific notation for log10 reverse trans-
formed y-axis. This is particularly useful for volcano plots and other plots showing p-values. The
function applies a log10 transformation and reverses the axis to better visualize p-values without
hard transforming the data, while maintaining the original p-value scale for interpretation. This
allows you to see the full range of p-values with proper scaling while keeping the original values
readable.

48 test_differential_abundance

Usage

scale_y_log10_reverse(breaks = 5, digits = 2, ...)

Arguments

breaks Number of breaks to display (default: 5)

digits Number of digits for scientific notation (default: 2)

... Additional arguments passed to scale_y_continuous

Details

‘r lifecycle::badge("maturing")‘

Value

A ggplot2 scale object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

Examples

library(ggplot2)
library(tibble)

Create test data
test_data <- tibble(

pvalue = c(0.0001, 0.001, 0.01, 0.05, 0.1, 0.5),
fold_change = 1:6

)

Use the wrapper function
test_data |>

ggplot(aes(fold_change, pvalue)) +
geom_point() +
scale_y_log10_reverse()

test_differential_abundance

Perform differential transcription testing using edgeR quasi-likelihood
(QLT), edgeR likelihood-ratio (LR), limma-voom, limma-voom-with-
quality-weights or DESeq2

test_differential_abundance 49

Description

test_differential_abundance() takes as input A ‘tbl‘ (with at least three columns for sample, feature
and transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional
columns for the statistics from the hypothesis test.

Usage

test_differential_abundance(
.data,
.formula,
abundance = assayNames(.data)[1],
contrasts = NULL,
method = c("edgeR_quasi_likelihood", "edgeR_likelihood_ratio",
"edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights",
"glmmseq_lme4", "glmmseq_glmmtmb"),

test_above_log2_fold_change = NULL,
scaling_method = "TMM",
omit_contrast_in_colnames = FALSE,
prefix = "",
...,
significance_threshold = NULL,
fill_missing_values = NULL,
.contrasts = NULL,
.abundance = NULL

)

S4 method for signature 'SummarizedExperiment'
test_differential_abundance(
.data,
.formula,
abundance = assayNames(.data)[1],
contrasts = NULL,
method = c("edgeR_quasi_likelihood", "edgeR_likelihood_ratio",
"edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights",
"glmmseq_lme4", "glmmseq_glmmtmb"),

test_above_log2_fold_change = NULL,
scaling_method = "TMM",
omit_contrast_in_colnames = FALSE,
prefix = "",
...,
significance_threshold = NULL,
fill_missing_values = NULL,
.contrasts = NULL,
.abundance = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
test_differential_abundance(
.data,
.formula,
abundance = assayNames(.data)[1],

50 test_differential_abundance

contrasts = NULL,
method = c("edgeR_quasi_likelihood", "edgeR_likelihood_ratio",
"edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights",
"glmmseq_lme4", "glmmseq_glmmtmb"),

test_above_log2_fold_change = NULL,
scaling_method = "TMM",
omit_contrast_in_colnames = FALSE,
prefix = "",
...,
significance_threshold = NULL,
fill_missing_values = NULL,
.contrasts = NULL,
.abundance = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.formula A formula representing the desired linear model. If there is more than one factor,
they should be in the order factor of interest + additional factors.

abundance The name of the transcript/gene abundance column (character, preferred)
contrasts This parameter takes the format of the contrast parameter of the method of

choice. For edgeR and limma-voom is a character vector. For DESeq2 is a
list including a character vector of length three. The first covariate is the one the
model is tested against (e.g., ~ factor_of_interest)

method A character vector. Available methods are "edgeR_quasi_likelihood" (i.e., QLF),
"edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2",
"limma_voom", "limma_voom_sample_weights", "glmmseq_lme4", "glmmseq_glmmtmb".
Only one method can be specified at a time.

test_above_log2_fold_change

A positive real value. This works for edgeR and limma_voom methods. It
uses the ‘treat‘ function, which tests that the difference in abundance is big-
ger than this threshold rather than zero https://pubmed.ncbi.nlm.nih.gov/
19176553.

scaling_method A character string. The scaling method passed to the back-end functions: edgeR
and limma-voom (i.e., edgeR::calcNormFactors; "TMM","TMMwsp","RLE","upperquartile").
Setting the parameter to \"none\" will skip the compensation for sequencing-
depth for the method edgeR or limma_voom.

omit_contrast_in_colnames

If just one contrast is specified you can choose to omit the contrast label in the
colnames.

prefix A character string. The prefix you would like to add to the result columns. It is
useful if you want to compare several methods.

