Package ‘signatureSearch’

January 30, 2026

Title Environment for Gene Expression Searching Combined with
Functional Enrichment Analysis

Version 1.24.0

Description This package implements algorithms and data structures for
performing gene expression signature (GES) searches, and
subsequently interpreting the results functionally with
specialized enrichment methods.

Depends R(>=4.2.0), Rcpp, SummarizedExperiment, org.Hs.eg.db

Imports AnnotationDbi, ggplot2, data.table, ExperimentHub, HDF5Array,
magrittr, RSQLite, dplyr, fgsea, scales, methods, qvalue,
stats, utils, reshape2, visNetwork, BiocParallel, fastmatch,
reactome.db, Matrix, clusterProfiler, readr, DOSE, rhdf5,
GSEABase, DelayedArray, BiocGenerics, tibble

Suggests knitr, testthat, rmarkdown, BiocStyle, signatureSearchData,
DT

License Artistic-2.0

SystemRequirements C++11

LinkingTo Rcpp

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.2.3

biocViews Software, GeneExpression, GO, KEGG, NetworkEnrichment,
Sequencing, Coverage, DifferentialExpression

URL https://github.com/yduan@@4/signatureSearch/

BugReports https://github.com/yduan@@4/signatureSearch/issues
LazyData false

git_url https://git.bioconductor.org/packages/signatureSearch

git_branch RELEASE_3_22

git_last_commit ce6ab95

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

https://github.com/yduan004/signatureSearch/
https://github.com/yduan004/signatureSearch/issues

2 Contents

Author Yuzhu Duan [aut],
Brendan Gongol [cre, aut],
Thomas Girke [aut]

Maintainer Brendan Gongol <bgong@@1@ucr.edu>

Contents
signatureSearch-package Lo oL oo 3
addGESSannot e 5
addMOA . . . e e e 7
add_peid L e 7
append2HS L L 8
build_custom_db 8
calcGseaStatBatchCppo 9
cellNtestPlot e e e e 10
cell_info L e 10
cell_Info2 L e 11
chembl_moa_list 11
clue_ moa_list L s e 12
comp_fea_res 12
create_empty_hS e 13
dim ..o e 14
drugs . .. e 15
drugslO e e 15
drug_cell_ranks 16
dsea_ GSEA e 17
dtmetplot 23
enrichGO2 e e 24
enrichKEGG2 e e e 25
enrichMOA e 26
enrichReactome 27
feaResult e 28
feaResult-class 29
GCTobject e e e 29
gctx2hS . oL 30
gessResult 30
gessResult-class L 31
GESS_CMAP « . v v v v e 31
ESS_TES_VIS « v v v v e e e e e e e e e 38
getALLEG e 39
getDb . . . e 39
CetSIg . . e e e 40
getTreats L e e 41
GELLANGELS e e e e e e e e 42
emtZhS .o e e e 43
gseGO2 . . . L e 44
gseKEGG2 e 45
gseReactome L e 46
head e 47
lincs_expr_inst_info 48

lincs_pert_info 48

signatureSearch-package 3

lincs_pert_info2 e 49
lincs_sig_info L 49
List2df . . . e e e e 50
LSE_TEV . . o o o e e e 50
mabsGO e e e e 51
mabsKEGG e e e e 52
mabsReactome e e 53
matrix2h5 e e 54
meanExpr2h5 54
MOA_CONM . . v v vt ot e e e e e e e e e e e e e e e 55
PATSE_ZCLX .« o o v v i i e e e e e e e e e e e e 56
QSIZ - o e e e 57
gSig-class 58
rand_query_ES 59
read_gmt L e 60
result . .o oL e 61
runWF . . . e 61
set_readable e e 63
ShOW . . . e e 64
SIM_SCOTE_ZIP + + « v v v v e 65
tail . . e e e e 66
targetList oL L e e 66
tarReduce e e 67
vec_char_redu. e 67
Index 69

signatureSearch-package
Environment for Gene Expression Signature Searching Combined with
Functional Enrichment Analysis

Description

Welcome to the signatureSearch package! This package implements algorithms and data structures
for performing gene expression signature (GES) searches, and subsequently interpreting the results
functionally with specialized enrichment methods. These utilities are useful for studying the effects
of genetic, chemical and environmental perturbations on biological systems. Specifically, in drug
discovery they can be used for identifying novel modes of action (MOA) of bioactive compounds
from reference databases such as LINCS containing the genome-wide GESs from tens of thousands
of drug and genetic perturbations (Subramanian et al. 2017)

A typical GES search (GESS) workflow can be divided into two major steps. First, GESS methods
are used to identify perturbagens such as drugs that induce GESs similar to a query GES of interest.
The queries can be drug-, disease- or phenotype-related GESs. Since the MOAs of most drugs
in the corresponding reference databases are known, the resulting associations are useful to gain
insights into pharmacological and/or disease mechanisms, and to develop novel drug repurposing
approaches.

Second, specialized functional enrichment analysis (FEA) methods using annotations systems, such
as Gene Ontologies (GO), KEGG and Reactome pathways have been developed and implemented
in this package to efficiently interpret GESS results. The latter are usually composed of lists of
perturbagens (e.g. drugs) ranked by the similarity metric of the corresponding GESS method.

4 signatureSearch-package

Finally, network reconstruction functionalities are integrated for visualizing the final results, e.g. in
form of drug-target networks.

Details

The GESS methods include CMAP, LINCS, gCMAP, Fisher and Cor. For detailed description, please
see help files of each method. Most methods can be easily paralleled for multiple query signatures.

GESS results are lists of perturbagens (here drugs) ranked by their signature similarity to a query
signature of interest. Interpreting these search results with respect to the cellular networks and
pathways affected by the top ranking drugs is difficult. To overcome this challenge, the knowledge
of the target proteins of the top ranking drugs can be used to perform functional enrichment analysis
(FEA) based on community annotation systems, such as Gene Ontologies (GO), pathways (e.g.
KEGG, Reactome), drug MOAs or Pfam domains. For this, the ranked drug sets are converted
into target gene/protein sets to perform Target Set Enrichment Analysis (TSEA) based on a chosen
annotation system. Alternatively, the functional annotation categories of the targets can be assigned
to the drugs directly to perform Drug Set Enrichment Analysis (DSEA). Although TSEA and DSEA
are related, their enrichment results can be distinct. This is mainly due to duplicated targets present
in the test sets of the TSEA methods, whereas the drugs in the test sets of DSEA are usually unique.
Additional reasons include differences in the universe sizes used for TSEA and DSEA.

Importantly, the duplications in the test sets of the TSEA are due to the fact that many drugs share
the same target proteins. Standard enrichment methods would eliminate these duplications since
they assume uniqueness in the test sets. Removing duplications in TSEA would be inappropriate
since it would erase one of the most important pieces of information of this approach. To solve this
problem, we have developed and implemented in this package weighting methods (dup_hyperG,
mGSEA and meanAbs) for duplicated targets, where the weighting is proportional to the frequency of
the targets in the test set.

Instead of translating ranked lists of drugs into target sets, as for TSEA, the functional annotation
categories of the targets can be assigned to the drugs directly to perform DSEA instead. Since the
drug lists from GESS results are usually unique, this strategy overcomes the duplication problem of
the TSEA approach. This way classical enrichment methods, such as GSEA or tests based on the
hypergeometric distribution, can be readily applied without major modifications to the underlying
statistical methods. As explained above, TSEA and DSEA performed with the same enrichment
statistics are not expected to generate identical results. Rather they often complement each other’s
strengths and weaknesses.

To perform TSEA and DSEA, drug-target annotations are essential. They can be obtained from
several sources, including DrugBank, ChEMBL, STITCH, and the Touchstone dataset from the
LINCS project (https://clue.io/). Most drug-target annotations provide UniProt identifiers for the
target proteins. They can be mapped, if necessary via their encoding genes, to the chosen functional
annotation categories, such as GO or KEGG. To minimize bias in TSEA or DSEA, often caused by
promiscuous binders, it can be beneficial to remove drugs or targets that bind to large numbers of
distinct proteins or drugs, respectively.

Note, most FEA tests involving proteins in their test sets are performed on the gene level in
signatureSearch. This way one can avoid additional duplications due to many-to-one relation-
ships among proteins and their encoding gents. For this, the corresponding functions in signa-
tureSearch will usually translate target protein sets into their encoding gene sets using identifier
mapping resources from R/Bioconductor such as the org.Hs.eg.db annotation package. Because
of this as well as simplicity, the text in the vignette and help files of this package will refer to the
targets of drugs almost interchangeably as proteins or genes, even though the former are the direct
targets and the latter only the indirect targets of drugs.

addGESSannot 5

Terminology

The term Gene Expression Signatures (GESs) can refer to at least four different situations of pre-
processed gene expression data: (1) normalized gene expression intensity values (or counts for
RNA-Seq); (2) log2 fold changes (LFC), z-scores or p-values obtained from analysis routines of
differentially expressed genes (DEGs); (3) rank transformed versions of the expression values ob-
tained under (1) and (2); and (4) gene identifier sets extracted from the top and lowest ranks under
(3), such as n top up/down regulated DEGs.

Author(s)

* Yuzhu Duan (yduan004 @ucr.edu)
* Brendan Gongol (bgong001 @ucr.edu>)
* Thomas Girke (thomas.girke @ucr.edu)

References

Subramanian, Aravind, Rajiv Narayan, Steven M Corsello, David D Peck, Ted E Natoli, Xiaodong
Lu, Joshua Gould, et al. 2017. A Next Generation Connectivity Map: L.1000 Platform and the First
1,000,000 Profiles. Cell 171 (6): 1437-1452.e17. http://dx.doi.org/10.1016/j.cell.2017.10.049

Lamb, Justin, Emily D Crawford, David Peck, Joshua W Modell, Irene C Blat, Matthew J Wro-
bel, Jim Lerner, et al. 2006. The Connectivity Map: Using Gene-Expression Signatures to Connect
Small Molecules, Genes, and Disease. Science 313 (5795): 1929-35. http://dx.doi.org/10.1126/science.1132939

Sandmann, Thomas, Sarah K Kummerfeld, Robert Gentleman, and Richard Bourgon. 2014. gCMAP:
User-Friendly Connectivity Mapping with R. Bioinformatics 30 (1): 127-28. http://dx.doi.org/10.1093/bioinformatics/btt

Subramanian, Aravind, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
Michael A Gillette, Amanda Paulovich, et al. 2005. Gene Set Enrichment Analysis: A Knowledge-
Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. U. S.
A. 102 (43): 15545-50. http://dx.doi.org/10.1073/pnas.0506580102

See Also

Methods for GESS:
e gess_cmap, gess_lincs, gess_gcmap gess_fisher, gess_cor
Methods for FEA:

¢ TSEA methods: tsea_dup_hyperG, tsea_mGSEA, tsea_mabs
¢ DSEA methods: dsea_hyperG, dsea_GSEA

addGESSannot Add Compound Annotation Info to GESS Result Table

Description

This function supports adding customized compound annotation table to the GESS result table if
provided. It then automatically adds the target gene symbols, MOAs and PubChem CID columns
(t_gn_sym, MOAss, PCIDss) if the table contains a column that stores compound names.

Usage

addGESSannot (
gess_tb,
refdb,
cmp_annot_tb
by = "pert”,
cmp_name_col

Arguments

gess_tb

refdb

cmp_annot_tb

by

cmp_name_col

Value

addGESSannot

NULL,

- ”pert”

tibble or data.frame object of GESS result, can be accessed by the result
method on the gessResult object from gess_=* functions. Or a customized
data frame that contains a pert column that stores compound id or name.

character(1), reference database that can be accessed by the refdb method on
the gessResult object. If gess_tb is a customized table, refdb can be just set
as ’custom’.

data.frame or tibble of compound annotation table. This table contains anno-
tation information for compounds stored under pert column of gess_th. Set
to NULL if not available. This table should not contain columns with names
of "t_gn_sym", "MOAss" or "PCIDss", these three columns will be added inter-
nally and thus conserved by the function. If they are contained in cmp_annot_tb,
they will be overwritten. If users want to maintain these three columns in the
provided annotation table, give them different names.

character(1), column name in cmp_annot_tb that can be merged with pert col-
umn in gess_tb. If refdb is set as ’lincs2’, it will be merged with pert_id
column in the GESS result table. If cmp_annot_tb is NULL, by is ignored.

character(1), column name in gess_tb or cmp_annot_tb that store compound
names. If there is no compound name column, set to NULL. If cmp_name_col is
available, three additional columns (t_gn_sym, MOAss, PCIDss) are automati-
cally added by using get_targets, CLUE touchstone compound MOA anno-
tation, and 2017 lincs_pert_info annotation table, respectively as annotation
sources. t_gn_sym: target gene symbol, MOAss: MOA annotated from signa-
tureSearch, PCIDss: PubChem CID annotated from signatureSearch.

tibble of gess_tb with target, MOA, PubChem CID annotations and also merged with user provided
compound annotation table.

Examples
gess_tb <- data.frame(pert=c("vorinostat”, "sirolimus"”, "estradiol”),
cell=c("SKB", "SKB”, "MCF7"),
NCS=runif(3))
cmp_annot_tb <- data.frame(pert_name=c("vorinostat”, "sirolimus"”, "estradiol"),

propl=c("a”, "b", "c"),
prop2=1:3)

addGESSannot (gess_tb, "custom”, cmp_annot_tb, by="pert_name"”,
cmp_name_col="pert")

addMOA 7

addMOA Add MOA annotation to drug data frame

Description
The MOA annotation is a list of MOA name to drug name mappings. This functions add the MOA
column to data frame when data frame have a column with compound names

Usage
addMOA(df, drug_col, moa_list)

Arguments

df data frame that must contains a column with compound names

drug_col character (1), name of the column that stores compound names

moa_list a list object of MOA name (e.g. HDAC inhibitor) to compound name mappings
Value

data frame with an added MOAss column

Examples

data(”clue_moa_list")

df <- data.frame(pert=c("vorinostat”, "sirolimus"), annotl=c("a", "b"),
annot2=1:2)

addMOA(df, "pert"”, clue_moa_list)

add_pcid Add PCID to drug data frame

Description

This function can be used to add the PCIDss (PubChem CID column added from signatureSearch
package) column to a data frame that have a column store compound names. The compound name
to PubChem CID annotation is obtained from lincs_pert_info in 2017.

