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build_network_se Create a SummarizedExperiment for Network Storage

Description

Constructs a SummarizedExperiment container for multiple gene regulatory network adjacency ma-

trices with shared gene space (pxp matrices).

Usage
build_network_se(
networks,
networkData = NULL,
geneData = NULL,
metadata = list()
)
Arguments
networks A list of adjacency matrices (all must have same dimensions)
networkData A DataFrame with metadata for each network
geneData Optional. A DataFrame with gene-level annotations
metadata Optional. List of global metadata
Value

A SummarizedExperiment object where each assay is a pxp network

Examples

# Example 1: Building SE from a list of adjacency matrices
data("toy_adj_matrix")

# Create a list of network matrices
net_list <- list(
networkl = toy_adj_matrix,
network2 = toy_adj_matrix

)

# Build SummarizedExperiment
network_se <- build_network_se(net_list)
network_se
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# Example 2: Using with inferred networks
data("toy_counts”)

networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores = 1

)

# generate_adjacency() internally uses build_network_se()
wadj_se <- generate_adjacency(networks)
wadj_se

classify_edges Classify Edges as TP, FP, or FN

Description

Compares a consensus network to a reference network and classifies edges as True Positives (TP),
False Positives (FP), or False Negatives (FN).

Usage

classify_edges(consensus_matrix, reference_matrix = NULL, use_stringdb = TRUE)

Arguments

consensus_matrix
A SummarizedExperiment object representing the consensus network.
reference_matrix
A SummarizedExperiment object representing the reference (ground truth) net-
work. If NULL, STRINGdD is used to generate a high-confidence physical net-
work.

use_stringdb  Logical. If TRUE and reference_matrix is NULL, queries STRINGdb for
reference network. Default: TRUE.

Details

If reference_matrix is NULL and use_stringdb = TRUE, this function queries STRINGdb to
generate a human high-confidence (score > 900) physical interaction network.

Value
A list containing:

* tp_edges: Character vector of True Positive edges

» fp_edges: Character vector of False Positive edges

* fn_edges: Character vector of False Negative edges

* consensus_graph: igraph object of consensus network

* reference_graph: igraph object of reference network

* edge_colors: Color vector for TP (red) and FN (blue) edges
* use_stringdb: Logical indicating if STRINGdb was used
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Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores =1

# Generate and symmetrize adjacency matrices (returns SummarizedExperiment)
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff (returns SummarizedExperiment)
binary_se <- cutoff_adjacency(

count_matrices = toy_counts,

weighted_adjm_list = swadj_se,

n=1,

method = "GENIE3",

quantile_threshold = 0.95,

nCores = 1

# Create consensus (returns SummarizedExperiment)
consensus <- create_consensus(binary_se, method = "union")

# Wrap reference matrix in SummarizedExperiment
ref_se <- build_network_se(list(reference = toy_adj_matrix))

# classify_edges expects SummarizedExperiment objects
edge_class <- classify_edges(consensus, ref_se)

community_path Community Detection and Pathway Enrichment Analysis

Description

Detects gene communities within an adjacency network using one or two community detection
methods, and performs pathway enrichment for each detected community.

Usage

community_path(
adj_matrix,
methods = "louvain”,
pathway_db = "KEGG",
organism = c("human"”, "mouse"),
genes_path = 5,
plot = TRUE,
verbose = TRUE,
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method_params = list(),
comparison_params = list(),
BPPARAM = BiocParallel: :bpparam()

)
Arguments

adj_matrix A square adjacency matrix or a SummarizedExperiment object containing a sin-
gle adjacency matrix. Row and column names must correspond to gene symbols.

methods A character vector of one or two community detection methods supported by
robin. If two are given, performance is compared and the best is selected. De-
fault: "louvain”.

pathway_db Character string specifying the pathway database to use: "KEGG" or "Reactome”.
Default: "KEGG".

organism Character string specifying the organism: "human” or "mouse”. Default: "human".

genes_path Integer. Minimum number of genes per community to run enrichment analysis.
Default: 5.

plot Logical. If TRUE, generates a plot of detected communities. Default: TRUE.

verbose Logical. If TRUE, shows progress messages. Default: TRUE.