... Further arguments passed to some of the internal experimental functions. For
example for glmmSeq, it is possible to pass .dispersion, and .scaling_factor col-
umn tidyeval to skip the caluclation of dispersion and scaling and use precalcu-
lated values. This is helpful is you want to calculate those quantities on many
genes and do DE testing on fewer genes. .scaling_factor is the TMM value that
can be obtained with tidybulk::scale_abundance.

https://pubmed.ncbi.nlm.nih.gov/19176553
https://pubmed.ncbi.nlm.nih.gov/19176553

test_differential_abundance 51

significance_threshold

DEPRECATED - A real between 0 and 1 (usually 0.05).
fill_missing_values

DEPRECATED - A boolean. Whether to fill missing sample/transcript values
with the median of the transcript. This is rarely needed.

.contrasts DEPRECATED - This parameter takes the format of the contrast parameter of
the method of choice. For edgeR and limma-voom is a character vector. For
DESeq2 is a list including a character vector of length three. The first covariate
is the one the model is tested against (e.g., ~ factor_of_interest)

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

Details

‘r lifecycle::badge("maturing")‘

This function provides the option to use edgeR https://doi.org/10.1093/bioinformatics/
btp616, limma-voom https://doi.org/10.1186/gb-2014-15-2-r29, limma_voom_sample_weights
https://doi.org/10.1093/nar/gkv412 or DESeq2 https://doi.org/10.1186/s13059-014-0550-8
to perform the testing. All methods use raw counts, irrespective of if scale_abundance or ad-
just_abundance have been calculated, therefore it is essential to add covariates such as batch effects
(if applicable) in the formula.

Underlying method for edgeR framework:

.data |>

Filter keep_abundant(factor_of_interest = !!(as.symbol(parse_formula(.formula)[1])), minimum_counts
= minimum_counts, minimum_proportion = minimum_proportion) |>

Format select(!!.transcript,!!.sample,!!.abundance) |> spread(!!.sample,!!.abundance) |> as_matrix(rownames
= !!.transcript) |>

edgeR edgeR::DGEList(counts = .) |> edgeR::calcNormFactors(method = scaling_method) |>
edgeR::estimateDisp(design) |>

Fit edgeR::glmQLFit(design) |> // or glmFit according to choice edgeR::glmQLFTest(coef = 2,
contrast = my_contrasts) // or glmLRT according to choice

Underlying method for DESeq2 framework:

keep_abundant(factor_of_interest = !!as.symbol(parse_formula(.formula)[[1]]), minimum_counts
= minimum_counts, minimum_proportion = minimum_proportion) |>

DESeq2 DESeq2::DESeqDataSet(design = .formula) |> DESeq2::DESeq() |> DESeq2::results()

Underlying method for glmmSeq framework:

counts = .data |> assay(my_assay)

Create design matrix for dispersion, removing random effects design = model.matrix(object =
.formula |> lme4::nobars(), data = metadata)

dispersion = counts |> edgeR::estimateDisp(design = design)

glmmSeq(.formula, countdata = counts , metadata = metadata |> as.data.frame(), dispersion =
dispersion, progress = TRUE, method = method |> str_remove("(?i)^glmmSeq_"),)

Value

A consistent object (to the input) with additional columns for the statistics from the test (e.g., log
fold change, p-value and false discovery rate).

https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1093/nar/gkv412
https://doi.org/10.1186/s13059-014-0550-8

52 test_differential_abundance

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10), 4288-
4297. doi:10.1093/nar/gks042

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. doi:10.1186/s13059-014-0550-8

Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biology, 15(2), R29. doi:10.1186/gb-
2014-15-2-r29

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

edgeR (default method)

airway |>
identify_abundant() |>
test_differential_abundance(~ condition, method = "edgeR_quasi_likelihood")

You can also explicitly specify the method
airway |>
identify_abundant() |>
test_differential_abundance(~ condition, method = "edgeR_quasi_likelihood")

The function `test_differential_abundance` operates with contrasts too

airway |>
identify_abundant(factor_of_interest = condition) |>
test_differential_abundance(

~ 0 + condition,
contrasts = c("conditiontrt - conditionuntrt"),
method = "edgeR_quasi_likelihood"

)

DESeq2 - equivalent for limma-voom

my_se_mini = airway
my_se_mini$condition = factor(my_se_mini$condition)

demontrating with `fitType` that you can access any arguments to DESeq()

test_differential_expression 53

my_se_mini |>
identify_abundant(factor_of_interest = condition) |>

test_differential_abundance(~ condition, method="deseq2", fitType="local")

testing above a log2 threshold, passes along value to lfcThreshold of results()
res <- my_se_mini |>

identify_abundant(factor_of_interest = condition) |>
test_differential_abundance(~ condition, method="deseq2",

fitType="local",
test_above_log2_fold_change=4)

Use random intercept and random effect models

airway[1:50,] |>
identify_abundant(factor_of_interest = condition) |>
test_differential_abundance(
~ condition + (1 + condition | cell),
method = "glmmseq_lme4", cores = 1