Usage
add_pcid(df, drug_col = "pert")

Arguments

df data frame or tibble object

drug_col name of the column that store compound names in df
Value

tibble object with an added PCIDss column

8 build_custom_db

Examples

data("lincs_pert_info")
gess_tb2 <- add_pcid(gess_tb)

append2H5 Append Matrix to HDF5 File

Description

Function to write matrix data to an existing HDFS file. If the file contains already matrix data then
both need to have the same number of rows. The append will be column-wise.

Usage

append2H5(x, h5file, name = "assay", printstatus = TRUE)

Arguments
X matrix object to write to an HDFS5 file. If the HDFS5 file is not empty, the exported
matrix data needs to have the same number rows as the matrix stored in the
HDFS5 file, and will be appended column-wise to the existing one.
h5file character(1), path to existing HDFS file that can be empty or contain matrix data
name The name of the dataset in the HDFS file.
printstatus logical, whether to print status
Value

HDFS5 file storing exported matrix

Examples

mat <- matrix(1:12, nrow=3)

rownames(mat) <- paste@("r"”, 1:3); colnames(mat) <- paste@("c"”, 1:4)
tmp_file <- tempfile(fileext=".h5")

create_empty_h5(tmp_file)

append2H5(mat, tmp_file)

rhdf5::h51ls(tmp_file)

build_custom_db build_custom_db

Description

Build custom reference signature database for GESS methods

Usage
build_custom_db(df, h5file)

calcGseaStatBatchCpp 9

Arguments

df data.frame or matrix containing genome-wide or close to genome-wide GESs of
perturbation experiments.

The row name slots are expected to contain gene or transcript IDs (e.g. Entrez

ids), while the column names are expected to have this structure: ‘(drug)__(cell)__(factor)®,
e.g. ‘sirolimus__MCF7__trt_cp‘. This format is flexible enough to encode most
perturbation types of biological samples. For example, gene knockdown or over
expression treatments can be specified by assigning the ID of the affected gene

to ‘drug‘, and ko or ‘ov°‘ to ‘factor’, respectively. An example for a knockdown

treatment would look like this: ‘P53__MCF7__ko".

h5file character vector of length 1 containing the path to the destination hdf5 file

Details

The perturbation-based gene expression data, here provided as data.frame or matrix, will be stored
in an HDFS5 file. The latter can be used as reference database by compatible GESS methods of
signatureSearch. Various types of pre-processed gene expression data can be used here, such as
normalized gene expression intensities (or counts for RNA-Seq); log2 fold changes (LFC), Z-scores
or p-values obtained from analysis routines of differentially expressed genes (DEGs).

Value

HDFS file

Examples

Generate a data.frame

df <- data.frame(sirolimus__MCF7__trt_cp=rnorm(1000),
vorinostat__SKB__trt_cp=rnorm(1000))

data(targetlList)

rownames (df) = names(targetlList)

h5file = tempfile(fileext=".h5")

build_custom_db(df, h5file)

library(SummarizedExperiment)

tmp <- SummarizedExperiment(HDF5Array: :HDF5Array(h5file, name="assay"))

rownames (tmp) <- HDF5Array::HDF5Array(h5file, name="rownames")

colnames(tmp) <- HDF5Array::HDF5Array(h5file, name="colnames")

calcGseaStatBatchCpp Calculates GSEA statistic valus for all gene sets in ‘selectedStats * list.

Description
Takes O(n + mKlogK) time, where n is the number of genes, m is the number of gene sets, and k is
the mean gene set size.

Usage

calcGseaStatBatchCpp(stats, selectedGenes, geneRanks)

10 cell_info

Arguments

stats Numeric vector of gene-level statistics sorted in decreasing order
selectedGenes List of integer vector with integer gene IDs (from 1 to n)

geneRanks Integer vector of gene ranks

Value

Numeric vector of GSEA statistics of the same length as ‘selectedGenes* list

cellNtestPlot Number of Tests in Cell Types

Description

Bar plot of number of perturbations/compounds tested in cell types where cell types are grouped by
’primary site’.

Usage
cellNtestPlot(refdb)
Arguments
refdb character(1), one of "lincs", "lincs_expr", "cmap" or "cmap_expr" when using
the pre-generated CMAP/LINCS databases or path to the HDF5 file generated
with the build_custom_db function. The details is shown in the ’refdb’ argu-
ment of the qSig function
Value
Faceted bar plot
Examples

refdb <- system.file("extdata”, "sample_db.h5", package="signatureSearch")
cellNtestPlot(refdb)

cell_info LINCS 2017 Cell Type Information

Description
It contains cell type (tumor or normal), primary site and subtype annotations of cells in LINCS 2017
database.

Usage

cell_info

cell_info2 11

Format

A tibble object with 30 rows and 4 columns.

Examples

Load object
data(cell_info)
head(cell_info)

cell_info2 LINCS 2020 Cell Type Information

Description
It contains cell type (tumor or normal), primary site, subtype etc. annotations of cells in LINCS
2020 database.

Usage
cell_info2

Format

A tibble object with 240 rows and 21 columns.

Examples

Load object
data(cell_info2)
head(cell_info2)

chembl_moa_list MOA to Gene Mappings

Description

It is a list containing MOA terms to gene Entrez id mappings from ChEMBL database

Usage

chembl_moa_list

Format

An object of class 1ist of length 1099.

Examples

Load object
data(chembl_moa_list)
head(chembl_moa_list)

12

comp_fea_res

clue_moa_list

MOA to Drug Name Mappings

Description

It is a list containing MOA terms to drug name mappings obtained from Touchstone database at
CLUE website (https://clue.io/)

Usage

clue_moa_list

Format

An object of class 1ist of length 701.

Examples

Load object
data(clue_moa_list)
head(clue_moa_list)

comp_fea_res

Plot for Comparing Ranking Results of FEA Methods

Description

Dot plot for comparing the top ranking functional categories from different functional enrichment
analysis (FEA) results. The functional categories are plotted in the order defined by their mean rank

across the corresponding FEA results.

Usage

comp_fea_res(
table_list,
rank_stat = "pvalue”,
Nshow = 20,
Nchar = 50,
scien = FALSE,

Arguments
table_list a named list of tibbles extracted from feaResult objects, e.g. generated with
different FEA methods.
rank_stat character(1), column name of the enrichment statisic used for ranking the func-

tional categories, e.g. ’pvalue’ or ’p.adjust’. Note, the chosen column name

needs to be present in each tibble of "table_list’.

create_empty_h5

Nshow

Nchar

scien

Details

13

integer defining the number of the top functional categories to display in the plot
after re-ranking them across FEA methods

integer defining number of characters displayed (exceeded characters were re-
placed by ’...”) in the description of each item

TRUE or FALSE, indicating whether the rank_stat is rounded to the scientific
format with 3 digits

Other arguments passed on to geom_point

The ‘comp_fea_res‘ function computes the mean rank for each functional category across different
FEA result instances and then re-ranks them based on that. Since the functional categories are not
always present in all enrichment results, the mean rank of a functional category is corrected by
an adjustment factor that is the number of enrichment result methods used divided by the number
of occurences of a functional category. For instance, if a functional category is only present in the
result of one method, its mean rank will be increased accordingly. Subsequently, the re-ranked func-
tional categories are compared in a dot plot where the colors represent the values of the enrichment
statistic chosen under the rank_stat argument.

Value

ggplot2 graphics object

Examples

methodl <- data.frame("ID"=paste@("GO:", 1:5),

"Description”=paste@("desc”, 1:5),
"pvalue”=c(0.0001, 0.002, 0.004, 0.01, 0.05))

method2 <- data.frame("ID"=paste@("GO:", c(1,3,5,4,6)),

"Description”=paste@("desc”, c(1,3,5,4,6)),
"pvalue”=c(0.0003, 0.0007, 0.003, 0.006, 0.04))

table_list <- list("method1” = methodl, "method2"=method2)
comp_fea_res(table_list, rank_stat="pvalue", Nshow=20)

create_empty_h5

Create Empty HDF5 File

Description

This function can be used to create an empty HDFS5 file where the user defines the file path and com-
pression level. The empty HDFS5 file has under its root group three data slots named ’assay’, ’col-
names’ and ‘rownames’ for storing a numeric matrix along with its column names (character)
and row names (character), respectively.

Usage

create_empty_h5(h5file, delete_existing = FALSE, level = 6)

14 dim

Arguments

h5file character(1), path to the HDFS file to be created
delete_existing
logical, whether to delete an existing HDFS5 file with identical path

level The compression level used, here given as integer value between 0 (no compres-
sion) and 9 (highest and slowest compression).

Value

empty HDFS file

Examples

tmp_file <- tempfile(fileext=".h5")
create_empty_h5(tmp_file, level=6)

dim Dimensions of an Object

Description

Retrieve dimension of the result table in the gessResult, and feaResult objects

Usage

S4 method for signature 'gessResult'
dim(x)

S4 method for signature 'feaResult'
dim(x)

Arguments

X an R object

Value

dim attribute of the result table

Examples

gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),
query=list(up=c("gl1”,"g2"), down=c("g3","g4")),
gess_method="LINCS", refdb="path/to/lincs/db")
dim(gr)
fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human”, ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))
dim(fr)

drugs 15

drugs Extract/Assign Drug Names for feaResult

Description

The drugs generic extracts or assign the drug names/ids stored in the drugs slot of an feaResult
object.

Usage
drugs(x)
drugs(x) <- value

S4 method for signature 'feaResult'
drugs(x)

S4 replacement method for signature 'feaResult'
drugs(x) <- value

Arguments

X feaResult object

value A character vector of drug names
Value

character vector

An feaResult object with new assigned drugs slot

Examples

fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human”, ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))
drugs(fr)
drugs(fr) <- c("d3"”, "d4")

drugsi10@ Drug Names Used in Examples

Description

A character vector containing the names of the top 10 drugs in the GESS result from the gess_lincs
method used in the vignette of signatureSearch.

Usage
drugs10

16 drug_cell_ranks

Format

An object of class character of length 10.

Examples

Load drugs object
data(drugs10)
drugs10

drug_cell_ranks Summary ranking statistics across cell types

Description

The drug_cell_ranks function returns from a gessResult object the ranks of the perturbagens
(e.g. drugs) for each cell type. The results are arranged in separate columns of a data.frame.
Additionally, it includes in the last columns summary ranking statistics across all cell types, such
as min, mean and max values.

Usage

drug_cell_ranks(gessResult)

Arguments

gessResult ‘gessResult* object

Value

data.frame

Examples

gr <- gessResult(result=dplyr::tibble(pert=c("p1"”, "p1", "p2", "p3"),
cell=c("MCF7", "SKB", "MCF7", "SKB"),
type=rep("trt_cp”, 4),
NCS=c(1.2, 1, 0.9, 0.6)),
query=list(up="a", down="b"),
gess_method="LINCS", refdb="path/to/refdb")
df <- drug_cell_ranks(gr)

dsea_ GSEA 17

dsea_GSEA FEA Methods

Description

The Drug Set Enrichment Analysis (DSEA) with GSEA algorithm (dsea_GSEA function) performs
DSEA with the GSEA algorithm from Subramanian et al. (2005). In case of DSEA, drug identifiers
combined with their ranking scores of an upstream GESS method are used, such as the NCS values
from the LINCS method. To use drug instead of gene labels for GSEA, the former are mapped
to functional categories, including GO or KEGG, based on drug-target interaction annotations pro-
vided by databases such as DrugBank, ChEMBL, CLUE or STITCH.

The DSEA with Hypergeometric Test (dsea_hyperG) performs DSEA based on the hypergeometric
distribution. In case of DSEA, the identifiers of the top ranking drugs from a GESS result table are
used. To use drug instead of gene labels for this test, the former are mapped to functional categories,
including GO, KEGG or Mode of Action (MOA) categories, based on drug-target interaction an-
notations provided by databases such as DrugBank, ChEMBL, CLUE or STITCH. Currently, the
MOA annotation used by this function are from the CLUE website (https://clue.io).

Compared to the related Target Set Enrichment Analysis (TSEA), the DSEA approach has the ad-
vantage that the drugs in the query test sets are usually unique allowing to use them without major
modifications to the underlying statistical method(s).

The Target Set Enrichment Analysis (TSEA) with hypergeometric test (tsea_dup_hyperG function)
performs TSEA based on a modified hypergeometric test that supports test sets with duplications.
This is achieved by maintaining the frequency information of duplicated items in form of weighting
values.

The TSEA with mGSEA algorithm (tsea_mGSEA function) performs a Modified Gene Set Enrich-
ment Analysis (mnGSEA) that supports test sets (e.g. genes or protein IDs) with duplications. The
duplication support is achieved by a weighting method for duplicated items, where the weighting is
proportional to the frequency of the items in the test set.

The TSEA with meanAbs (tsea_mabs) method is a simple but effective functional enrichment
statistic (Fang et al., 2012). As required for TSEA, it supports query label sets (here for target pro-
teins/genes) with duplications by transforming them to score ranked label lists and then calculating
mean absolute scores of labels in label set S.