method_params List of parameters for community detection methods. Common parameters in-
clude:
* resolution: Resolution parameter for Louvain/Leiden (default: 1)
* steps: Number of steps for Walktrap (default: 4)
* spins: Number of spins for Spinglass (default: 25)
* nb.trials: Number of trials for Infomap (default: 10)
comparison_params
List of parameters for robin comparison:

mon

* measure: Stability measure ("vi", "nmi", "split.join", "adjusted.rand"). De-

fault: "vi"
* type: Robin construction type ("dependent”, "independent"). Default: "in-
dependent”
* rewire.w.type: Rewiring strategy for weighted graphs. Default: "Rewire"
BPPARAM BiocParallel backend for parallel processing. Default: BiocParallel: :bpparam().
Details

If two methods are provided, the function uses robinCompare and selects the method with higher
AUC. Pathway enrichment is done via clusterProfiler (KEGG) or via ReactomePA (Reactome).
Communities smaller than genes_path are excluded.

Value
A list with elements:

e communities: List with best_method and a named vector of community membership per
gene.

* pathways: List of enrichment results per community (only for communities meeting size
threshold).

 graph: The igraph object with community annotations.
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Examples

data(toy_counts)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)
head(networks[[1]1])

# Generate and symmetrize adjacency matrices (returns SummarizedExperiment)
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean"”)

# Apply cutoff (returns SummarizedExperiment)
binary_se <- cutoff_adjacency(

count_matrices = toy_counts,

weighted_adjm_list = swadj_se,

n=1,

method = "GENIE3",

quantile_threshold = 0.95,

nCores = 1,

debug = TRUE

# Create consensus (returns SummarizedExperiment)
consensus <- create_consensus(binary_se, method = "union")

# community_path now accepts SummarizedExperiment objects directly
comm_cons <- community_path(consensus)

community_similarity  Compare Community Assignments and Topological Properties

Description

Convenience wrapper that computes community assignment metrics, topological properties, and op-
tionally visualizes the comparison. For more control, use the individual functions: compute_community_metrics,
compute_topology_metrics, and plot_community_comparison.

Usage

community_similarity(control_output, predicted_list, plot = TRUE)

Arguments

control_output A list output from community_path() representing the ground truth network.
Must contain a graph (igraph object) and communities$membership.

predicted_list A list of lists, each output from community_path() representing predicted net-
works to compare.
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plot Logical. If TRUE, displays plots immediately. If FALSE, no plots are displayed.
Default: TRUE.

Details

This function requires the igraph package. If plot = TRUE, the fmsb package is also required. Com-
munity similarity is measured using variation of information (VI), normalized mutual information
(NMI), and adjusted Rand index (ARI).

Value
A list containing:

e community_metrics: A data frame with VI, NMI, and ARI scores for each prediction.
* topology_measures: A data frame with raw topological metrics for each prediction.

* control_topology: A list of raw topological metrics for the ground truth network.

See Also

compute_community_metrics, compute_topology_metrics, plot_community_comparison

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores =1
)
head(networks[[11])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE

)

head(binary_se[[1]])

consensus <- create_consensus(binary_se, method = "union")
comm_cons <- community_path(consensus)

comm_truth <- community_path(toy_adj_matrix)

sim_score <- community_similarity(comm_truth, list(comm_cons))
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compare_consensus Compare Consensus and Reference Graphs or STRINGdb Networks

Description

Convenience wrapper that classifies edges and visualizes the comparison between consensus and
reference networks. For more control, use the individual functions: classify_edges and plot_network_comparison.

Usage

compare_consensus (
consensus_matrix,
reference_matrix = NULL,
false_plot = FALSE

)

Arguments

consensus_matrix
A SummarizedExperiment object representing the consensus network.

reference_matrix

Optional. A SummarizedExperiment obj representing the reference network. If
NULL, STRINGdb is queried.

false_plot Logical. If TRUE, displays False Positives plot. Default is FALSE.

Details
If no reference_matrix is provided, STRINGdb is queried to generate a high-confidence physical
interaction network.

Value

A ggplot object visualizing the comparison.

Note
Requires ggraph and ggplot2. If reference_matrix is NULL, also requires STRINGdb. If
false_plot = TRUE, requires patchwork.