)

confirm that lfcThreshold was used
Not run to keep the example fast
res |>
mcols() |>
DESeq2::DESeqResults() |>
DESeq2::plotMA()

The function `test_differential_abundance` operates with contrasts too

my_se_mini |>
identify_abundant() |>
test_differential_abundance(

~ 0 + condition,
contrasts = list(c("condition", "trt", "untrt")),
method="deseq2",
fitType="local"

)

test_differential_expression

Perform differential expression testing using edgeR quasi-likelihood
(QLT), edgeR likelihood-ratio (LR), limma-voom, limma-voom-with-
quality-weights or DESeq2

Description

test_differential_expression() is an alias for test_differential_abundance() that takes as input A ‘tbl‘
(with at least three columns for sample, feature and transcript abundance) or ‘SummarizedExper-
iment‘ (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and re-
turns a consistent object (to the input) with additional columns for the statistics from the hypothesis
test.

54 test_differential_expression

Usage

test_differential_expression(
.data,
.formula,
abundance = assayNames(.data)[1],
contrasts = NULL,
method = c("edgeR_quasi_likelihood", "edgeR_likelihood_ratio",
"edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights",
"glmmseq_lme4", "glmmseq_glmmtmb"),

test_above_log2_fold_change = NULL,
scaling_method = "TMM",
omit_contrast_in_colnames = FALSE,
prefix = "",
...,
significance_threshold = NULL,
fill_missing_values = NULL,
.contrasts = NULL,
.abundance = NULL

)

S4 method for signature 'SummarizedExperiment'
test_differential_expression(
.data,
.formula,
abundance = assayNames(.data)[1],
contrasts = NULL,
method = c("edgeR_quasi_likelihood", "edgeR_likelihood_ratio",
"edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights",
"glmmseq_lme4", "glmmseq_glmmtmb"),

test_above_log2_fold_change = NULL,
scaling_method = "TMM",
omit_contrast_in_colnames = FALSE,
prefix = "",
...,
significance_threshold = NULL,
fill_missing_values = NULL,
.contrasts = NULL,
.abundance = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
test_differential_expression(
.data,
.formula,
abundance = assayNames(.data)[1],
contrasts = NULL,
method = c("edgeR_quasi_likelihood", "edgeR_likelihood_ratio",
"edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights",
"glmmseq_lme4", "glmmseq_glmmtmb"),

test_above_log2_fold_change = NULL,
scaling_method = "TMM",
omit_contrast_in_colnames = FALSE,

test_differential_expression 55

prefix = "",
...,
significance_threshold = NULL,
fill_missing_values = NULL,
.contrasts = NULL,
.abundance = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.formula A formula representing the desired linear model. If there is more than one factor,
they should be in the order factor of interest + additional factors.

abundance The name of the transcript/gene abundance column (character, preferred)

contrasts This parameter takes the format of the contrast parameter of the method of
choice. For edgeR and limma-voom is a character vector. For DESeq2 is a
list including a character vector of length three. The first covariate is the one the
model is tested against (e.g., ~ factor_of_interest)

method A character vector. Available methods are "edgeR_quasi_likelihood" (i.e., QLF),
"edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2",
"limma_voom", "limma_voom_sample_weights", "glmmseq_lme4", "glmmseq_glmmtmb".
Only one method can be specified at a time.

test_above_log2_fold_change

A positive real value. This works for edgeR and limma_voom methods. It
uses the ‘treat‘ function, which tests that the difference in abundance is big-
ger than this threshold rather than zero https://pubmed.ncbi.nlm.nih.gov/
19176553.

scaling_method A character string. The scaling method passed to the back-end functions: edgeR
and limma-voom (i.e., edgeR::calcNormFactors; "TMM","TMMwsp","RLE","upperquartile").
Setting the parameter to \"none\" will skip the compensation for sequencing-
depth for the method edgeR or limma_voom.

omit_contrast_in_colnames

If just one contrast is specified you can choose to omit the contrast label in the
colnames.

prefix A character string. The prefix you would like to add to the result columns. It is
useful if you want to compare several methods.