Usage

dsea_GSEA(
druglList,
type = "GO",
ont = "BP",
exponent = 1,
nPerm = 1000,
minGSSize = 10,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH"

)

dsea_hyperG(
drugs,

18

)

type = "GO",

ont = "BP”,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
gvalueCutoff = 0.2,
minGSSize = 10,
maxGSSize = 500

tsea_dup_hyperG(

)

drugs,

universe = "Default”,
type = "GO",

ont = "MF",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
gvalueCutoff = 0.05,
minGSSize = 5,
maxGSSize = 500,
dt_anno = "all”,
readable = FALSE

tsea_mGSEA(

)

drugs,

type = "G0",
ont = "MF",
nPerm = 1000,

exponent = 1,
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
minGSSize = 5,
maxGSSize = 500,
verbose = FALSE,
dt_anno = "all”,
readable = FALSE

tsea_mabs(

drugs,

type = "GO",

ont = "MF",

nPerm = 1000,
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
minGSSize = 5,
maxGSSize = 500,
dt_anno = "all",
readable = FALSE

dsea_ GSEA

dsea_ GSEA

Arguments

druglList

type

ont

exponent

nPerm

minGSSize

maxGSSize

pvalueCutoff

pAdjustMethod

drugs

gvalueCutoff

universe

dt_anno

readable

verbose

Details

19

named numeric vector, where the names represent drug labels and the numeric
component scores. This can be all drugs of a GESS result that are ranked by
GESS scores, such as NCS scores from the LINCS method. Note, drugs with
scores of zero are ignored by this method.

one of ‘GO‘, ‘KEGG" or ‘Reactome’ if TSEA methods. type can also be set as
‘MOA " is DSEA methods are used.

character(1). If type is ‘GO°, assign ont (ontology) one of ‘BP*,'MF*, ‘CC* or
‘ALL‘. If type is ‘KEGG* or ‘Reactome*, ont is ignored.

integer value used as exponent in GSEA algorithm. It defines the weight of the
items in the item set S.

integer defining the number of permutation iterations for calculating p-values

integer, minimum size of each gene set in annotation system. Annotation cate-
gories with less than minGSSize genes/drugs will be ignored by enrichment test.
If type is 'MOA’, it may be beneficial to set minGSSize to lower values (e.g.
2) than for other functional annotation systems. This is because certain MOA
categories contain only 2 drugs.

integer, maximum size of each gene set in annotation system. Annotation cat-
egories with more genes/drugs annotated than maxGSSize will be ignored by
enrichment test.

double, p-value cutoff to return only enrichment results for functional categories
meeting a user definable confidence threshold

p-value adjustment method, one of "holm’, hochberg’, hommel’, *bonferroni’,
'BH’,’BY’, ’fdr’

character vector containing drug identifiers used for functional enrichment test-
ing. This can be the top ranking drugs from a GESS result. Internally, drug
test sets are translated to the corresponding target protein test sets based on the
drug-target annotations provided under the dt_anno argument.

double, gvalue cutoff, similar to pvalueCutoff

character vector defining the universe of genes/proteins. If set as *Default’, it
uses all genes/proteins present in the corresponding annotation system (e.g. GO,
KEGG or Reactome). If ’type’ is ’GO’, it can be assigned a custom vector of
gene SYMBOL IDs. If ’type’ is ’/KEGG’ or 'Reactome’, the vector needs to
contain Entrez gene IDs.

drug-target annotation source. It is the same argument as the database ar-
gument of the get_targets function. Usually, it is recommended to set the
’dt_anno’ to ’all’ since it provides the most complete drug-target annotations.
Choosing a single annotation source results in sparser drug-target annotations
(particularly CLUE), and thus less complete enrichment results.

TRUE or FALSE, it applies when type is ‘KEGG* or ‘Reactome’ indicating
whether to convert gene Entrez ids to gene Symbols in the ’itemID’ column in
the result table.

TRUE or FALSE, print message or not

The classical hypergeometric test assumes uniqueness in its test sets. To maintain the duplication
information in the test sets used for TSEA, the values of the total number of genes/proteins in

20

dsea_ GSEA

the test set and the number of genes/proteins in the test set annotated at a functional category are
adjusted by maintaining their frequency information in the test set rather than counting each entry
only once. Removing duplications in TSEA would be inappropriate since it would erase one of the
most important pieces of information of this approach.

The original GSEA method proposed by Subramanian et at., 2005 uses predefined gene sets S
defined by functional annotation systems such as GO and KEGG. The goal is to determine whether
the genes in S are randomly distributed throughout a ranked test gene list L (e.g. all genes ranked
by log2 fold changes) or enriched at the top or bottom of the test list. This is expressed by an
Enrichment Score (ES) reflecting the degree to which a set S is overrepresented at the extremes of
L.

For TSEA, the query is a target protein set where duplicated entries need to be maintained. To
perform GSEA with duplication support, here referred to as mGSEA, the target set is transformed
to a score ranked target list L,ar of all targets provided by the corresponding annotation system.
For each target in the query target set, its frequency is divided by the number of targets in the target
set, which is the weight of that target. For targets present in the annotation system but absent in the
target set, their scores are set to 0. Thus, every target in the annotation system will be assigned a
score and then sorted decreasingly to obtain L;ar.

In case of TSEA, the original GSEA method cannot be used directly since a large portion of zeros
exists in Lyar. If the scores of the genes in set S are all zeros, Ny (sum of scores of genes in set S)
will be zero, which cannot be used as the denominator. In this case, ES is set to -1. If only some
genes in set S have scores of zeros then Np, is set to a larger number to decrease the weight of the
genes in S that have non-zero scores.

The reason for this modification is that if only one gene in gene set S has a non-zero score and
this gene ranks high in L;ar, the weight of this gene will be 1 resulting in an ES(S) close to 1.
Thus, the original GSEA method will score the gene set S as significantly enriched. However, this
is undesirable because in this example only one gene is shared among the target set and the gene
set S. Therefore, giving small weights (lowest non-zero score in L,ar) to genes in S that have zero
scores could decrease the weight of the genes in S that have non-zero scores, thereby decreasing
the false positive rate. To favor truly enriched functional categories (gene set S) at the top of L;ar,
only gene sets with positive F.S are selected.

The input for the mabs method is L;ar, the same as for mGSEA. In this enrichment statistic,
mabs(S), of a label (e.g. gene/protein) set S is calculated as mean absolute scores of the labels
in S. In order to adjust for size variations in label set .S, 1000 random permutations of L;ar are
performed to determine mabs(S, pi). Subsequently, mabs(S) is normalized by subtracting the me-
dian of the mabs(S, pi) and then dividing by the standard deviation of mabs(S, pi) yielding the
normalized scores Nmabs(S). Finally, the portion of mabs(S, pi) that is greater than mabs(S)
is used as nominal p-value (Fang et al., 2012). The resulting nominal p-values are adjusted for
multiple hypothesis testing using the Benjamini-Hochberg method.

Value

feaResult object, the result table contains the enriched functional categories (e.g. GO terms or
KEGG pathways) ranked by the corresponding enrichment statistic.

Column description

Descriptions of the columns in FEA result tables stored in the feaResult object that can be accessed
with the result method in tabular format, here tibble.

¢ ont: in case of GO, one of BP, MF, CC, or ALL
e ID: GO or KEGG IDs

dsea_ GSEA 21

* Description: description of functional category

* GeneRatio: ratio of genes in the test set that are annotated at a specific GO node or KEGG
pathway

* BgRatio: ratio of background genes that are annotated at a specific GO node or KEGG path-
way

« itemID: IDs of items (genes for TSEA, drugs for DSEA) overlapping among test and annota-
tion sets.

* setSize: size of the functional category
* pvalue from tsea_dup_hyperG: raw p-value of enrichment test

* p.adjust: p-value adjusted for multiple hypothesis testing based on method specified under
pAdjustMethod argument

* gvalue: q value calculated with R’s qvalue function to control FDR

 enrichmentScore: ES from the GSEA algorithm (Subramanian et al., 2005). The score is cal-
culated by walking down the gene list L, increasing a running-sum statistic when we encounter
a gene in S and decreasing when it is not. The magnitude of the increment depends on the
gene scores. The ES is the maximum deviation from zero encountered in the random walk. It
corresponds to a weighted Kolmogorov-Smirnov-like statistic.

* NES: Normalized enrichment score. The positive and negative enrichment scores are normal-
ized separately by permutating the composition of the gene list L nPerm times, and dividing
the enrichment score by the mean of the permutation ES with the same sign.

* pvalue from tsea_mGSEA: The nominal p-value of the ES is calculated using a permutation
test. Specifically, the composition of the gene list L is permuted and the ES of the gene set is
recomputed for the permutated data generating a null distribution for the ES. The p-value of
the observed ES is then calculated relative to this null distribution.

* leadingEdge: Genes in the gene set S (functional category) that appear in the ranked list L at,
or before, the point where the running sum reaches its maximum deviation from zero. It can
be interpreted as the core of a gene set that accounts for the enrichment signal.

* ledge_rank: Ranks of genes in ’leadingEdge’ in gene list L.

* mabs: given a scored ranked gene list L, mabs(S) represents the mean absolute scores of the
genes in set S.

* Nmabs: normalized mabs(.S)

References

GSEA algorithm: Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
Gillette, M. A., Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sci-
ences of the United States of America, 102(43), 15545-15550. URL.: https://doi.org/10.1073/pnas.0506580102

MeanAbs algorithm: Fang, Z., Tian, W., & Ji, H. (2012). A network-based gene-weighting ap-
proach for pathway analysis. Cell Research, 22(3), 565-580. URL.: https://doi.org/10.1038/cr.2011.149

See Also

feaResult, GO_DATA_drug

22

Examples

data(drugsi10)

HHHEHHHAEEA DSEA GSEA method ##t#H#HHH#HHHEHH

dl <- c(rev(seq(@.1, 0.5, by=0.05)), 0)

names (dl)=drugsi10

KEGG annotation system

gsea_k_res <- dsea_GSEA(druglList=dl, type="KEGG", exponent=1, nPerm=100,
pvalueCutoff=0.5, minGSSize=2)

result(gsea_k_res)

H#iHHEHHHA A DSEA Hypergeometric Test #iHt##HHEH#HHE

GO annotation system

hyperG_res <- dsea_hyperG(drugs=drugs10, type="G0O", ont="MF")
result(hyperG_res)

KEGG annotation system

hyperG_k_res <- dsea_hyperG(drugs=drugs10, type="KEGG",

pvalueCutoff=1, gvalueCutoff=1,

minGSSize=10, maxGSSize=500)

result(hyperG_k_res)

HHHEHHHEAEAEA TSEA dup_hyperG method #it##H###
GO annotation system
resl <- tsea_dup_hyperG(drugs=drugs1@, universe="Default”,

type="G0", ont="MF", pvalueCutoff=0.05,
pAdjustMethod="BH", qvalueCutoff=0.1,
minGSSize=5, maxGSSize=500)

result(res?)

#

KEGG annotation system
res2 <- tsea_dup_hyperG(drugs=drugs10, type="KEGG",

pvalueCutoff=0.1, qvalueCutoff=0.2,
minGSSize=10, maxGSSize=500)
#

Reactome annotation system
res3 <- tsea_dup_hyperG(drugs=drugs1@, type="Reactome”,
pvalueCutoff=1, gvalueCutoff=1)

H#iHHEHHHAEAH TSEA mGSEA method ##HHHHHHEHH
GO annotation system

resl <- tsea_mGSEA(drugs=drugs10, type="GO", ont="MF", exponent=1,
nPerm=1000, pvalueCutoff=1, minGSSize=5)

result(res?)

res2 <- tsea_mGSEA(drugs=drugs10, type="KEGG", exponent=1,

nPerm=100, pvalueCutoff=1, minGSSize=5)

result(res2)

Reactome annotation system
res3 <- tsea_mGSEA(drugs=drugs10, type="Reactome”, pvalueCutoff=1)
result(res3)

H#HHEHHHEAEHEE MeanAbs method ##HEHHHEEHHEEHE

GO annotation system

resl <- tsea_mabs(drugs=drugs10, type="G0", ont="MF", nPerm=1000,
pvalueCutoff=0.05, minGSSize=5)

result(res?)

KEGG annotation system

dsea_ GSEA

dtnetplot 23

res2 <- tsea_mabs(drugs=drugs10, type="KEGG", nPerm=1000,

pvalueCutoff=0.05, minGSSize=5)

result(res2)

Reactome annotation system

res3 <- tsea_mabs(drugs=drugs10, type="Reactome"”, pvalueCutoff=1)
result(res3)

dtnetplot Drug-Target Network Visualization

Description

Functional modules of GESS and FEA results can be rendered as interactive drug-target networks
using the dtnetplot function form signatureSearch. For this, a character vector of drug names
along with an identifier of a chosen functional category are passed on to the drugs and set argu-
ments, respectively. The resulting plot depicts the corresponding drug-target interaction network.
Its interactive features allow the user to zoom in and out of the network, and to select network
components in the drop-down menu located in the upper left corner of the plot.

Usage
dtnetplot(drugs, set, ont = NULL, desc = NULL, verbose = FALSE, ...)
Arguments
drugs A character vector of drug names
set character(1) GO term ID, KEGG or Reactome pathway ID. Alternatively, a char-
acter vector of gene SYMBOLSs can be assigned.
ont if ‘set’ is a GO term ID, ‘ont® is the corresponding ontology that GO term be-
longs to. One of 'BP’, "MF’ or "CC’. If ‘set’ is anything else, ‘ont‘ is ignored.
desc character(1), description of the chosen functional category or target set
verbose TRUE or FALSE, whether to print messages
Other arguments passed on to visNetwork function.
Value

visNetwork plot and a list of drugs and targets that have interactions

Examples

data(drugsi10)

dtnetplot(drugs=drugsio,
set=c("HDAC1", "HDAC2", "HDAC3", "HDAC11", "FOX2"),
desc="NAD-dependent histone deacetylase activity (H3-K14 specific)")

24 enrichGO2

enrichGO2 GO Term Enrichment with Hypergeometric Test

Description

Given a vector of gene identifiers, this function returns GO term enrichment results based on a
hypergeometric test with duplication support in the test set.