See Also

classify_edges, plot_network_comparison

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(
count_matrices_list = toy_counts,
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method = "GENIE3",
nCores 1

)
head(networks[[111)

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE

)

head(binary_se[[1]]1)

consensus <- create_consensus(binary_se, method = "union")

# Wrap reference matrix in SummarizedExperiment
ref_se <- build_network_se(list(reference = toy_adj_matrix))

# Compare consensus to reference
compare_consensus(
consensus,
reference_matrix = ref_se,
false_plot = FALSE

compute_community_metrics

compute_community_metrics

Compute Community Assignment Similarity Metrics

Description

Calculates community assignment similarity between a reference community structure and one
or more predicted structures using variation of information (VI), normalized mutual information

(NMI), and adjusted Rand index (ARI).

Usage

compute_community_metrics(control_output, predicted_list)

Arguments

control_output A list output from community_path() representing the ground truth network.

Must contain communities$membership.

predicted_list A list of lists, each output from community_path() representing predicted net-

works to compare.
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Details

This function requires the igraph package. Lower VI values indicate better similarity (VI = 0 is
perfect match). Higher NMI and ARI values indicate better similarity (both range 0-1).

Value

A data frame with columns VI, NMI, and ARI for each prediction. Row names indicate which
prediction (e.g., "Predicted_1").

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores =1

)

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1

consensus <- create_consensus(binary_se, method = "union")
comm_cons <- community_path(consensus)
comm_truth <- community_path(toy_adj_matrix)

metrics <- compute_community_metrics(comm_truth, list(comm_cons))

compute_topology_metrics
Compute Network Topological Properties

Description
Calculates topological properties (modularity, number of communities, density, transitivity) for one
or more networks.

Usage

compute_topology_metrics(control_output, predicted_list)
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Arguments

control_output A list output from community_path() representing the ground truth network.
Must contain a graph (igraph object) and communities$membership.

predicted_list A list of lists, each output from community_path() representing predicted net-
works.

Details
This function requires the igraph package. Topological metrics include:

* Modularity: Quality of community division
e Communities: Number of detected communities
* Density: Proportion of actual vs. possible edges

* Transitivity: Clustering coefficient

Value
A list containing:

* topology_measures: A data frame with Modularity, Communities, Density, and Transitivity
for each prediction.

e control_topology: A numeric vector of the same metrics for the control network.

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1

consensus <- create_consensus(binary_se, method = "union")
comm_cons <- community_path(consensus)

comm_truth <- community_path(toy_adj_matrix)

topo <- compute_topology_metrics(comm_truth, list(comm_cons))
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create_consensus

Create a Consensus Adjacency Matrix from Multiple Networks

Description

Builds a consensus adjacency matrix from networks stored in a SummarizedExperiment using one

n o n

of three methods: "vote”, "union”, or "INet".

Usage

create_consensus(
adj_matrix_list,
method = c("vote"”, "union”, "INet"),
weighted_list = NULL,

theta = 0.04,
0.5,

threshold
ncores = 1
tolerance

’

0.1,

nitermax = 50,
FALSE

verbose =

Arguments

adj_matrix_list

method

weighted_list

theta
threshold

ncores

tolerance

nitermax

verbose

A SummarizedExperiment object containing binary adjacency matrices (square,
0/1) with identical dimensions and matching row/column names, or a list of such
matrices.

Character string specifying the consensus strategy. One of:

* "vote" (default): An edge is included if supported by at least threshold
fraction of matrices.

* "union”: An edge is included if present in any matrix.

e "INet": Combines normalized weighted matrices using consensusNet.

A SummarizedExperiment object containing weighted adjacency matrices (re-
quired if method = "INet"), or a list of such matrices.

Numeric. Tuning parameter passed to consensusNet (default: 0.04).

Numeric between 0 and 1. Threshold for "vote" and "INet" methods. Default is
0.5.

Integer. Number of CPU cores to use when method = "INet"”. Default is 1.

Numeric. Tolerance for differences between similar graphs in INet method.
Defaultis 0. 1.

Integer. Maximum number of iterations for INet algorithm. Default is 50.