... Further arguments passed to some of the internal experimental functions. For
example for glmmSeq, it is possible to pass .dispersion, and .scaling_factor col-
umn tidyeval to skip the caluclation of dispersion and scaling and use precalcu-
lated values. This is helpful is you want to calculate those quantities on many
genes and do DE testing on fewer genes. .scaling_factor is the TMM value that
can be obtained with tidybulk::scale_abundance.

significance_threshold

DEPRECATED - A real between 0 and 1 (usually 0.05).
fill_missing_values

DEPRECATED - A boolean. Whether to fill missing sample/transcript values
with the median of the transcript. This is rarely needed.

https://pubmed.ncbi.nlm.nih.gov/19176553
https://pubmed.ncbi.nlm.nih.gov/19176553

56 test_differential_expression

.contrasts DEPRECATED - This parameter takes the format of the contrast parameter of
the method of choice. For edgeR and limma-voom is a character vector. For
DESeq2 is a list including a character vector of length three. The first covariate
is the one the model is tested against (e.g., ~ factor_of_interest)

.abundance DEPRECATED. The name of the transcript/gene abundance column (symbolic,
for backward compatibility)

Details

‘r lifecycle::badge("maturing")‘

This function provides the option to use edgeR https://doi.org/10.1093/bioinformatics/
btp616, limma-voom https://doi.org/10.1186/gb-2014-15-2-r29, limma_voom_sample_weights
https://doi.org/10.1093/nar/gkv412 or DESeq2 https://doi.org/10.1186/s13059-014-0550-8
to perform the testing. All methods use raw counts, irrespective of if scale_abundance or ad-
just_abundance have been calculated, therefore it is essential to add covariates such as batch effects
(if applicable) in the formula.

Underlying method for edgeR framework:

.data |>

Filter keep_abundant(factor_of_interest = !!(as.symbol(parse_formula(.formula)[1])), minimum_counts
= minimum_counts, minimum_proportion = minimum_proportion) |>

Format select(!!.transcript,!!.sample,!!.abundance) |> spread(!!.sample,!!.abundance) |> as_matrix(rownames
= !!.transcript) |>

edgeR edgeR::DGEList(counts = .) |> edgeR::calcNormFactors(method = scaling_method) |>
edgeR::estimateDisp(design) |>

Fit edgeR::glmQLFit(design) |> // or glmFit according to choice edgeR::glmQLFTest(coef = 2,
contrast = my_contrasts) // or glmLRT according to choice

Underlying method for DESeq2 framework:

keep_abundant(factor_of_interest = !!as.symbol(parse_formula(.formula)[[1]]), minimum_counts
= minimum_counts, minimum_proportion = minimum_proportion) |>

DESeq2 DESeq2::DESeqDataSet(design = .formula) |> DESeq2::DESeq() |> DESeq2::results()

Underlying method for glmmSeq framework:

counts = .data |> assay(my_assay)

Create design matrix for dispersion, removing random effects design = model.matrix(object =
.formula |> lme4::nobars(), data = metadata)

dispersion = counts |> edgeR::estimateDisp(design = design)

glmmSeq(.formula, countdata = counts , metadata = metadata |> as.data.frame(), dispersion =
dispersion, progress = TRUE, method = method |> str_remove("(?i)^glmmSeq_"),)

Value

A consistent object (to the input) with additional columns for the statistics from the test (e.g., log
fold change, p-value and false discovery rate).

A ‘SummarizedExperiment‘ object

A ‘SummarizedExperiment‘ object

https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1093/nar/gkv412
https://doi.org/10.1186/s13059-014-0550-8

test_differential_expression 57

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10), 4288-
4297. doi:10.1093/nar/gks042

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. doi:10.1186/s13059-014-0550-8

Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biology, 15(2), R29. doi:10.1186/gb-
2014-15-2-r29

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

edgeR (default method)

airway |>
identify_abundant() |>
test_differential_expression(~ condition, method = "edgeR_quasi_likelihood")

You can also explicitly specify the method
airway |>
identify_abundant() |>
test_differential_expression(~ condition, method = "edgeR_quasi_likelihood")

The function `test_differential_expression` operates with contrasts too

airway |>
identify_abundant(factor_of_interest = condition) |>
test_differential_expression(

~ 0 + condition,
contrasts = c("conditiontrt - conditionuntrt"),
method = "edgeR_quasi_likelihood"

)

DESeq2 - equivalent for limma-voom

my_se_mini = airway
my_se_mini$condition = factor(my_se_mini$condition)

demontrating with `fitType` that you can access any arguments to DESeq()
my_se_mini |>

identify_abundant(factor_of_interest = condition) |>
test_differential_expression(~ condition, method="deseq2", fitType="local")

58 test_gene_enrichment

testing above a log2 threshold, passes along value to lfcThreshold of results()
res <- my_se_mini |>

identify_abundant(factor_of_interest = condition) |>
test_differential_expression(~ condition, method="deseq2",

fitType="local",
test_above_log2_fold_change=4)

Use random intercept and random effect models

airway[1:50,] |>
identify_abundant(factor_of_interest = condition) |>
test_differential_expression(
~ condition + (1 + condition | cell),
method = "glmmseq_lme4", cores = 1

)

confirm that lfcThreshold was used

Not run:
res |>

mcols() |>
DESeq2::DESeqResults() |>
DESeq2::plotMA()

End(Not run)