Usage

enrichG02(
gene,
OrgDb,
keytype = "SYMBOL",
ont = "MF",
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
universe,
gvalueCutoff = 0.2,
minGSSize = 5,
maxGSSize = 500,

pool = FALSE
)
Arguments
gene a vector of gene SYMBOL ids (here the test set)
OrgDb OrgDb
keytype Gene ID type of test set
ont One of "MF", "BP", "CC" or "ALL"

pvalueCutoff pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes

gvalueCutoff qvalue cutoff

minGSSize minimum size of each gene set in annotation system

maxGSSize maximum size of each gene set in annotation system

pool If ont="ALL’, whether 3 GO ontology should be combined
Value

A feaResult instance.

See Also

feaResult-class

enrichKEGG2 25

Examples

The method supports duplicated elements in 'gene',

which should be gene SYMBOL ids for GO term enrichment.

gene <- c(rep("HDAC1",4), rep("HDAC3",2), "SO0X8", "KLK14")

data(targetList)

ego <- enrichGO2(gene = gene, OrgDb="org.Hs.eg.db", ont="MF",

universe=names(targetlList))
enrichKEGG2 KEGG Pathway Enrichment with Hypergeometric Test
Description

Given a vector of gene identifiers, this function returns KEGG pathway enrichment results based
on a hypergeometric test with duplication support in the test set.

Usage

enrichKEGG2(
gene,
organism = "hsa",
keyType = "kegg",
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
universe,
minGSSize = 5,
maxGSSize = 500,
gvalueCutoff = 0.2,
readable = FALSE

)
Arguments
gene a vector of entrez gene ids (here the test set)
organism supported organism are listed in http://www.genome.jp/kegg/catalog/org_list.html
keyType one of "kegg", 'ncbi-geneid’, 'ncbi-proteinid’ or ’uniprot’

pvalueCutoff pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

universe background genes
minGSSize minimal size of genes annotated by ontology term for testing.
maxGSSize maximal size of genes annotated for testing

gvalueCutoff qvalue cutoff

readable TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols
in the ’itemID’ column in the FEA result table.

Value

A feaResult instance.

26 enrichMOA

Examples

Method supports duplicated elements in "gene"”, which should be entrez ids
gene <- c(rep("”4312",4), rep(”8318",2), "991", "10874")

#data(genelList, package="DOSE")

#kk <- enrichKEGG2(gene = gene, universe=names(genelList))

#head(kk)

enrichMOA MOA Category Enrichment with Hypergeometric Test

Description

Given a vector of gene identifiers, this function returns MOA category enrichment results based
on a hypergeometric test with duplication support in the test set. The universe for the test is set
to the unique genes encoding the target proteins present in the MOA annotation system from the
ChEMBL database.

Usage

enrichMOA(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", gvalueCutoff = 0.2)

Arguments

gene a vector of entrez gene ids (here the test set)
pvalueCutoff pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

gvalueCutoff qvalue cutoff

Value

A feaResult instance.

See Also

feaResult-class

Examples

data(genelList, package="DOSE")
emoa <- enrichMOA(gene = names(genelList)[seq(3)])
head(emoa)

enrichReactome

27

enrichReactome Reactome Enrichment Analysis of a gene set. Given a vector of genes,
this function will return the enriched Reactome pathways with FDR
control from hypergeometric test.
Description

Reactome Enrichment Analysis of a gene set. Given a vector of genes, this function will return the
enriched Reactome pathways with FDR control from hypergeometric test.

Usage
enrichReactome(
gene,
organism = "human”,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
gvalueCutoff = 0.2,
universe,
minGSSize = 5,
maxGSSize = 500,
readable = FALSE
)
Arguments
gene a vector of entrez gene id.
organism one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
pvalueCutoff Cutoff value of pvalue.
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
gvalueCutoff Cutoff value of qvalue
universe background genes
minGSSize minimal size of genes annotated by functional term for testing.
maxGSSize maximal size of each gene set for analyzing
readable TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols
in the ’itemID’ column in the FEA result table.
Value

A feaResult instance.

See Also

feaResult-class

28 feaResult

Examples

This method supports duplicated elements in "gene"

gene <- c(rep("4312",4), rep("8318",2), "991", "10874")
#data(genelList, package="DOSE")

#rc <- enrichReactome(gene=gene, universe=names(genelList))
#result(rc)

feaResult Constructor for feaResult-class

Description

This is a helper function to construct a feaResult object. For detail description, please consult the
help file of the feaResult-class.

Usage

feaResult(
result,
organism = "UNKNOWN",
ontology = "UNKNOWN",
drugs = "UNKNOWN",
targets = "UNKNOWN"

)
Arguments
result tibble object containing the FEA results
organism character(1), organism information of the annotation system
ontology character(1), ontology type of the GO annotation system. If the annotation sys-
tem is KEGG, it will be ’KEGG’
drugs character vector, input drug names used for the enrichment test
targets character vector, gene labels of the gene/protein targets for the drugs
Value

feaResult object

Examples

fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human", ontology="MF", drugs=c("d1"”, "d2"),
targets=c("t1","t2"))

feaResult-class 29

feaResult-class feaResult object

Description

The feaResult object stores Functional Enrichment Analysis (FEA) results generated by the corre-
sponding Target and Drug Set Enrichment methods (here TSEA and DSEA) defined by signatureSearch.
This includes slots for the FEA results in tabular format, the organism information, and the type of
functional annotation used (e.g. GO or KEGG). It also includes the drug information used for the

FEA, as well as the corresponding target protein information.

Slots

result tibble object, this tabular result contains the enriched functional categories (e.g. GO terms
or KEGG pathways) ranked by the corresponding enrichment statistic. The result table can be
extracted via the result accessor function.

organism organism information of the annotation system. Currently, limited to human’, since
drug-target annotations are too sparse for other organisms.

ontology ontology type of the GO annotation system. If the annotation system is KEGG, it will
be ’KEGG’

drugs input drug names used for the enrichment test

targets target information for the query drugs obtained from the chosen drug-target annotation
source.

GCT object An S84 Class to Represent a GCT Object

Description

The GCT class serves to represent annotated matrices. The mat slot contains the numeric matrix data
and the rdesc and cdesc slots contain data frames with annotations about the rows and columns,
respectively

Slots

mat a numeric matrix

rid a character vector of row ids

cid a character vector of column ids

rdesc adata.frame of row descriptors
rdesc adata.frame of column descriptors

src a character indicating the source (usually file path) of the data

See Also

parse_gctx

30 gessResult

gctx2h5 Convert GCTX to HDF5 File

Description

Read matrix-like data from large gctx file in chunks and write result back to an HDF? file.

Usage

gctx2h5(gectx, cid, new_cid = cid, h5file, by_ncol = 5000, overwrite = TRUE)

Arguments
gctx character(1), path to gctx file from LINCS
cid character or integer vector referencing the columns of the matrix to include
new_cid character vector of the same length as cid, assigning new column names to ma-
trix
h5file character(1), path of the hdf5 destination file
by_ncol number of columns to import in each iteration to limit memory usage
overwrite TRUE or FALSE, whether to overwrite or to append to existing “h5file’
Value
HDFS file
Examples

gctx <- system.file("extdata"”, "test_sample_n2x12328.gctx”,
package="signatureSearch")

h5file <- tempfile(fileext=".h5")

gctx2h5(getx, cid=1:2,
new_cid=c('sirolimus__MCF7__trt_cp', 'vorinostat__SKB__trt_cp'),
h5file=h5file, overwrite=TRUE)

gessResult Constructor for gessResult-class

Description

This is a helper function to construct a gessResult object. For detail description, please consult
the help file of the gessResult-class.

Usage

gessResult(result, query, gess_method, refdb)

gessResult-class 31

Arguments
result tibble object containing the GESS results
query list or a matrix, query signature

gess_method character(1), name of the GESS method

refdb character(1), path to the reference database

Value

gessResult object

Examples

gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),

query=list(up=c("g1","g2"), down=c("g3","g4")),

gess_method="LINCS", refdb="path/to/lincs/db")

gessResult-class gessResult object

Description

The gessResult object organizes Gene Expression Signature Search (GESS) results. This includes
the main tabular result of a GESS, its query signature, the name of the chosen GESS method and
the path to the reference database.

Slots

result tibble object containing the search results for each perturbagen (e.g. drugs) in the reference
database ranked by their signature similarity to the query. The result table can be extracted via
the result accessor function.

query query signature
gess_method name of the GESS method

refdb path to the reference database

gess_cmap GESS Methods

32 gess_cmap

Description

The CMAP search method implements the original Gene Expression Signature Search (GESS) from
Lamb et al (2006) known as Connectivity Map (CMap). The method uses as query the two label
sets of the most up- and down-regulated genes from a genome-wide expression experiment, while
the reference database is composed of rank transformed expression profiles (e.g. ranks of LFC or
Z-Scores).

Correlation-based similarity metrics, such as Spearman or Pearson coefficients, can be used as Gene
Expression Signature Search (GESS) methods. As non-set-based methods, they require quantitative
gene expression values for both the query and the database entries, such as normalized intensities
or read counts from microarrays or RNA-Seq experiments, respectively.

In its iterative form, Fisher’s exact test (Upton, 1992) can be used as Gene Expression Signature
(GES) Search to scan GES databases for entries that are similar to a query GES.

The gCMAP search method adapts the Gene Expression Signature Search (GESS) method from
the gCMAP package (Sandmann et al. 2014) to make it compatible with the database containers
and methods defined by signatureSearch. The specific GESS method, called gCMAP, uses as
query a rank transformed GES and the reference database is composed of the labels of up and down
regulated DEG sets.

LINCS search method implements the Gene Expression Signature Search (GESS) from Subrama-
nian et al, 2017, here referred to as LINCS. The method uses as query the two label sets of the
most up- and down-regulated genes from a genome-wide expression experiment, while the refer-
ence database is composed of differential gene expression values (e.g. LFC or z-scores). Note, the
related CMAP method uses here ranks instead.

Usage

gess_cmap(
gsig,
chunk_size = 5000,
ref_trts = NULL,
workers = 1,
cmp_annot_tb = NULL,

by = "pert”,
cmp_name_col = "pert”,
addAnnotations = TRUE
)
gess_cor(
asig,
method = "spearman”,

chunk_size = 5000,
ref_trts = NULL,
workers = 1,
cmp_annot_tb = NULL,

by = "pert”,
cmp_name_col = "pert”,
addAnnotations = TRUE

)

gess_fisher(
asig,
higher = NULL,

gess_cmap
lower = NULL,
padj = NULL,
chunk_size =

33

5000,

ref_trts = NULL,

workers = 1,
cmp_annot_tb
by = "pert”,
cmp_name_col

NULL,

- ”pert” ,

addAnnotations = TRUE

)

gess_gecmap(
gSig,
higher = NULL,
lower = NULL,
padj = NULL,
chunk_size =

5000,

ref_trts = NULL,

workers = 1,
cmp_annot_tb
by = "pert”,
cmp_name_col

= NULL,

— ”pert” ,

addAnnotations = TRUE

)

gess_lincs(

gsig,
tau = FALSE,

sortby = "NCS”,

chunk_size =

5000,

ref_trts = NULL,

workers = 1,

cmp_annot_tb = NULL,
by = "pert”,
cmp_name_col = "pert”,
GeneType = "reference”,
addAnnotations = TRUE
)
Arguments
gSig gSig object defining the query signature including the GESS method (should be
’LINCS’) and the path to the reference database. For details see help of qSig
and qSig-class.
chunk_size number of database entries to process per iteration to limit memory usage of
search.
ref_trts character vector. If users want to search against a subset of the reference database,
they could set ref_trts as a character vector representing column names (treat-
ments) of the subsetted refdb.
workers integer(1) number of workers for searching the reference database parallelly,

default is 1.

34

cmp_annot_tb

by

cmp_name_col

addAnnotations
method

higher

lower

padj

tau

sortby

GeneType

Details

gess_cmap

data.frame or tibble of compound annotation table. This table contains anno-
tation information for compounds stored under pert column of gess_th. Set
to NULL if not available. This table should not contain columns with names
of "t_gn_sym", "MOAss" or "PCIDss", these three columns will be added inter-
nally and thus conserved by the function. If they are contained in cmp_annot_tb,
they will be overwritten. If users want to maintain these three columns in the
provided annotation table, give them different names.

character(1), column name in cmp_annot_tb that can be merged with pert col-
umn in gess_tb. If refdb is set as ’lincs2’, it will be merged with pert_id
column in the GESS result table. If cmp_annot_tb is NULL, by is ignored.

character(1), column name in gess_tb or cmp_annot_tb that store compound
names. If there is no compound name column, set to NULL. If cmp_name_col is
available, three additional columns (t_gn_sym, MOAss, PCIDss) are automati-
cally added by using get_targets, CLUE touchstone compound MOA anno-
tation, and 2017 lincs_pert_info annotation table, respectively as annotation
sources. t_gn_sym: target gene symbol, MOAss: MOA annotated from signa-
tureSearch, PCIDss: PubChem CID annotated from signatureSearch.

Logical value. If TRUE adds drug annotations to results.

One of ’spearman’ (default), ’kendall’, or ’pearson’, indicating which correla-
tion coefficient to use.

The "upper’ threshold. If not ’"NULL’, genes with a score larger than or equal to
“higher” will be included in the gene set with sign +1. At least one of ’lower’
and “higher’ must be specified.

higher argument need to be set as 1 if the refdb in qSig is path to the HDF5
file that were converted from the gmt file.

The lower threshold. If not 'NULL’, genes with a score smaller than or equal
"lower’ will be included in the gene set with sign -1. At least one of "lower” and
“higher’ must be specified.

lower argument need to be set as NULL if the refdb in qSig is path to the HDF5
file that were converted from the gmt file.

numeric(1), cutoff of adjusted p-value or false discovery rate (FDR) of defining
DEGs that is less than or equal to "padj’. The ’padj’ argument is valid only if
the reference HDFS file contains the p-value matrix stored in the dataset named
as ‘padj’.