Logical. If TRUE, display verbose output for INet method. Default is FALSE.
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Details

Consensus construction depends on the selected method:

vote Counts the presence of each edge across all matrices and includes edges supported by at least
threshold x N matrices.

union Includes any edge that appears in any matrix.

INet Multiplies binary matrices by corresponding weighted matrices, normalizes the results, and
applies consensusNet to generate a consensus network.

For "INet", both binary and weighted adjacency matrices must be provided with matching dimen-
sions.

Value

A SummarizedExperiment object with a single assay containing the consensus adjacency matrix
(binary or weighted, depending on the method). Metadata includes consensus method and parame-
ters.

Examples

data(toy_counts)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)
head(networks[[1]1])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean"”)

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE

)

head(binary_se[[1]])

consensus <- create_consensus(binary_se, method = "union")
head(consensus)
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create_mae Create MultiAssayExperiment from Multiple Single-Cell Datasets

Description

Converts a list of count matrices, Seurat objects, or SingleCellExperiment objects into a MultiAs-
sayExperiment for integrated network inference.

Usage
create_mae(datasets, colData = NULL, ...)
Arguments
datasets A named list of datasets. Each element can be:
* A matrix (genes X cells)
* A Seurat object
* A SingleCellExperiment object
colData Optional. A DataFrame with metadata for each experiment. If NULL, automat-
ically generated from list names.
Additional arguments (currently unused)
Value

A MultiAssayExperiment object with:

 experiments: List of SingleCellExperiment objects

* colData: Metadata for each experiment/condition

Examples

# Load the example MAE
data("toy_counts")

# Extract the list of SingleCellExperiment objects
sce_list <- MultiAssayExperiment::experiments(toy_counts)
sce_list <- as.list(sce_list)

# Create a new MAE from the SCE list
mae <- create_mae(sce_list)
mae
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cutoff_adjacency

cutoff_adjacency Threshold Adjacency Matrices Based on Shuffled Network Quantiles

Description

Applies a cutoff to weighted adjacency matrices using a percentile estimated from shuffled versions
of the original expression matrices. Supports inference methods "GENIE3"”, "GRNBoost2", and
"JRF".

Usage

cutoff_adjacency(
count_matrices,
weighted_adjm_list,
n,
method = c("GENIE3", "GRNBoost2", "JRF"),
quantile_threshold = 0.99,
weight_function = "mean”,
nCores = 1,
grnboost_modules = NULL,
debug = FALSE

Arguments

count_matrices A MultiAssayExperiment object containing expression data from multiple ex-
periments or conditions.

weighted_adjm_list
A SummarizedExperiment object containing weighted adjacency matrices (one
per experiment) to threshold.

n Integer. Number of shuffled replicates generated per original expression matrix.

method Character string. One of "GENIE3", "GRNBoost2", or "JRF".
quantile_threshold

Numeric. The quantile used to define the cutoff. Default is 0. 99.
weight_function

Character string or function used to symmetrize adjacency matrices ("mean”,

"max”, etc.).

nCores Integer. Number of CPU cores to use for parallelization. Default is the number
of workers in the current BiocParallel backend. Note: JRF uses C implementa-
tion and does not use this parameter.

grnboost_modules
Python modules needed for GRNBoost?2 if using reticulate.

debug Logical. If TRUE, prints detailed progress messages. Default is FALSE.

Details

For each input expression matrix, n shuffled versions are generated by randomly permuting each
gene’s expression across cells. Network inference is performed on the shuffled matrices, and a
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cutoff is determined as the specified quantile (quantile_threshold) of the resulting edge weights.
The original weighted adjacency matrices are then thresholded using these estimated cutoffs.

Parallelization is handled via BiocParallel.

The methods are based on:

* GENIE3: Random Forest-based inference (Huynh-Thu et al., 2010).
* GRNBoost2: Gradient boosting trees using arboreto (Moerman et al., 2019).

* JRF: Joint Random Forests across multiple conditions (Petralia et al., 2015).

Value

A SummarizedExperiment object where each assay is a binary (thresholded) adjacency matrix cor-
responding to an input weighted matrix. Metadata includes cutoff values and method parameters.