The function `test_differential_expression` operates with contrasts too

my_se_mini |>
identify_abundant() |>
test_differential_expression(

~ 0 + condition,
contrasts = list(c("condition", "trt", "untrt")),
method="deseq2",

fitType="local"
)

test_gene_enrichment analyse gene enrichment with EGSEA

Description

test_gene_enrichment() takes as input a ‘tbl‘ (with at least three columns for sample, feature and
transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and returns a ‘tbl‘ of gene set information

Usage

test_gene_enrichment(
.data,
.formula,
.entrez,
.abundance = NULL,

test_gene_enrichment 59

contrasts = NULL,
methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
"kegg_metabolism", "kegg_signaling"),

species,
cores = parallel::detectCores(),
method = NULL,
.contrasts = NULL

)

S4 method for signature 'SummarizedExperiment'
test_gene_enrichment(
.data,
.formula,
.entrez,
.abundance = NULL,
contrasts = NULL,
methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
"kegg_metabolism", "kegg_signaling"),

species,
cores = parallel::detectCores(),
method = NULL,
.contrasts = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
test_gene_enrichment(
.data,
.formula,
.entrez,
.abundance = NULL,
contrasts = NULL,
methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
"kegg_metabolism", "kegg_signaling"),

species,
cores = parallel::detectCores(),
method = NULL,
.contrasts = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.formula A formula with no response variable, representing the desired linear model

.entrez The ENTREZ ID of the transcripts/genes

.abundance The name of the transcript/gene abundance column

contrasts This parameter takes the format of the contrast parameter of the method of
choice. For edgeR and limma-voom is a character vector. For DESeq2 is a

60 test_gene_enrichment

list including a character vector of length three. The first covariate is the one the
model is tested against (e.g., ~ factor_of_interest)

methods A character vector. One or 3 or more methods to use in the testing (currently
EGSEA errors if 2 are used). Type EGSEA::egsea.base() to see the supported
GSE methods.

gene_sets A character vector or a list. It can take one or more of the following built-
in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6",
"c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"), to be used with
EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied
gene sets can be provided, to be used with EGSEA buildCustomIdx. In that
case, each gene set is a character vector of Entrez IDs and the names of the list
are the gene set names.

species A character. It can be human, mouse or rat.

cores An integer. The number of cores available

method DEPRECATED. Please use methods.

.contrasts DEPRECATED - This parameter takes the format of the contrast parameter of
the method of choice. For edgeR and limma-voom is a character vector. For
DESeq2 is a list including a character vector of length three. The first covariate
is the one the model is tested against (e.g., ~ factor_of_interest)

Details

‘r lifecycle::badge("maturing")‘

This wrapper executes ensemble gene enrichment analyses of the dataset using EGSEA (DOI:0.12688/f1000research.12544.1)

dge = data |> keep_abundant(factor_of_interest = !!as.symbol(parse_formula(.formula)[[1]]), !!.sam-
ple, !!.entrez, !!.abundance) |>

Make sure transcript names are adjacent [...] |> as_matrix(rownames = !!.entrez) |> edgeR::DGEList(counts
= .)

idx = buildIdx(entrezIDs = rownames(dge), species = species, msigdb.gsets = msigdb.gsets, kegg.exclude
= kegg.exclude)

dge |>

Calculate weights limma::voom(design, plot = FALSE) |>

Execute EGSEA egsea(contrasts = my_contrasts, baseGSEAs = methods, gs.annots = idx, sort.by
= "med.rank", num.threads = cores, report = FALSE)

Value

A consistent object (to the input)

A consistent object (to the input)

A consistent object (to the input)

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Alhamdoosh, M., Ng, M., Wilson, N. J., Sheridan, J. M., Huynh, H., Wilson, M. J., & Ritchie, M. E.
(2017). Combining multiple tools outperforms individual methods for gene set enrichment analysis
in single-cell RNA-seq data. Genome Biology, 18(1), 174. doi:10.1186/s13059-017-1279-y

test_gene_overrepresentation 61

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

library(tidySummarizedExperiment)

library("EGSEA")

Not run:
df_entrez <- airway |>

mutate(entrez = .feature) |>
aggregate_duplicates(.transcript = entrez)

test_gene_enrichment(
df_entrez,
~ condition,
.entrez = entrez,
.abundance = count,
methods = c("roast" , "safe", "gage" , "padog" , "globaltest", "ora"),
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"),
species="human",
cores = 2
)

End(Not run)

test_gene_overrepresentation

analyse gene over-representation with GSEA

Description

test_gene_overrepresentation() takes as input a ‘tbl‘ (with at least three columns for sample, feature
and transcript abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with
library(tidySummarizedExperiment)) and returns a ‘tbl‘ with the GSEA statistics

Usage

test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,

62 test_gene_overrepresentation

gene_set = NULL
)

S4 method for signature 'SummarizedExperiment'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.entrez The ENTREZ ID of the transcripts/genes

.do_test A boolean column name symbol. It indicates the transcript to check
species A character. For example, human or mouse. MSigDB uses the latin species

names (e.g., \"Mus musculus\", \"Homo sapiens\")
.sample The name of the sample column
gene_sets A character vector. The subset of MSigDB datasets you want to test against (e.g.