TRUE or FALSE, whether to compute the tau score. Note, TRUE is only mean-
ingful when the full LINCS database is searched, since accurate Tau score calcu-
lation depends on the usage of the exact same database their background values
are based on.

sort the GESS result table based on one of the following statistics: ‘WTCS®,
‘NCS*, ‘“Tau‘, ‘NCSct‘ or ‘NA*

A character value of either "reference" or a combination of "best inferred",
"landmark" or "inferred" indicating which reference gene set query genes should
be filtered against. While "reference" filters query genes against the reference
database, "best inferred", "landmark" or "inferred" filter genes against LINCS
gene spaces.

Lamb et al. (2006) introduced the gene expression-based search method known as Connectivity
Map (CMap) where a GES database is searched with a query GES for similar entries. Specifically,

gess_cmap 35

this GESS method uses as query the two label sets of the most up- and down-regulated genes from a
genome-wide expression experiment, while the reference database is composed of rank transformed
expression profiles (e.g.ranks of LFC or z-scores). The actual GESS algorithm is based on a vec-
torized rank difference calculation. The resulting Connectivity Score expresses to what degree the
query up/down gene sets are enriched on the top and bottom of the database entries, respectively.
The search results are a list of perturbagens such as drugs that induce similar or opposing GESs as
the query. Similar GESs suggest similar physiological effects of the corresponding perturbagens.
Although several variants of the CMAP algorithm are available in other software packages including
Bioconductor, the implementation provided by signatureSearch follows the original description
of the authors as closely as possible.

For correlation searches to work, it is important that both the query and reference database contain
the same type of gene identifiers. The expected data structure of the query is a matrix with a single
numeric column and the gene labels (e.g. Entrez Gene IDs) in the row name slot. For convenience,
the correlation-based searches can either be performed with the full set of genes represented in the
database or a subset of them. The latter can be useful to focus the computation for the correlation
values on certain genes of interest such as a DEG set or the genes in a pathway of interest. For
comparing the performance of different GESS methods, it can also be advantageous to subset the
genes used for a correlation-based search to same set used in a set-based search, such as the up/down
DEGs used in a LINCS GESS. This way the search results of correlation- and set-based methods
can be more comparable because both are provided with equivalent information content.

When using the Fisher’s exact test (Upton, 1992) as GES Search (GESS) method, both the query
and the database are composed of gene label sets, such as DEG sets.

The Bioconductor gCMAP (Sandmann et al. 2014) package provides access to a related but not
identical implementation of the original CMAP algorithm proposed by Lamb et al. (2006). It uses
as query a rank transformed GES and the reference database is composed of the labels of up and
down regulated DEG sets. This is the opposite situation of the original CMAP method from Lamb
et al (2006), where the query is composed of the labels of up and down regulated DEGs and the
database contains rank transformed GESs.

Subramanian et al. (2017) introduced a more complex GESS algorithm, here referred to as LINCS.
While related to CMAP, there are several important differences among the two approaches. First,
LINCS weights the query genes based on the corresponding differential expression scores of the
GESs in the reference database (e.g. LFC or z-scores). Thus, the reference database used by LINCS
needs to store the actual score values rather than their ranks. Another relevant difference is that the
LINCS algorithm uses a bi-directional weighted Kolmogorov-Smirnov enrichment statistic (ES) as
similarity metric.

Value

gessResult object, the result table contains the search results for each perturbagen in the reference
database ranked by their signature similarity to the query.

Column description

Descriptions of the columns in GESS result tables.

 pert: character, perturbagen (e.g. drugs) in the reference database. The treatment/column
names of the reference database are organized as pert__cell__trt_cp format. The pert
column in GESS result table contains what stored under the pert slot of the column names.

e cell: character, acronym of cell type

* type: character, perturbation type. In the CMAP/LINCS databases provided by signatureSearchData,
the perturbation types are currently treatments with drug-like compounds (trt_cp). If required,

36

gess_cmap

users can build custom signature database with other types of perturbagens (e.g., gene knock-
down or over-expression events) with the provided build_custom_db function.

trend: character, up or down when the reference signature is positively or negatively connected
with the query signature, respectively.

N_upset: integer, number of genes in the query up set
N_downset: integer, number of genes in the query down set

WTCS: Weighted Connectivity Score, a bi-directional Enrichment Score for an up/down query
set. If the ES values of an up set and a down set are of different signs, then WTCS is (ESup-
ESdown)/2, otherwise, it is 0. WTCS values range from -1 to 1. They are positive or negative
for signatures that are positively or inversely related, respectively, and close to zero for signa-
tures that are unrelated.

WTCS_Pval: Nominal p-value of WTCS computed by comparing WTCS against a null dis-
tribution of WTCS values obtained from a large number of random queries (e.g. 1000).

WTCS_FDR: False discovery rate of WTCS_Pval.

NCS: Normalized Connectivity Score. To make connectivity scores comparable across cell
types and perturbation types, the scores are normalized. Given a vector of WTCS values w
resulting from a query, the values are normalized within each cell line ¢ and perturbagen type t
to obtain NCS by dividing the WTCS value with the signed mean of the WTCS values within
the subset of the signatures in the reference database corresponding to ¢ and t.

Tau: Enrichment score standardized for a given database. The Tau score compares an ob-
served NCS to a large set of NCS values that have been pre-computed for a specific reference
database. The query results are scored with Tau as a standardized measure ranging from 100
to -100. A Tau of 90 indicates that only 10 stronger connectivity to the query. This way one
can make more meaningful comparisons across query results.

Note, there are NAs in the Tau score column, the reason is that the number of signatures in
Qref that match the cell line of signature r (the TauRefSize column in the GESS result) is
less than 500, Tau will be set as NA since it is redeemed as there are not large enough samples
for computing meaningful Tau scores.

TauRefSize: Size of reference perturbations for computing Tau.

NCSct: NCS summarized across cell types. Given a vector of NCS values for perturbagen p,
relative to query q, across all cell lines ¢ in which p was profiled, a cell-summarized connectiv-
ity score is obtained using a maximum quantile statistic. It compares the 67 and 33 quantiles
of NCSp,c and retains whichever is of higher absolute magnitude.

cor_score: Correlation coefficient based on the method defined in the gess_cor function.

raw_score: bi-directional enrichment score (Kolmogorov-Smirnov statistic) of up and down
set in the query signature

scaled_score: raw_score scaled to values from 1 to -1 by dividing the positive and negative
scores with the maximum positive score and the absolute value of the minimum negative score,
respectively.

effect: Scaled bi-directional enrichment score corresponding to the scaled_score under the
CMAP result.

nSet: number of genes in the GES in the reference database (gene sets) after setting the higher
and lower cutoff.

nFound: number of genes in the GESs of the reference database (gene sets) that are also
present in the query GES.

signed: whether gene sets in the reference database have signs, representing up and down
regulated genes when computing scores.

gess_cmap 37

* pval: p-value of the Fisher’s exact test.

* padj: p-value adjusted for multiple hypothesis testing using R’s p.adjust function with the
Benjamini & Hochberg (BH) method.

* effect: z-score based on the standard normal distribution.

* LOR: Log Odds Ratio.

* t_gn_sym: character, symbol of the gene encoding the corresponding drug target protein
* MOAss: character, compound MOA annotation from signatureSearch package

* PCIDss: character, compound PubChem CID annotation from signatureSearch package

References

For detailed description of the LINCS method and scores, please refer to: Subramanian, A., Narayan,
R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., Golub, T. R. (2017). A Next Generation Con-
nectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell, 171 (6), 1437-1452.e17.
URL: https://doi.org/10.1016/j.cell.2017.10.049

For detailed description of the CMap method, please refer to: Lamb, J., Crawford, E. D., Peck,
D., Modell, J. W,, Blat, I. C., Wrobel, M. J., Golub, T. R. (2006). The Connectivity Map: using
gene-expression signatures to connect small molecules, genes, and disease. Science, 313 (5795),
1929-1935. URL: https://doi.org/10.1126/science.1132939

Sandmann, T., Kummerfeld, S. K., Gentleman, R., & Bourgon, R. (2014). gCMAP: user-friendly
connectivity mapping with R. Bioinformatics , 30 (1), 127-128. URL.: https://doi.org/10.1093/bioinformatics/btt592

Graham J. G. Upton. 1992. Fisher’s Exact Test. J. R. Stat. Soc. Ser. A Stat. Soc. 155 (3). [Wiley,
Royal Statistical Society]: 395-402. URL: http://www.jstor.org/stable/2982890

See Also

gSig, gessResult, addGESSannot

Examples

db_path <- system.file("extdata”, "sample_db.h5",
package = "signatureSearch”)
library(SummarizedExperiment); library(HDF5Array)
sample_db <- SummarizedExperiment(HDF5Array(db_path, name="assay"))
rownames(sample_db) <- HDF5Array(db_path, name="rownames")
colnames(sample_db) <- HDF5Array(db_path, name="colnames")
get "vorinostat__SKB__trt_cp"” signature drawn from sample database
query_mat <- as.matrix(assay(sample_db[,"vorinostat__SKB__trt_cp"”]))

H#HHEHHHAHE CMAP method ##HHEHHHHHHHE
gsig_cmap <- gSig(query=list(

upset=c("”230", "5357", "2015", "2542", "1759"),
downset=c("22864", "9338", "54793", "10384", "27000")),
gess_method="CMAP", refdb=db_path)

cmap <- gess_cmap(qSig=gsig_cmap, chunk_size=5000)
result(cmap)

#i##HHH##E Correlation-based GESS method #it##H#####

qgsig_sp <- gSig(query=query_mat, gess_method="Cor", refdb=db_path)
sp <- gess_cor(gSig=qsig_sp, method="spearman")

result(sp)

38 gess_res_vVis

HHHEHEHEEEAA Fisher's Exact Test #it#HHHHHHE

qgsig_fisher <- gSig(query=query_mat, gess_method="Fisher", refdb=db_path)
fisher <- gess_fisher(qSig=gsig_fisher, higher=1, lower=-1)

result(fisher)

HHHEHHHAEAA gCMAP method #HHEHHEEHHAEHE

qgsig_gcmap <- gSig(query=query_mat, gess_method="gCMAP", refdb=db_path)
gcmap <- gess_gcmap(qgsig_gcmap, higher=1, lower=-1)

result(gcmap)

H#HHEHHHAHAE LINCS method #Ht#H#HHEH
gsig_lincs <- gSig(query=list(

upset=c("”230", "5357", "2015", "2542", "1759"),
downset=c("22864", "9338", "54793", "10384", "27000")),
gess_method="LINCS", refdb=db_path)

lincs <- gess_lincs(gsig_lincs, sortby="NCS", tau=FALSE)
result(lincs)

gess_res_vis GESS Result Visualization

Description

The function allows to summarize the ranking scores of selected perturbagens for GESS results
across cell types along with cell type classifications, such as normal and tumor cells. In the resulting
plot the perturbagens are drugs (along x-axis) and the ranking scores are LINCS’ NCS values (y-
axis). For each drug the NCS values are plotted for each cell type as differently colored dots, while
their shape indicates the cell type class.

Usage
gess_res_vis(gess_tb, drugs, col, cell_group = "all", ...)
Arguments
gess_tb tibble in the 'result’ slot of the gessResult object, can be extracted via result
accessor function
drugs character vector of selected drugs
col character(1), name of the score column in ’gess_tb’, e.g., "NCS" if the result
table is from LINCS method. Can also be set as "rank", this way it will show
the ranks of each drug in different cell types.
cell_group character(1), one of "all", "normal", or "tumor". If "all", it will show scores of
each drug in both tumor and normal cell types. If "normal" or "tumor", it will
only show normal or tumor cell types.
Other arguments passed on to geom_point
Value

plot visualizing GESS results

getALLEG 39

References

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., Golub, T. R.
(2017). A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
Cell, 171 (6), 1437-1452.e17. URL: https://doi.org/10.1016/j.cell.2017.10.049

Examples

gr <- gessResult(result=dplyr::tibble(pert=c("p1”, "p1"”, "p2", "p3"),
cell=c("MCF7", "SKB", "MCF7", "SKB"),
type=rep("trt_cp”, 4),
NCS=c(1.2, 1, 0.9, 0.6)),
query=list(up="a", down="b"),
gess_method="LINCS", refdb="path/to/refdb")
gess_res_vis(result(gr), drugs=c("p1”,"p2"), col="NCS")

getALLEG getALLEG

Description

get all entrez gene ID of a specific organism

Usage

getALLEG(organism)
Arguments

organism one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
Value

entrez gene ID vector

Author(s)

Yu Guangchuang

getDb getDb

Description

mapping organism name to annotationDb package name

Usage

getDb(organism)

40

Arguments

organism

Value

getSig

one of supported organism

annotationDb name

Author(s)

Yu Guangchuang

getSig

Draw GESs from Reference Database

Description

Functionalities used to draw from reference database (e.g. lincs, lincs_expr) GESs of compound
treatment(s) in cell types.

Usage

getSig(cmp, cell, refdb)

getDEGSig(
cmp,
cell,
Nup = NULL,
Ndown = NULL,
higher = NULL,
lower = NULL,
padj = NULL,
refdb = "lincs”

)

getSPsubSig(cmp, cell, Nup = 150, Ndown = 150)

Arguments

cmp

cell

refdb

Nup
Ndown

higher

character vector representing a list of compound name available in refdb for
getSig function, or character(1l) indicating a compound name (e.g. vorinostat)
for other functions

character(1) or character vector of the same length as cmp argument. It indicates
cell type that the compound treated in

character(1), one of "lincs", "lincs_expr", "cmap", "cmap_expr", or path to the
HDFS5 file built from build_custom_db function

integer(1). Number of most up-regulated genes to be subsetted
integer(1). Number of most down-regulated genes to be subsetted

numeric(1), the upper threshold of defining DEGs. At least one of ’lower’ and
“higher’ must be specified. If Nup or Ndown arguments are defined, it will be
ignored.

getTreats

lower

padj

Details

41

numeric(1), the lower threshold of defining DEGs. At least one of ’lower’ and
“higher’ must be specified. If Nup or Ndown arguments are defined, it will be
ignored.

numeric(1), cutoff of adjusted p-value or false discovery rate (FDR) of defin-
ing DEGs if the reference HDFS database contains the p-value matrix stored in
the dataset named as ’padj’. If Nup or Ndown arguments are defined, it will be
ignored.