Examples

data(toy_counts)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores = 1
)
head(networks[[11])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE

)

head(binary_se[[11])

download_Atlas Download and Load an RDS File from a URL

Description

Downloads an RDS file from a specified URL and reads its contents into R. We used it for https://www.singlecellatlas.org

Usage

download_Atlas(file_url)
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Arguments

file_url Character; URL of the RDS file to download.

Details

This function uses httr to perform the download. The RDS file is read directly from a raw connec-
tion without saving to disk. An internet connection is required.

If the download fails (e.g., invalid URL, server error), an informative error message is returned.

Value

An R object loaded from the downloaded RDS file.

Examples

url <- "https://zenodo.org/records/15511027/files/sce_obj.rds?download=1"
atlas_data <- download_Atlas(url)

earlyj Modify Cell Names and Combine Datasets

Description
Extracts expression data from a MultiAssayExperiment object, modifies cell identifiers by append-
ing a unique experiment index (e.g., "-ml", "-m2", etc.), and merges the datasets into a single
object.

Usage

earlyj(input_list, rowg = TRUE)

Arguments
input_list A MultiAssayExperiment object containing expression data from multiple ex-
periments or conditions.
rowg Logical. If TRUE (default), genes are assumed to be rows and cells columns. If
FALSE, matrices are transposed before renaming and combining.
Details

For matrices, this function optionally transposes the input before combining. For Seurat and
SingleCellExperiment objects, only features (genes) common across all input datasets are re-
tained before merging. The cell names are suffixed with "-m1", "-m2", etc., according to their
original list position. The result is returned as a MultiAssayExperiment with a single merged ex-
periment.

Value

A MultiAssayExperiment object containing a single merged experiment with modified (unique) cell
names.
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Examples

data(toy_counts)

merged_mae <- earlyj(toy_counts)
merged_mae

edge_mining Edge Mining of Gene Interactions Using PubMed

Description

Query PubMed for literature evidence supporting predicted gene—gene interactions.

Usage

edge_mining(
predicted_list,
ground_truth,
delay = 1,
query_field = "Title/Abstract”,
query_edge_types = c("TP", "FP", "FN"),
max_retries = 10,
BPPARAM = BiocParallel: :bpparam()

Arguments

predicted_list A list of predicted adjacency matrices (row and column names are gene sym-
bols), or a SummarizedExperiment object containing adjacency matrices.

ground_truth A 0/1 adjacency matrix with row and column names.
delay Numeric. Seconds to wait between consecutive queries (default = 1).

query_field Character. PubMed search field. Options: "Title/Abstract" (default), "Title",
"Abstract".

query_edge_types
Character vector. Edge types to query: c("TP", "FP", "FN") (default all).

max_retries Integer. Max retries for PubMed queries (default = 10).
BPPARAM A BiocParallel parameter object. Default = bpparam().
Details

This function compares predicted adjacency matrices against a ground truth matrix, identifies edge
types (TP, FP, FN), and queries PubMed for each gene pair. Returns counts of hits, PMIDs, and
query status.
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Value

A named list of data.frames. Each data.frame has columns:

genel First gene in interaction

gene2 Second gene

edge_type One of "TP", "FP", or "FN"
pubmed_hits Number of PubMed hits
PMIDs Comma-separated PubMed IDs or NA

query_status One of "hits_found", "no_hits", or "error"

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores = 1
)
head(networks[[11])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE

)

head(binary_se[[1]])

consensus <- create_consensus(binary_se, method = "union")
head(consensus)
em <- edge_mining(consensus, toy_adj_matrix, query_edge_types = "TP")

generate_adjacency Generate Adjacency Matrices from Gene Interaction Tables

Description

Constructs adjacency matrices from a list of data frames (network edge lists) and returns them in a
SummarizedExperiment object.



infer _networks 21

Usage

generate_adjacency(df_list, nCores = 1)

Arguments
df_list A list of data frames. Each data frame must have three columns:
Genel Character. First gene in the interaction.
Gene2 Character. Second gene in the interaction.
Weight Numeric. Weight or strength of the interaction from Gene1 to Gene2.
nCores Integer. Number of CPU cores to use for parallel processing. Defaults to the
number of available workers from the current BiocParallel backend.
Details

The function first identifies all unique genes across all data frames to define the matrix dimensions.
For each interaction table, it places the corresponding weights at the appropriate gene-pair positions.
Parallelization is handled by BiocParallel for improved performance on multiple datasets.