\"C2\"). If NULL all gene sets are used (suggested). This argument was added
to avoid time overflow of the examples.

gene_set DEPRECATED. Use gene_sets instead.

Details

‘r lifecycle::badge("maturing")‘

This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA.
This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.

Get MSigDB data msigdb_data = msigdbr::msigdbr(species = species)

Filter for specific gene collections if provided

msigdb_data = filter(msigdb_data, gs_collection

Process the data msigdb_data |> nest(data = -gs_collection) |> mutate(test = map(data, ~ cluster-
Profiler::enricher(my_entrez_rank, TERM2GENE=.x |> select(gs_name, ncbi_gene), pvalueCutoff
= 1) |> as_tibble()))

test_gene_rank 63

Value

A consistent object (to the input)

A ‘SummarizedExperiment‘ object

A ‘RangedSummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284-287.
doi:10.1089/omi.2011.0118

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

print("Not run for build time.")

airway = airway[!rowData(airway)$entrez |> is.na(),] |> aggregate_duplicates(.transcript = entrez)
df_entrez = mutate(df_entrez, do_test = feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))

Not run:
test_gene_overrepresentation(
df_entrez,
.sample = sample,
.entrez = entrez,
.do_test = do_test,
species="Homo sapiens",
gene_sets =c("C2")

)

End(Not run)

test_gene_rank analyse gene rank with GSEA

Description

test_gene_rank() takes as input a ‘tbl‘ (with at least three columns for sample, feature and tran-
script abundance) or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment)) and returns a ‘tbl‘ with the GSEA statistics

64 test_gene_rank

Usage

test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
gene_sets = NULL,
gene_set = NULL

)

S4 method for signature 'SummarizedExperiment'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
gene_sets = NULL,
gene_set = NULL

)

S4 method for signature 'RangedSummarizedExperiment'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
gene_sets = NULL,
gene_set = NULL

)

Arguments

.data A ‘tbl‘ (with at least three columns for sample, feature and transcript abundance)
or ‘SummarizedExperiment‘ (more convenient if abstracted to tibble with li-
brary(tidySummarizedExperiment))

.entrez The ENTREZ ID of the transcripts/genes

.arrange_desc A column name of the column to arrange in decreasing order

species A character. For example, human or mouse. MSigDB uses the latin species
names (e.g., \"Mus musculus\", \"Homo sapiens\")

gene_sets A character vector or a list. It can take one or more of the following built-
in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6",
"c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"), to be used with
EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied
gene sets can be provided, to be used with EGSEA buildCustomIdx. In that
case, each gene set is a character vector of Entrez IDs and the names of the list
are the gene set names.

gene_set DEPRECATED. Use gene_sets instead.

Details

[Maturing]

test_gene_rank 65

This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA.
This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.

Undelying method: my_gene_collection <- msigdbr::msigdbr(species = species)

my_gene_collection <- filter(my_gene_collection, gs_collection

Execute calculation nest(data = -gs_collection) |> mutate(fit = map(data, ~ clusterProfiler::GSEA(
my_entrez_rank, TERM2GENE=.x |> select(gs_name, ncbi_gene), pvalueCutoff = 1)

))

Value

A consistent object (to the input)

A ‘SummarizedExperiment‘ object

A ‘RangedSummarizedExperiment‘ object

References

Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy
framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-
020-02233-7

Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284-287.
doi:10.1089/omi.2011.0118

Examples

Load airway dataset for examples

data('airway', package = 'airway')
Ensure a 'condition' column exists for examples expecting it

SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex

print("Not run for build time.")

Not run:

df_entrez = airway
df_entrez = mutate(df_entrez, do_test = .feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
df_entrez = df_entrez |> test_differential_abundance(~ condition)

test_gene_rank(
df_entrez,
.sample = .sample,
.entrez = entrez,
species="Homo sapiens",
gene_sets =c("C2"),

.arrange_desc = logFC
)

66 test_stratification_cellularity,SummarizedExperiment-method

End(Not run)

test_stratification_cellularity,SummarizedExperiment-method

test_stratification_cellularity

Description

test_stratification_cellularity

test_stratification_cellularity

Usage

S4 method for signature 'SummarizedExperiment'
test_stratification_cellularity(
.data,
.formula,
.abundance = NULL,
method = c("cibersort", "llsr", "epic", "mcp_counter", "quantiseq", "xcell"),
reference = X_cibersort,
...