The GES could be genome-wide differential expression profiles (e.g. log2 fold changes or z-
scores) or normalized gene expression intensity values depending on the data type of refdb or
n top up/down regulated DEGs

Value

matrix representing genome-wide GES of the query compound(s) in cell

a list of up- and down-regulated gene label sets

a numeric matrix with one column representing gene expression values drawn from lincs_expr db
of the most up- and down-regulated genes. The genes were subsetted according to z-scores drawn

from lincs db.

Examples

refdb <- system.file("extdata"”, "sample_db.h5", package = "signatureSearch")
vor_sig <- getSig("vorinostat”, "SKB", refdb=refdb)
vor_degsig <- getDEGSig(cmp="vorinostat”, cell="SKB", Nup=150, Ndown=150,

refdb=refdb)

all_expr <- as.matrix(runif(1000, @, 10), ncol=1)

rownames (all_expr) <- paste@('g', sprintf("%04d", 1:1000))
colnames(all_expr) <- "drug__cell__trt_cp"

de_prof <- as.matrix(rnorm(1000, @, 3), ncol=1)

rownames (de_prof) <- paste@('g', sprintf("%04d", 1:1000))
colnames(de_prof) <- "drug__cell__trt_cp”

getSPsubSig internally uses deprof2subexpr function

sub_expr <- deprof2subexpr(all_expr, de_prof, Nup=150, Ndown=150)

getTreats

Get Treatment Information

Description

Get treatment information including perturbation name, cell type and perturbation type from the

reference database

Usage

getTreats(refdb, sep = TRUE)

42

Arguments

refdb

sep

Value

get_targets

character(1), one of "lincs", "lincs_expr", "cmap" or "cmap_expr" when using
the pre-generated CMAP/LINCS databases or path to the HDFS5 file generated
with the build_custom_db function. The details is shown in the 'refdb’ argu-
ment of the qSig function

TRUE or FALSE, whether to separate the treatments or column names of the
reference database into "pert’, *cell” and ’pert_type’.

character vector if sep argument is set as FALSE. Tibble object with "pert’, ’cell’, ’pert_type’
columns if sep is TRUE

Examples

refdb <- system.file("extdata"”, "sample_db.h5", package="signatureSearch")
treat_info <- getTreats(refdb, sep=TRUE)

get_targets

Target Gene/Protein IDs for Query Drugs

Description

This function returns for a set of query drug names/ids the corresponding target gene/protein ids.
The required drug-target annotations are from DrugBank, CLUE and STITCH. An SQLite database
storing these drug-target interactions based on the above three annotation resources is available in
the signatureSearchData package.

Usage

get_targets(drugs, database = "all", verbose = TRUE, output = "df")

Arguments

drugs

database

verbose

output

Value

character vector of drug names

drug-target annotation resource; A character vector of any combination of *Drug-
Bank’, ’CLUE’, STITCH’ or ’all’. The target set from the selected resources
will be combined. If ’all’ is contained in the character vector, target sets from
all of the annotation databases (DrugBank, CLUE and STITCH) will be com-
bined.

TRUE or FALSE, whether to print messages

one of "df", "list" or "vector". If setting as "df", the result is in a data.frame
format containing target gene symbols separated by semicolon for each drug. If
setting as "list", the result is a list of targets for each query drug. If setting as
"vector", the result is a character vector of the target set that are collapsed with
duplications if different drugs have the same targets.

drug-target annotation in a format defined by the output argument.

gmt2h5 43

See Also

dtlink_db_clue_sti

Examples

data(drugs10)
dt <- get_targets(drugs10)

gmt2h5 Convert GMT to HDF5 File

Description

Read gene sets from large gmt file in batches, convert the gene sets to 01 matrix and write the result
to an HDFS file.

Usage

gmt2h5(gmtfile, dest_h5, by_nset = 5000, overwrite = FALSE)

Arguments
gmtfile character(1), path to gmt file containing gene sets
dest_h5 character(1), path of the hdf5 destination file
by_nset number of gene sets to import in each iteration to limit memory usage
overwrite TRUE or FALSE, whether to overwrite or to append to existing “h5file’
Value
HDFS file
Examples

gmt <- system.file("extdata”, "test_gene_sets_n4.gmt",
package="signatureSearch")

h5file <- tempfile(fileext=".h5")

gmt2h5(gmtfile=gmt, dest_h5=h5file, overwrite=TRUE)

44 gseGO2

gseG02 Modified GSEA with GO Terms

Description

This modified Gene Set Enrichment Analysis (GSEA) of GO terms supports gene test sets with
large numbers of zeros.

Usage
gseG02(
genelist,
ont = "BP",
OrgDb,

keyType = "SYMBOL",
exponent = 1,

nproc = 1,
nPerm = 1000,
minGSSize = 2,

maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
verbose = TRUE

)
Arguments
genelList named numeric vector with gene SYMBOLs in the name slot decreasingly ranked
by scores in the data slot.
ont one of "BP", "MF", "CC" or "ALL"
OrgDb OrgDb, e.g., "org.Hs.eg.db".
keyType keytype of gene
exponent weight of each step
nproc if not equal to zero, sets BPPARAM to use nproc workers (default = 1)
nPerm permutation numbers
minGSSize integer, minimum size of each gene set in annotation system
maxGSSize integer, maximum size of each gene set in annotation system

pvalueCutoff pvalue cutoff
pAdjustMethod pvalue adjustment method

verbose print message or not

Value

feaResult object

gseKEGG2 45

Examples

data(targetList)

gsego <- gseGO2(genelList=targetlList, ont="MF", OrgDb="org.Hs.eg.db",

#
head(gsego)

pvalueCutoff=1)

gseKEGG2

Modified GSEA with KEGG

Description

This modified Gene Set Enrichment Analysis (GSEA) of KEGG pathways supports gene test sets
with large numbers of zeros.

Usage

gseKEGG2 (
genelist,

organism = "hsa",
keyType = "kegg",
exponent = 1,

nproc = 1,
nPerm =
minGSSize =
maxGSSize =

1000,

10,
500,

pvalueCutoff = 0.05,
pAdjustMethod = "BH",
verbose = TRUE,

readable =

Arguments

genelist

organism
keyType
exponent
nproc

nPerm
minGSSize
maxGSSize
pvalueCutoff
pAdjustMethod
verbose

readable

FALSE

named numeric vector with gene ids in the name slot decreasingly ranked by
scores in the data slot.

supported organism listed in URL: http://www.genome.jp/kegg/catalog/org_list.html
one of "kegg", 'ncbi-geneid’, 'ncib-proteinid’ and "uniprot’

weight of each step

if not equal to zero, sets BPPARAM to use nproc workers (default = 1)

permutation numbers

integer, minimum size of each gene set in annotation system

integer, maximum size of each gene set in annotation system

pvalue cutoff

pvalue adjustment method

print message or not

TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols
in the ’itemID’ column in the FEA result table.

46

Value

feaResult object

Examples

Gene Entrez id

gseReactome

should be used for KEGG enrichment

data(genelList, package="DOSE")
#genelist[100:length(genelist)]=0
#tgsekk <- gseKEGG2(geneList=genelList, pvalueCutoff = 1)

#head (gsekk)

gseReactome

Modified GSEA with Reactome

Description

This modified Gene Set Enrichment Analysis (GSEA) of Reactome pathways supports gene test
sets with large numbers of zeros.

Usage

gseReactome(
genelist,

organism = "human”,

exponent = 1,
nPerm = 1000,

minGSSize = 10,
maxGSSize = 500,

pvalueCutoff

= 0.05,

pAdjustMethod = "BH",
verbose = TRUE,
readable = FALSE

Arguments

genelist
organism
exponent
nPerm
minGSSize
maxGSSize
pvalueCutoff
pAdjustMethod

verbose

readable

order ranked geneList

non non non

one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
integer value used as exponent in GSEA algorithm.

integer defining the number of permutation iterations for calculating p-values
minimal size of each geneSet for analyzing

maximal size of each geneSet for analyzing

pvalue Cutoff

pvalue adjustment method

print message or not TRUE or FALSE indicating whether to convert gene Entrez
ids to gene Symbols in the ’itemID’ column in the FEA result table.

TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols
in the ’itemID’ column in the FEA result table.

head 47

Value

feaResult object

Examples

Gene Entrez id should be used for Reactome enrichment
data(genelList, package="DOSE")
#genelist[100:length(genelList)]1=0

#rc <- gseReactome(geneList=genelList, pvalueCutoff=1)

head Return the First Part of an Object

Description

Return the first part of the result table in the gessResult, and feaResult objects

Usage

S4 method for signature 'gessResult'
head(x, n = 6L, ...)

S4 method for signature 'feaResult'
head(x, n = 6L, ...)

Arguments
X an object
n a single integer. If positive or zero, size for the resulting object is the number of
rows for a data frame. If negative, all but the n last number of rows of x.
arguments to be passed to or from other methods
Value
data.frame
Examples

gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),
query=list(up=c("g1"”,"g2"), down=c("g3","g4")),
gess_method="LINCS", refdb="path/to/lincs/db")
head(gr)
fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human", ontology="MF", drugs=c("d1"”, "d2"),
targets=c("t1","t2"))
head(fr)

48 lincs_pert_info

lincs_expr_inst_info Instance Information of LINCS Expression Database

Description

It is a tibble of 3 columns containing compound treatment information of GEP instances in the
LINCS expression database. The columns contain the compound name, cell type and perturbation
type (all of them are compound treatment, trt_cp).

Usage

lincs_expr_inst_info

Format

A tibble object with 38,824 rows and 3 columns.

Examples

Load object
data(lincs_expr_inst_info)
head(lincs_expr_inst_info)

lincs_pert_info LINCS 2017 Perturbation Information

Description

It is a tibble containing annotation information of compounds in LINCS 2017 database including
perturbation name, type, whether in touchstone database, INCHI key, canonical smiles, PubChem
CID as well as annotations from ChEMBL database, including ChEMBL ID, DrugBank ID, max
FDA phase, therapeutic flag, first approval, indication class, mechanism of action, disease efficacy
et al.

Usage

lincs_pert_info

Format

A tibble object with 8,140 rows and 40 columns.

Examples

Load object
data(lincs_pert_info)
lincs_pert_info

lincs_pert_info2 49

lincs_pert_info2 LINCS 2020 Perturbation Information

Description

It is a tibble containing annotation information of compounds in LINCS 2020 beta database includ-
ing perturbation id, perturbation name, canonical smiles, Inchi key, compound aliases, target and
MOA. The PubChem CID and many other annotations from ChEMBL database were obtained from
2017 LINCS pert info by by left joining with pert_iname.

Usage

lincs_pert_info2

Format

A tibble object with 34419 rows and 48 columns.

Examples

Load object
data(lincs_pert_info2)
lincs_pert_info2

lincs_sig_info LINCS Signature Information

Description

It is a tibble of 3 columns containing treatment information of GESs in the LINCS database. The
columns contain the perturbation name, cell type and perturbation type (all of them are compound
treatment, trt_cp).

Usage

lincs_sig_info

Format

A tibble object with 45,956 rows and 3 columns.

Examples

Load object
data(lincs_sig_info)
head(lincs_sig_info)

50 list_rev

list2df Named list to data frame

Description
Convert a list with names that have one to many mapping relationships to a data.frame of two
columns, one column is names, the other column is the unlist elements

Usage

list2df(list, colnames)

Arguments

list input list with names slot

colnames character vector of length 2, indicating the column names of the returned data.frame
Value

data.frame
Examples

list <= list(”n1"=c(”el”, "e2”, "e4”), "n2"=c("e3", "e5"))

list2df(list, colnames=c(”"name”, "element"))

list_rev Reverse list

Description

Reverse list from list names to elements mapping to elements to names mapping.

Usage

list_rev(list)

Arguments

list input list with names slot

Value

list

Examples

list <= list("n1"=c("el”, "e2", "e4"), "n2"=c("el”, "e5"))
list_rev(list)

mabsGO 51

mabsGO MeanAbs Enrichment Analysis for GO

Description

MeanAbs enrichment analysis with GO terms.

Usage

mabsGO (
genelist,
ont = "BP",
OrgDb,
keyType = "SYMBOL",
nPerm = 1000,
minGSSize = 5,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH"

)
Arguments
genelList named numeric vector with gene SYMBOLs in the name slot decreasingly ranked
by scores in the data slot.
ont one of "BP", "MF", "CC" or "ALL"
OrgDb OrgDb
keyType keytype of gene
nPerm permutation numbers
minGSSize integer, minimum size of each gene set in annotation system
maxGSSize integer, maximum size of each gene set in annotation system

pvalueCutoff pvalue cutoff
pAdjustMethod pvalue adjustment method

Value

feaResult object

Author(s)
Yuzhu Duan
Examples
data(targetlList)
#mg <- mabsGO(genelList=targetlList, ont="MF", OrgDb="org.Hs.eg.db",
pvalueCutoff=1)

#head(mg)

52

mabsKEGG

mabsKEGG

MeanAbs Enrichment Analysis for KEGG

Description

MeanAbs enrichment analysis with KEGG pathways.