Missing weights (NA) are ignored during construction. Only gene pairs matching the global gene
list are inserted.

Value

A SummarizedExperiment object where each assay is a square numeric adjacency matrix (pxp
genes). Diagonal entries are set to zero (no self-interactions).

Examples

data("toy_counts")

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)
head(networks[[11])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks) # returns SummarizedExperiment
head(wadj_se[[1]1]1)

infer_networks Infer Gene Regulatory Networks from Expression Matrices

Description

Infers weighted gene regulatory networks (GRNs) from one or more expression matrices using
different inference methods: "GENIE3", "GRNBoost2", "ZILGM", "JRF", or "PCzinb".
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Usage

infer_networks(

infer _networks

count_matrices_list,
method = c("GENIE3", "GRNBoost2", "ZILGM", "JRF”, "PCzinb"),

adjm = NULL,
nCores = 1,

grnboost_modules = NULL,

genie3_params

= list(),

grnboost2_params = list(),

zilgm_params

= listQ),

jrf_params = list(),

pczinb_params

= list(Q),

verbose = FALSE

Arguments

count_matrices_list

method

adjm

nCores

A MultiAssayExperiment object containing expression data from multiple ex-
periments or conditions.

Character string. Inference method to use. One of: "GENIE3", "GRNBoost2",
"ZILGM", "JRF", or "PCzinb".

Optional. Reference adjacency matrix for matching dimensions when using
"ZILGM" or "PCzinb".

Integer. Number of CPU cores to use for parallelization. Default: 1.

grnboost_modules

genie3_params

Python modules required for GRNBoost?2 (created via reticulate).
List of parameters for GENIE3 method:

* regulators: Vector of regulator gene names (default: all)

* targets: Vector of target gene names (default: all genes)

e treeMethod: "RF" or "ET" (default: "RF")

* K: Number of candidate regulators (default: "sqrt")

* nTrees: Number of trees per ensemble (default: 1000)

* seed: Random seed for reproducibility (default: NULL)

grnboost2_params

zilgm_params

jrf_params

List of parameters for GRNBoost2 method:
* tf_names: Vector of transcription factor names (default:all)
* gene_names: Vector of target gene names (default: all)
e client_or_address: Dask client or address (default: NULL)
* seed: Random seed for reproducibility (default: NULL)
List of parameters for ZILGM method:
* lambda: Regularization parameter (default: 0.1)
* alpha: Elastic net mixing parameter (default: 1)
e max_iter: Maximum iterations (default: 100)
* tol: Convergence tolerance (default: 1e-4)
List of parameters for JRF method:
¢ ntree: Number of trees (default: 1000)
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e mtry: Number of variables to sample at each split (default: sqrt(p))
pczinb_params List of parameters for PCzinb method:

» gamma: Regularization parameter (default: 0.1)
* beta: Beta parameter (default: 0.1)
e max_iter: Maximum iterations (default: 100)

¢ tol: Convergence tolerance (default: 1e-4)

verbose Logical. If TRUE, display messages. Default: FALSE.

Details

Each expression matrix is preprocessed automatically depending on its object type (Seurat, SingleCellExperiment,
or plain matrix).

Parallelization behavior:

* GENIE3: No external parallelization; internal nCores parameter controls computation.
* ZILGM: Uses nCores parameter for internal parallelization.
* GRNBoost2 and PCzinb: Parallelized across matrices using BiocParallel.

* JRF: Joint modeling of all matrices together using optimized C implementation.

Methods are based on:

GENIE3: Random Forest-based inference (Huynh-Thu et al., 2010).

GRNBoost2: Gradient boosting trees using arboreto (Moerman et al., 2019).
o ZILGM: Zero-Inflated Graphical Models for scRNA-seq (Zhang et al., 2021).

JREF: Joint Random Forests across multiple conditions (Petralia et al., 2015).

* PCzinb: Pairwise correlation under ZINB models (Nguyen et al., 2023).

Value

A list of inferred networks:

* For "GENIE3", "GRNBoost2", "ZILGM", and "PCzinb", a list of inferred network objects (edge
lists or adjacency matrices).