)

S4 method for signature 'RangedSummarizedExperiment'
test_stratification_cellularity(
.data,
.formula,
.abundance = NULL,
method = c("cibersort", "llsr", "epic", "mcp_counter", "quantiseq", "xcell"),
reference = X_cibersort,
...

)

Arguments

.data A ‘SummarizedExperiment‘ object

.formula A formula representing the desired linear model

.abundance The name of the transcript/gene abundance column
method A character string naming the deconvolution method
reference Reference matrix or method-specific handle
... Additional arguments passed through to the underlying deconvolution function

Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test
(e.g., log fold change, p-value and false discovery rate).

tximeta_summarizeToGene_object 67

tximeta_summarizeToGene_object

Needed for tests tximeta_summarizeToGene_object, It is Summarized-
Experiment from tximeta

Description

Needed for tests tximeta_summarizeToGene_object, It is SummarizedExperiment from tximeta

Usage

tximeta_summarizeToGene_object

Format

An object of class RangedSummarizedExperiment with 10 rows and 1 columns.

vignette_manuscript_signature_boxplot

Needed for vignette vignette_manuscript_signature_boxplot

Description

Needed for vignette vignette_manuscript_signature_boxplot

Usage

vignette_manuscript_signature_boxplot

Format

An object of class tbl_df (inherits from tbl, data.frame) with 899 rows and 12 columns.

vignette_manuscript_signature_tsne

Needed for vignette vignette_manuscript_signature_tsne

Description

Needed for vignette vignette_manuscript_signature_tsne

Usage

vignette_manuscript_signature_tsne

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 283 rows and 10
columns.

68 X_cibersort

vignette_manuscript_signature_tsne2

Needed for vignette vignette_manuscript_signature_tsne2

Description

Needed for vignette vignette_manuscript_signature_tsne2

Usage

vignette_manuscript_signature_tsne2

Format

An object of class tbl_df (inherits from tbl, data.frame) with 283 rows and 9 columns.

X_cibersort Cibersort reference

Description

Cibersort reference

Usage

X_cibersort

Format

An object of class data.frame with 547 rows and 22 columns.

References

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn,
M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles.
Nature Methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337

Index

∗ datasets
tximeta_summarizeToGene_object, 67
vignette_manuscript_signature_boxplot,

67
vignette_manuscript_signature_tsne,

67
vignette_manuscript_signature_tsne2,

68
X_cibersort, 68

∗ internal
.rotate_dimensions_se, 3
check_if_counts_is_na, 10
check_if_duplicated_genes, 11

.describe_transcript_SE
(describe_transcript), 15

.rotate_dimensions_se, 3

adjust_abundance, 4
adjust_abundance,RangedSummarizedExperiment-method

(adjust_abundance), 4
adjust_abundance,SummarizedExperiment-method

(adjust_abundance), 4
aggregate_duplicates, 6
aggregate_duplicates,RangedSummarizedExperiment-method

(aggregate_duplicates), 6
aggregate_duplicates,SummarizedExperiment-method

(aggregate_duplicates), 6
as_matrix, 9
as_SummarizedExperiment, 9
as_SummarizedExperiment,tbl_df-method

(as_SummarizedExperiment), 9

check_if_counts_is_na, 10
check_if_duplicated_genes, 11
cluster_elements, 11
cluster_elements,RangedSummarizedExperiment-method

(cluster_elements), 11
cluster_elements,SummarizedExperiment-method

(cluster_elements), 11

deconvolve_cellularity, 13
deconvolve_cellularity,RangedSummarizedExperiment-method

(deconvolve_cellularity), 13

deconvolve_cellularity,SummarizedExperiment-method
(deconvolve_cellularity), 13

describe_transcript, 15
describe_transcript,RangedSummarizedExperiment-method

(describe_transcript), 15
describe_transcript,SummarizedExperiment-method

(describe_transcript), 15

fill_missing_abundance, 17

get_bibliography, 18
get_bibliography,RangedSummarizedExperiment-method

(get_bibliography), 18
get_bibliography,SummarizedExperiment-method

(get_bibliography), 18
get_X_cibersort, 19

identify_abundant, 20
identify_abundant,RangedSummarizedExperiment-method

(identify_abundant), 20
identify_abundant,SummarizedExperiment-method

(identify_abundant), 20
impute_missing_abundance, 22
impute_missing_abundance,RangedSummarizedExperiment-method

(impute_missing_abundance), 22
impute_missing_abundance,SummarizedExperiment-method