Usage

mabsKEGG(
genelist,

organism = "hsa",
keyType = "kegg",

nPerm = 1000,

minGSSize = 5,
maxGSSize = 500,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
readable = FALSE

Arguments

genelist

organism
keyType

nPerm
minGSSize
maxGSSize
pvalueCutoff
pAdjustMethod

readable

Value

feaResult object

Examples

named numeric vector with gene/target ids in the name slot decreasingly ranked
by scores in the data slot.

supported organism listed in URL: http://www.genome.jp/kegg/catalog/org_list.html
one of ’kegg’, 'ncbi-geneid’, "ncib-proteinid’ and *uniprot’

permutation numbers

integer, minimum size of each gene set in annotation system

integer, maximum size of each gene set in annotation system

pvalue cutoff

pvalue adjustment method

TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols
in the ’itemID’ column in the FEA result table.

Gene Entrez id should be used for KEGG enrichment
data(genelist, package="DOSE")
#genelist[100:length(genelist)]=0

#mk <- mabskEGG(genelList=genelList, pvalueCutoff = 1)

#head (mk)

mabsReactome

53

mabsReactome

MeanAbs Enrichment Analysis for Reactome

Description

MeanAbs enrichment analysis with Reactome pathways.

Usage

mabsReactome (
genelist,

organism = '

"human”,

nPerm = 1000,

minGSSize =
maxGSSize =

5,
500,

pvalueCutoff = 0.05,
pAdjustMethod = "BH",
readable = FALSE

Arguments

genelist

organism
nPerm
minGSSize
maxGSSize
pvalueCutoff
pAdjustMethod

readable

Value

named numeric vector with gene/target ids in the name slot decreasingly ranked
by scores in the data slot.

non non non

one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".
permutation numbers

integer, minimum size of each gene set in annotation system

integer, maximum size of each gene set in annotation system

pvalue cutoff

pvalue adjustment method

TRUE or FALSE indicating whether to convert gene Entrez ids to gene Symbols
in the ’itemID’ column in the FEA result table.

feaResult object

Examples

Gene Entrez id should be used for Reactome enrichment
data(genelList, package="DOSE")
#genelist[100:length(genelList)]=0

#rc <- mabsReactome(genelList=genelList, pvalueCutoff = 1)

54 meanExpr2h5

matrix2h5 Write Matrix to HDFY file

Description

Function writes matrix object to an HDFS5 file.

Usage
matrix2h5(matrix, h5file, name = "assay"”, overwrite = TRUE)
Arguments
matrix matrix to be written to HDFS file, row and column name slots need to be popu-
lated
h5file character(1), path to the hdf5 destination file
name The name of the dataset in the HDFS file. The default is write the score matrix
(e.g. z-score, logFC) to the ’assay’ dataset, users could also write the adjusted
p-value or FDR matrix to the ’padj’ dataset by setting the name as ’padj’.
overwrite TRUE or FALSE, whether to overwrite or append matrix to an existing “h5file’
Value

HDFS5 file containing exported matrix

Examples

mat <- matrix(rnorm(12), nrow=3, dimnames=list(
pasted("r",1:3), paste@(”"c",1:4)))

h5file <- tempfile(fileext=".h5")

matrix2h5(matrix=mat, h5file=h5file, overwrite=TRUE)

meanExpr2h5 Calculate Mean Expression Values of LINCS Level 3 Data

Description

Function calculates mean expression values for replicated samples of LINCS Level 3 data that have
been treated by the same compound in the same cell type at a chosen concentration and treatment
time. Usually, the function is used after filtering the Level 3 data with inst_filter. The results
(here matrix with mean expression values) are saved to an HDFS5 file. The latter is referred to as the
‘lincs_expr* database.

Usage

meanExpr2h5(gctx, inst, h5file, chunksize = 2000, overwrite = TRUE)

moa_conn 55

Arguments
gctx character(1), path to the LINCS Level 3 gctx file
inst tibble, LINCS Level 3 instances after filtering for specific concentrations and
times
h5file character(1), path to the destination HDFS5 file
chunksize number of columns of the matrix to be processed at a time to limit memory
usage
overwrite TRUE or FALSE, whether to overwrite or append data to an existing "h5file’
Value

HDFS file, representing the 1incs_expr database

Examples

gctx <- system.file("extdata”, "test_sample_n2x12328.gctx", package="signatureSearch")
h5file <- tempfile(fileext=".h5")
inst <- data.frame(inst_id=c("ASG@@1_MCF7_24H:BRD-A79768653-001-01-3:10",
"CPC@12_SKB_24H:BRD-K81418486:10"),
pert_cell_factor=c('sirolimus__MCF7__trt_cp', 'vorinostat__SKB__trt_cp'))
meanExpr2h5(gctx, inst, h5file, overwrite=TRUE)

moa_conn Summarize GESS Results on MOA Level

Description

Function summarizes GESS results on Mode of Action (MOA) level. It returns a tabular represen-
tation of MOA categories ranked by their average signature search similarity to a query signature.

Usage
moa_conn(gess_tb, moa_cats = "default”, cells = "normal”)
Arguments
gess_tb tibble in gessResult object
moa_cats if set as "default", it uses MOA annotations from the CLUE website (https://clue.io).
Users can customize it by providing a ‘list‘ of character vectors containing drug
names and MOA categories as list component names.
cells one of "normal”, "cancer” or "all", or a character vector containing cell types of

interest.

e "all": all cell types in LINCS database;
* "normal": normal cell types in LINCS database as one group;
* "tumor": tumor cell types in LINCS database as one group;

56 parse_gctx

Details

Column description of the result table:

moa: Mechanism of Action (MOA)

cells: cell type information

mean_rank: mean rank of drugs in corresponding GESS result for each MOA category

n_drug: number of drugs in each MOA category

Value

data.frame

See Also

gessResult

Examples

res_moa <- moa_conn(dplyr::tibble(
pert=c("vorinostat”, "trichostatin-a"”, "HC-toxin"),
cell=rep("SKB",3),
pval=c(0.001,0.02,0.05)))

parse_gctx Parse GCTX

Description

Parse a GCTX file into the R workspace as a GCT object

Usage

parse_gctx(
fname,
rid = NULL,
cid = NULL,
set_annot_rownames = FALSE,
matrix_only = FALSE

)
Arguments

fname character(1), path to the GCTX file on disk

rid either a vector of character or integer row indices or a path to a grp file containing
character row indices. Only these indices will be parsed from the file.

cid either a vector of character or integer column indices or a path to a grp file
containing character column indices. Only these indices will be parsed from the
file.

set_annot_rownames
boolean indicating whether to set the rownames on the row/column metadata
data.frames. Set this to false if the GCTX file has duplicate row/column ids.
matrix_only boolean indicating whether to parse only the matrix (ignoring row and column
annotations)

qSig

Value

gct object

Examples

57

gctx <- system.file("extdata”, "test_sample_n2x12328.gctx",

package="signatureSearch")

gct <- parse_gctx(gctx)

gSig

Helper Function to Construct a qSig Object

Description

It builds a ‘qSig* object to store the query signature, reference database and GESS method used for

GESS methods.

Usage

gSig(query, gess_method, refdb)

Arguments

query

gess_method

If ’gess_method’ is "CMAP’ or "LINCS’, it should be a list with two charac-
ter vectors named upset and downset for up- and down-regulated gene labels,
respectively. The labels should be gene Entrez IDs if the reference database is
a pre-built CMAP or LINCS database. If a custom database is used, the labels
need to be of the same type as those in the reference database.

If *gess_method’ is *'gCMAP’, the query is a matrix with a single column repre-
senting gene ranks from a biological state of interest. The corresponding gene
labels are stored in the row name slot of the matrix. Instead of ranks one can
provide scores (e.g. z-scores). In such a case, the scores will be internally trans-
formed to ranks.

If *gess_method’ is ’Fisher’, the query is expected to be a list with two charac-
ter vectors named upset and downset for up- and down-regulated gene labels,
respectively (same as for ’'CMAP’ or 'LINCS’ method). Internally, the up/down
gene labels are combined into a single gene set when querying the reference
database with the Fisher’s exact test. This means the query is performed with
an unsigned set. The query can also be a matrix with a single numeric column
and the gene labels (e.g. Entrez gene IDs) in the row name slot. The values in
this matrix can be z-scores or LFCs. In this case, the actual query gene set is
obtained according to upper and lower cutoffs in the gess_fisher function set
by the user.

If *gess_method’ is *Cor’, the query is a matrix with a single numeric column
and the gene labels in the row name slot. The numeric column can contain
z-scores, LFCs, (normalized) gene expression intensity values or read counts.

one of 'CMAP’, ’LINCS’, ’gCMAP’, "Fisher’ or ’Cor’

58 qSig-class

non

refdb character(1), can be one of "cmap", "cmap_expr", "lincs", "lincs_expr", "lincs2"
when using the CMAP/LINCS databases from the affiliated signatureSearchData
package. With ’cmap’ the database contains signatures of LFC scores obtained
from DEG analysis routines; with ’cmap_expr’ normalized gene expression val-
ues; with ’lincs’ or ’lincs2’ z-scores obtained from the DEG analysis methods
of the LINCS project; and with ’lincs_expr’ normalized expression values.

To use a custom database, it should be the file path to the HDF5 file gener-
ated with the build_custom_db function, the HDFS5 file needs to have the .h5
extension.

When the gess_method is set as ’'gCMAP’ or ’Fisher’, it could also be the file
path to the HDF5 file converted from the gmt file containing gene sets by us-
ing gmt2h5 function. For example, the gmt files could be from the MSigDB
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp or GSKB http:
//ge-lab.org/#/data.

Value

gSig object

See Also

build_custom_db, signatureSearchData, gmt2h5, qSig-class

Examples

db_path <- system.file("extdata”, "sample_db.h5",
package = "signatureSearch”)
gsig_lincs <- gSig(query=list(
upset=c("230", "5357", "2015", "2542", "1759"),
downset=c("22864", "9338", "54793", "10384", "27000")),
gess_method="LINCS", refdb=db_path)
gmat <- matrix(runif(5), nrow=5)
rownames(gmat) <- c("230", "5357", "2015", "2542", "1759")
colnames(gmat) <- "treatment”
gsig_gcmap <- gSig(query=qgmat, gess_method="gCMAP", refdb=db_path)

gSig-class Class "qSig"

Description

S4 object named qSig containing query signature information for Gene Expression Signature (GES)
searches. It contains slots for query signature, GESS method and path to the GES reference
database.

Slots

query If "gess_method’ is one of '"CMAP’ or "LINCS’, this should be a list with two character
vectors named upset and downset for up- and down-regulated gene labels (here Entrez IDs),
respectively.
If ’gess_method’ is 'gCMAP’, "Fisher’ or *Cor’, a single column matrix with gene expression
values should be assigned. The corresponding gene labels are stored in the row name slot of

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://ge-lab.org/#/data
http://ge-lab.org/#/data

rand_query_ES 59

the matrix. The expected type of gene expression values is explained in the help files of the
corresponding GESS methods.

gess_method one of 'CMAP’, "LINCS’, ’gCMAP’, "Fisher’ or ’Cor’

non

refdb character(l), can be "cmap", "cmap_expr", "lincs", "lincs_expr", or "lincs2" when using
existing CMAP/LINCS databases.

If users want to use a custom database, it should be the file path to the HDFS5 file generated with
the build_custom_db function. Alternatively, source files of the CMAP/LINCS databases can
be used as explained in the vignette of the signatureSearchData package.

db_path character(1), file path to the refdb

rand_query_ES Generate WTCS Null Distribution with Random Queries

Description

Function computes null distribution of Weighted Connectivity Scores (WTCS) used by the LINCS
GESS method for computing nominal P-values.

Usage
rand_query_ES(h5file, N_queries = 1000, dest, write = TRUE)

Arguments
h5file character(1), path to the HDF? file representing the reference database
N_queries number of random queries
dest path to the output file (e.g. "ES_NULL.txt")
write Logical value indicating if results should be written to dest.
Value

File with path assigned to dest

References

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., Golub, T. R.
(2017). A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
Cell, 171 (6), 1437-1452.e17. URL.: https://doi.org/10.1016/j.cell.2017.10.049

See Also

gess_lincs

Examples

db_path = system.file("extdata”, "sample_db.h5", package="signatureSearch")
rand <- rand_query_ES(h5file=db_path, N_queries=5, dest="ES_NULL.txt", write=FALSE)
unlink ("ES_NULL.txt")

60 read_gmt

read_gmt Read in gene set information from .gmt files

Description
This function reads in and parses information from the MSigDB’s .gmt files. Pathway information
will be returned as a list of gene sets.

Usage

read_gmt(file, start =1, end = -1)

Arguments

file The .gmt file to be read

start integer(1), read the gmt file from start line

end integer(1), read the gmt file to the end line, the default -1 means read to the end
Details

The .gmt format is a tab-delimited list of gene sets, where each line is a separate gene set. The first
column must specify the name of the gene set, and the second column is used for a short description
(which this function discards). For complete details on the .gmt format, refer to the Broad In-
stitute’s Data Format’s page http://www.broadinstitute.org/cancer/software/gsea/wiki/
index.php/Data_formats.

Value

A list, where each index represents a separate gene set.

Warning
The function does not check that the file is correctly formatted, and may return incorrect or par-
tial gene sets, e.g. if the first two columns are omitted. Please make sure that files are correctly
formatted before reading them in using this function.

Examples

gmt_path <- system.file("extdata/test_gene_sets_n4.gmt", package="signatureSearch")
geneSets <- read_gmt(gmt_path)

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats
http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats

result

61

result Method to Extract Result Slots

Description

Method extracts tibbles from result slots of feaResult and gessResult objects.

generated by the GESS and FEA functions defined by signatureSearch, respectively.