* For "JRF", a list of data frames with inferred edge lists for each condition or dataset.

Examples

data("toy_counts”)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores =1

)
head(networks[[11])
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init_py Initialize Python Environment for GRNBoost2

Description

Sets up the Python environment and lazily loads modules required for running GRNBoost2: arboreto,
pandas, and numpy. Automatically installs missing Python packages if requested.

Usage

init_py(
python_path = "/usr/bin/python3”,
required = TRUE,
install_missing = FALSE,
install_method = "auto”,
verbose = TRUE

Arguments

python_path Character string. Path to the Python executable, e.g., "/usr/bin/python3".
For optimal GRNBoost2 compatibility, Python 3.8.x is strongly recommended.

required Logical. If TRUE, errors if Python is not available or path is invalid. Default:
TRUE.

install_missing

Logical. If TRUE, automatically installs missing Python packages. Default:
FALSE.

install_method Character string. Installation method when install_missing = TRUE. Options:

non "non

"auto", "conda", "pip". Default: "auto".

verbose Logical. If TRUE, shows installation progress. Default: TRUE.

Details
Uses reticulate to bind R to the specified Python interpreter and lazily import modules needed for
GRNBoost2. If install_missing = TRUE, automatically installs the ’arboreto’ package using the
specified method if not found.
Value
A list with three Python module objects:
e arboreto: GRNBoost2 algorithm module.

* pandas: Data handling module.

* numpy: Numerical operations module.
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Examples

# Initialize Python environment (handles missing modules gracefully)

tryCatch(
{
modules <- init_py(required = FALSE)
}
error = function(e) {
message("Python environment not available: ", e$message)
}
)
nb.loglik Log-likelihood of the negative binomial model Given a vector of
counts, this function computes the sum of the log-probabilities of the
counts under a negative binomial (NB) model. The NB distribution is
parametrized by two parameters: the mean value and the dispersion
of the negative binomial distribution
Description

Log-likelihood of the negative binomial model Given a vector of counts, this function computes
the sum of the log-probabilities of the counts under a negative binomial (NB) model. The NB
distribution is parametrized by two parameters: the mean value and the dispersion of the negative
binomial distribution

Usage

nb.loglik(Y, mu, theta)

Arguments
Y the vector of counts
mu the vector of mean parameters of the negative binomial
theta the vector of dispersion parameters of the negative binomial, or a single scalar is
also possible if the dispersion parameter is constant. Note that theta is sometimes
called inverse dispersion parameter (and phi=1/theta is then called the dispersion
parameter). We follow the convention that the variance of the NB variable with
mean mu and dispersion theta is mu + mu”2/theta.
Value

the log-likelihood of the model.
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nb.loglik.dispersion Log-likelihood of negative binomial model, for a fixed dispersion pa-
rameter

Description

Given a unique dispersion parameter and a set of counts, together with a corresponding set of mean
parameters, this function computes the sum of the log-probabilities of the counts under the NB
model. The dispersion parameter is provided to the function through zeta = log(theta), where theta
is sometimes called the inverse dispersion parameter.

Usage

nb.loglik.dispersion(zeta, Y, mu)

Arguments
zeta a vector, the log of the inverse dispersion parameters of the negative binomial
model
Y a vector of counts
mu a vector of mean parameters of the negative binomial
Value

the log-likelihood of the model.

nb.loglik.regression log-likelihood of the NB regression model

Description

This function computes the log-likelihood of a NB regression model given a vector of counts.

Usage

nb.loglik.regression(
alpha,
Y,
A.mu = matrix(nrow = length(Y), ncol = 0),
C.theta = matrix(@, nrow = length(Y), ncol = 1)

)
Arguments
alpha the vectors of parameters a.mu concatenated
Y the vector of counts
A.mu matrix of the model (see Details, default=empty)

C.theta matrix of the model (log(¢), default=zero)
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Details

The regression model is parametrized as follows:

log(p) = Ay *ay
log(8) = Cy

where p, 8 are respectively the vector of mean parameters of the NB distribution, and the vector of
inverse dispersion parameters. The log-likelihood of a vector of parameters o = a,,

Value

the log-likelihood.

nb.loglik.regression.gradient
Gradient of the log-likelihood of the NB regression model

Description

This function computes the gradient of the log-likelihood of a NB regression model given a vector
of counts.