(impute_missing_abundance), 22

keep_abundant, 24
keep_abundant,RangedSummarizedExperiment-method,

26
keep_abundant,SummarizedExperiment-method,

27
keep_variable, 28
keep_variable,RangedSummarizedExperiment-method

(keep_variable), 28
keep_variable,SummarizedExperiment-method

(keep_variable), 28

log10_reverse_trans, 29
logit_trans, 30

pivot_sample, 30
pivot_sample,RangedSummarizedExperiment-method

(pivot_sample), 30

69

70 INDEX

pivot_sample,SummarizedExperiment-method
(pivot_sample), 30

pivot_transcript, 32
pivot_transcript,RangedSummarizedExperiment-method

(pivot_transcript), 32
pivot_transcript,SummarizedExperiment-method

(pivot_transcript), 32

quantile_normalise_abundance, 33
quantile_normalise_abundance,RangedSummarizedExperiment-method

(quantile_normalise_abundance),
33

quantile_normalise_abundance,SummarizedExperiment-method
(quantile_normalise_abundance),
33

reduce_dimensions, 35
reduce_dimensions,RangedSummarizedExperiment-method

(reduce_dimensions), 35
reduce_dimensions,SummarizedExperiment-method

(reduce_dimensions), 35
remove_redundancy, 37
remove_redundancy,RangedSummarizedExperiment-method

(remove_redundancy), 37
remove_redundancy,SummarizedExperiment-method

(remove_redundancy), 37
resolve_complete_confounders_of_non_interest,

40
resolve_complete_confounders_of_non_interest,RangedSummarizedExperiment-method

(resolve_complete_confounders_of_non_interest,SummarizedExperiment-method),
41

resolve_complete_confounders_of_non_interest,SummarizedExperiment-method,
41

rotate_dimensions, 42
rotate_dimensions,RangedSummarizedExperiment-method

(rotate_dimensions), 42
rotate_dimensions,SummarizedExperiment-method

(rotate_dimensions), 42

scale_abundance, 44
scale_abundance,RangedSummarizedExperiment-method

(scale_abundance), 44
scale_abundance,SummarizedExperiment-method

(scale_abundance), 44
scale_x_log10_reverse, 46
scale_y_log10_reverse, 47
SummarizedExperiment, 41

test_differential_abundance, 48
test_differential_abundance,RangedSummarizedExperiment-method

(test_differential_abundance),
48

test_differential_abundance,SummarizedExperiment-method
(test_differential_abundance),
48

test_differential_expression, 53
test_differential_expression,RangedSummarizedExperiment-method

(test_differential_expression),
53

test_differential_expression,SummarizedExperiment-method
(test_differential_expression),
53

test_gene_enrichment, 58
test_gene_enrichment,RangedSummarizedExperiment-method

(test_gene_enrichment), 58
test_gene_enrichment,SummarizedExperiment-method

(test_gene_enrichment), 58
test_gene_overrepresentation, 61
test_gene_overrepresentation,RangedSummarizedExperiment-method

(test_gene_overrepresentation),
61

test_gene_overrepresentation,SummarizedExperiment-method
(test_gene_overrepresentation),
61

test_gene_rank, 63
test_gene_rank,RangedSummarizedExperiment-method

(test_gene_rank), 63
test_gene_rank,SummarizedExperiment-method

(test_gene_rank), 63
test_stratification_cellularity,RangedSummarizedExperiment-method

(test_stratification_cellularity,SummarizedExperiment-method),
66

test_stratification_cellularity,SummarizedExperiment-method,
66

tximeta_summarizeToGene_object, 67

vignette_manuscript_signature_boxplot,
67

vignette_manuscript_signature_tsne, 67
vignette_manuscript_signature_tsne2,

68

X_cibersort, 68

	.rotate_dimensions_se
	adjust_abundance
	aggregate_duplicates
	as_matrix
	as_SummarizedExperiment
	check_if_counts_is_na
	check_if_duplicated_genes
	cluster_elements
	deconvolve_cellularity
	describe_transcript
	fill_missing_abundance
	get_bibliography
	get_X_cibersort
	identify_abundant
	impute_missing_abundance
	keep_abundant
	keep_abundant,RangedSummarizedExperiment-method
	keep_abundant,SummarizedExperiment-method
	keep_variable
	log10_reverse_trans
	logit_trans
	pivot_sample
	pivot_transcript
	quantile_normalise_abundance
	reduce_dimensions
	remove_redundancy
	resolve_complete_confounders_of_non_interest
	resolve_complete_confounders_of_non_interest,SummarizedExperiment-method
	rotate_dimensions
	scale_abundance
	scale_x_log10_reverse
	scale_y_log10_reverse
	test_differential_abundance
	test_differential_expression
	test_gene_enrichment
	test_gene_overrepresentation
	test_gene_rank
	test_stratification_cellularity,SummarizedExperiment-method
	tximeta_summarizeToGene_object
	vignette_manuscript_signature_boxplot
	vignette_manuscript_signature_tsne
	vignette_manuscript_signature_tsne2
	X_cibersort
	Index