Usage

result(x)

S4 method for signature 'feaResult'
result(x)

S4 method for signature 'gessResult'
result(x)

Arguments

X gessResult or feaResult object

Value

tibble

Examples

fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human”, ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))
result(fr)
gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),
query=list(up=c("gl1","g2"), down=c("g3","g4")),
gess_method="LINCS", refdb="path/to/lincs/db")
result(gr)

They are

runWr Run the Entire GESS/FEA Workflow

Description

This function runs the entire GESS/FEA workflow when providing the query drug and cell type,
as well as selecting the reference database (e.g. ’cmap’ or ’lincs’), defining the specific GESS and
FEA methods. In this case, the query GES is drawn from the reference database. The N (defined by
the ‘N_gess_drugs‘ argument) top ranking hits in the GESS tables were then used for FEA where
three different annotation systems were used: GO Molecular Function (GO MF), GO Biological

Process (GO BP) and KEGG pathways.

62 runWF

The GESS/FEA results will be stored in a list object in R session. A working environment named by
the use case will be created under users current working directory or under other directory defined
by users. This environment contains a results folder where the GESS/FEA result tables were
written to. The working environment also contains a template Rmd vignette as well as a rended
HTML report, users could make modifications on the Rmd vignette as they need and re-render it to
generate their HTML report.

Usage
runWr (
drug,
cell,
refdb,
gess_method,
fea_method,
N_gess_drugs = 100,
env_dir = ".",
tau = TRUE,
Nup = 150,
Ndown = 150,
higher = 1,
lower = -1,
method = "spearman”,

pvalueCutoff = 1,
gvalueCutoff = 1,
minGSSize = 5,
maxGSSize = 500,
runFEA = TRUE,
GenerateReport = TRUE

)
Arguments

drug character(1) representing query drug name (e.g. vorinostat). This query drug
should be included in the refdb

cell character(1) indicating the cell type that the query drug treated in. Details about
cell type options in LINCS database can be found in the cell_info table after
load the ‘signatureSearch® package and running ‘data("cell_info")*

refdb character(1), one of "lincs", "lincs_expr", "cmap", "cmap_expr", or path to the

HDFS5 file built from build_custom_db function

gess_method character(1), one of "LINCS", "CORsub", "CORall", "Fisher", "CMAP", "gCMAP".
When gess_method is "CORsub" or "CORall", only "lincs_expr" or "cmap_expr"
databases are supported.

fea_method character(1), one of "dup_hyperG", "mGSEA", "mabs", "hyperG", "GSEA"
N_gess_drugs number of unique drugs in GESS result used as input of FEA

env_dir character(1), directory under which the result environment located. The default
is users current working directory in R session, can be checked via getwd()
command in R

tau TRUE or FALSE indicating whether to compute Tau scores if gess_method is
set as 'LINCS’

set_readable 63

Nup integer(1). Number of most up-regulated genes to be subsetted for GESS query
when gess_method is CMAP, LINCS or CORsub

Ndown integer(1). Number of most down-regulated genes to be subsetted for GESS
query when gess_method is CMAP, LINCS or CORsub

higher numeric(1l), it is defined when gess_method argument is 'gCMAP’ or ’Fisher’
representing the "upper’ threshold of subsetting genes with a score larger than
“higher’

lower numeric(1), it is defined when gess_method argument is *’gCMAP’ or ’Fisher’

representing the "lower’ threshold of subsetting genes

method One of ’spearman’ (default), ’kendall’, or ’pearson’, indicating which correla-
tion coefficient to use

pvalueCutoff double, p-value cutoff for FEA result
gvalueCutoff double, qvalue cutoff for FEA result

minGSSize integer, minimum size of each gene set in annotation system
maxGSSize integer, maximum size of each gene set in annotation system
runFEA Logical value indicating if FEA analysis is performed.

GenerateReport Logical value indicating if a report is generated.

Value

list object containing GESS/FEA result tables

Examples

drug <- "vorinostat”; cell <- "SKB"

refdb <- system.file("extdata"”, "sample_db.h5", package="signatureSearch")

env_dir <- tempdir()

wf_list <- runWF(drug, cell, refdb, gess_method="LINCS",
fea_method="dup_hyperG", N_gess_drugs=10, env_dir=env_dir, tau=FALSE,
runFEA=FALSE, GenerateReport= FALSE)

set_readable Set Readable

Description

Mapping ’itemID’ column in the FEA enrichment result table from Entrez ID to gene Symbol

Usage

set_readable(
tb,
OrgDb = "org.Hs.eg.db",
keyType = "ENTREZID",
geneCol = "itemID"

)

64

Arguments
tb tibble object, enrichment result table
OrgDb character(1), ’org.Hs.eg.db’ for human
keyType character(1), keyType of gene
geneCol character(1), name of the column in ’tb’ containing gene Entrez ids separated by
’/’ to be converted to gene Symbol
Value
tibble Object
Examples
data(drugs10)

res <- tsea_dup_hyperG(drugs=drugs10, type="Reactome"”, pvalueCutoff=1,
gvalueCutoff=1)
res_tb <- set_readable(result(res))

show show method

Description

show gSig, gessResult, feaResult objects

Usage
S4 method for signature 'feaResult'
show(object)
show(object)

S4 method for signature 'qSig'
show(object)

Arguments

object object used for show

Value

message

Examples

fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human”, ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))
fr
gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),

sim_score_grp

gr

65

query=list(up=c(”g1"”,"g2"), down=c("g3","g4")),
gess_method="LINCS", refdb="path/to/lincs/db")

sim_score_grp

Summary Scores by Groups of Cell Types

Description

Function appends two columns (score_column_grpl, score_column_grp2) to GESS result tibble.
The appended columns contain cell-summarized scores for groups of cell types, such as normal and
tumor cells. The cell-summarized score is obtained the same way as the NCSct scores, that is using
a maximum quantile statistic. It compares the 67 and 33 quantiles of scores and retains whichever
is of higher absolute magnitude.

Usage

sim_score_grp(tib, grpl, grp2, score_column)

Arguments
tib
grpl

grp2

score_column

Value

tibble

Examples

tibble in gessResult object
character vector, group 1 of cell types, e.g., tumor cell types
character vector, group 2 of cell types, e.g., normal cell types

character, column name of similarity scores to be grouped

gr <- gessResult(result=dplyr::tibble(pert=c("p1"”, "p1", "p2", "p3"),

cell=c("MCF7", "SKB", "MCF7", "SKB"),
type=rep("trt_cp”, 4),
NCS=c(1.2, 1, 0.9, 0.6)),
query=list(up="a", down="b"),
gess_method="LINCS", refdb="path/to/refdb")

df <- sim_score_grp(result(gr), grpl1="SKB", grp2="MCF7", "NCS")

66 targetList

tail Return the Last Part of an Object

Description

Return the last part of the result table in the gessResult, and feaResult objects

Usage

S4 method for signature 'gessResult'
tail(x, n = 6L, ...)

S4 method for signature 'feaResult'

tail(x, n = 6L, ...)
Arguments
X an object
n a single integer. If positive or zero, size for the resulting object is the number of

rows for a data frame. If negative, all but the n first number of rows of x.

arguments to be passed to or from other methods

Value

data.frame

Examples

gr <- gessResult(result=dplyr::tibble(pert=letters[seq_len(10)],
val=seq_len(10)),
query=list(up=c("gl1”,"g2"), down=c("g3","g4")),
gess_method="LINCS", refdb="path/to/lincs/db")
tail(gr)
fr <- feaResult(result=dplyr::tibble(id=letters[seq_len(10)],
val=seq_len(10)),
organism="human”, ontology="MF", drugs=c("d1", "d2"),
targets=c("t1","t2"))
tail(fr)

targetlList Target Sample Data Set

Description

A named numeric vector with Gene Symbols as names. It is the first 1000 elements from the

“targets’ slot of the “mgsea_res’ result object introduced in the vignette of this package. The scores

represent the weights of the target genes/proteins in the target set of the selected top 10 drugs.
Usage

targetlList

tarReduce 67

Format

An object of class numeric of length 1000.

Examples

Load object

data(targetlList)
head(targetList)
tail(targetlList)

tarReduce Show Reduced Targets

Description

Reduce number of targets for each element of a character vector by replacting the targets that beyond
Ntar to ’...".

Usage

tarReduce(vec, Ntar = 5)

Arguments
vec character vector, each element composed by a list of targets symbols separated
by 7; b
Ntar integer, for each element in the vec, number of targets to show
Value

character vector after reducing

Examples

vec <- c("t1; t2; t3; t4; t5; t6", "t7; t8")
vec2 <- tarReduce(vec, Ntar=5)

vec_char_redu Reduce Number of Character

Description

Reduce number of characters for each element of a character vector by replacting the part that
beyond Nchar (e.g. 50) character to ’...".

Usage

vec_char_redu(vec, Nchar = 50)

68 vec_char_redu

Arguments

vec character vector to be reduced

Nchar integer, for each element in the vec, number of characters to remain
Value

character vector after reducing

Examples

vec <- c(strrep('a', 60), strrep('b', 30))
vec2 <- vec_char_redu(vec, Nchar=50)

Index

* GCTX parsing functions
parse_gctx, 56

x classes
feaResult-class, 29
gessResult-class, 31
gSig-class, 58

+ datasets
cell_info, 10
cell_info2, 11
chembl_moa_list, 11
clue_moa_list, 12
drugs1e, 15
lincs_expr_inst_info, 48
lincs_pert_info, 48
lincs_pert_info2, 49
lincs_sig_info, 49
targetlList, 66

add_pcid, 7
addGESSannot, 5, 37
addMOA, 7
append2H5, 8

build_custom_db, 8, 10, 36, 40, 42, 58, 59, 62

calcGseaStatBatchCpp, 9
cell_info, 10
cell_info2, 11
cellNtestPlot, 10
chembl_moa_list, 11
clue_moa_list, 12
comp_fea_res, 12
create_empty_h5, 13

dim, 14

dim, feaResult-method (dim), 14
dim,gessResult-method (dim), 14
drug_cell_ranks, 16

drugs, 15

drugs, feaResult,ANY-method (drugs), 15
drugs, feaResult-method (drugs), 15
drugs1o, 15

drugs<- (drugs), 15

drugs<-, feaResult-method (drugs), 15

69

dsea_GSEA, 5,17
dsea_hypergG, 5

dsea_hyperG (dsea_GSEA), 17
dtlink_db_clue_sti, 43
dtnetplot, 23

enrichG02, 24
enrichKEGG2, 25
enrichMOA, 26
enrichReactome, 27

feaResult, 14, 20, 21, 28,47, 51-53, 64, 66
feaResult-class, 28, 29

GCT object, 29
gctx2h5, 30
geom_point, 13, 38
gess_cmap, 3, 31
gess_cor, 5
gess_cor (gess_cmap), 31
gess_fisher, 5
gess_fisher (gess_cmap), 31
gess_gcmap, 5
gess_gcmap (gess_cmap), 31
gess_lincs, 5, 15, 59
gess_lincs (gess_cmap), 31
gess_res_vis, 38
gessResult, 14, 30, 35, 37, 38,47, 55, 56, 64,
66
gessResult-class, 30, 31
get_targets, 6, 19, 34,42
getALLEG, 39
getDb, 39
getDEGSig (getSig), 40
getSig, 40
getSPsubSig (getSig), 40
getTreats, 41
gmt2h5, 43, 58
GO_DATA_drug, 21
gseG02, 44
gseKEGG2, 45
gseReactome, 46

head, 47

70

head, feaResult-method (head), 47
head, gessResult-method (head), 47

lincs_expr_inst_info, 48
lincs_pert_info, 48
lincs_pert_info2, 49
lincs_sig_info, 49
list2df, 50

list_rev, 50

mabsGO, 51
mabsKEGG, 52
mabsReactome, 53
matrix2h5, 54
meanExpr2h5, 54
moa_conn, 55

parse_gctx, 29, 56

gSig, 10, 33, 37,42, 57,57, 64
gSig-class, 58

rand_query_ES, 59

read_gmt, 60

result, 29, 31, 38, 61

result, feaResult-method (result), 61
result,gessResult-method (result), 61
runWF, 61

set_readable, 63

show, 64

show, feaResult-method (show), 64

show, gessResult-method (show), 64

show,gSig-method (show), 64

signatureSearch
(signatureSearch-package), 3

signatureSearch-package, 3

signatureSearchData, 42, 58, 59

sim_score_grp, 65

tail, 66

tail, feaResult-method (tail), 66
tail, gessResult-method (tail), 66
targetlList, 66

tarReduce, 67

tsea_dup_hypergG, 5
tsea_dup_hyperG (dsea_GSEA), 17
tsea_mabs, 5

tsea_mabs (dsea_GSEA), 17
tsea_mGSEA, 5

tsea_mGSEA (dsea_GSEA), 17

vec_char_redu, 67
visNetwork, 23

INDEX

	signatureSearch-package
	addGESSannot
	addMOA
	add_pcid
	append2H5
	build_custom_db
	calcGseaStatBatchCpp
	cellNtestPlot
	cell_info
	cell_info2
	chembl_moa_list
	clue_moa_list
	comp_fea_res
	create_empty_h5
	dim
	drugs
	drugs10
	drug_cell_ranks
	dsea_GSEA
	dtnetplot
	enrichGO2
	enrichKEGG2
	enrichMOA
	enrichReactome
	feaResult
	feaResult-class
	GCT object
	gctx2h5
	gessResult
	gessResult-class
	gess_cmap
	gess_res_vis
	getALLEG
	getDb
	getSig
	getTreats
	get_targets
	gmt2h5
	gseGO2
	gseKEGG2
	gseReactome
	head
	lincs_expr_inst_info
	lincs_pert_info
	lincs_pert_info2
	lincs_sig_info
	list2df
	list_rev
	mabsGO
	mabsKEGG
	mabsReactome
	matrix2h5
	meanExpr2h5
	moa_conn
	parse_gctx
	qSig
	qSig-class
	rand_query_ES
	read_gmt
	result
	runWF
	set_readable
	show
	sim_score_grp
	tail
	targetList
	tarReduce
	vec_char_redu
	Index