Usage

nb.loglik.regression.gradient(
alpha,
Y,
A.mu = matrix(nrow = length(Y), ncol = @),
C.theta = matrix(@, nrow = length(Y), ncol = 1)

)
Arguments
alpha the vectors of parameters a.mu concatenated
Y the vector of counts
A.mu matrix of the model (see Details, default=empty)
C.theta matrix of the model (see Details, default=zero)
Details

The regression model is described in nb.loglik.regression.

Value

The gradient of the log-likelihood.

See Also

nb.loglik.regression
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nb.OptimizeDispersion (NB) model. The NB distribution is parametrized by two parameters:
the mean value and the dispersion of the negative binomial distribution

Description
(NB) model. The NB distribution is parametrized by two parameters: the mean value and the
dispersion of the negative binomial distribution

Usage

nb.OptimizeDispersion(mu, Y, n)

Arguments
mu the vector mean of the negative binomial
Y the vector of counts
n the length of the vector to return Note that theta is sometimes called inverse
dispersion parameter (and phi=1/theta is then called the dispersion parameter).
We follow the convention that the variance of the NB variable with mean mu
and dispersion theta is mu + mu”2/theta.
Value

A vector of length n with the optimized dispersion parameter values.

nb.regression.parseModel
Parse ZINB regression model

Description

Given the parameters of a NB regression model, this function parses the model and computes the
vector of log(mu), and the dimensions of the different components of the vector of parameters. See
nb.loglik.regression for details of the NB regression model and its parameters.

Usage

nb.regression.parseModel (alpha, A.mu)

Arguments
alpha the vectors of parameters c(a.mu) concatenated
A.mu matrix of the model (default=empty)

Value

A list with slot 1logMu,



PCzinb 29

See Also

nb.loglik.regression

PCzinb Structure learning for count data using PC algorithms

Description

This function performs structure learning for count data using various PC algorithms adapted for
different distributional assumptions including Poisson, Negative Binomial, and Zero-Inflated Neg-
ative Binomial models.

Usage
PCzinb(
X,
method = c¢("poi”, "nb", "zinb@", "zinbl"),
alpha = NULL,

maxcard = 2,
extend = TRUE,

nCores = 1,
whichAssay = "processed”,
)
Arguments
X A matrix of count data (n x p), SummarizedExperiment, or SingleCellExperi-
ment object. For matrix input, rows are samples and columns are genes.
method The algorithm used to estimate the graph: poi (Poisson), nb (Negative Bino-
mial), zinb@ (Zero-Inflated NB with structure only in mu), or zinb1 (Zero-
Inflated NB with structure in both mu and pi).
alpha The significance level of the tests. Default: 2 * pnorm(nrow(x)"0.2, lower.tail =
FALSE).
maxcard The upper bound of the cardinality of the conditional sets K. Default: 2.
extend If TRUE, considers the union of the tests; if FALSE, considers the intersection.
Default: TRUE.
nCores Number of cores for parallel processing. Default: 1.
whichAssay The assay to use as input (for SummarizedExperiment or SingleCellExperiment
objects). Default: "processed".
Additional arguments (currently unused).
Details

PCzinb performs structure learning using PC algorithms for count data. Different methods handle
different distributional assumptions:

¢ poi: Poisson distribution

* nb: Negative Binomial distribution
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* zinb@: Zero-Inflated NB with structure only in mean parameter

* zinb1: Zero-Inflated NB with structure in both mean and zero-inflation parameters

For SummarizedExperiment and SingleCellExperiment inputs, if the specified whichAssay is "pro-
cessed" but not found, the function will use the first assay and issue a warning recommending
QPtransform().

Value

 If x is a matrix: the estimated adjacency matrix of the graph

o If x is a SummarizedExperiment: the object with adjacency matrix stored in metadata as
adj_mat

* If x is a SingleCellExperiment: the object with adjacency matrix stored as rowPair

Examples

# Matrix input
mat <- matrix(rpois(5@, 5), nrow = 10)
PCzinb(mat, method = "poi")

# SummarizedExperiment input

library(SummarizedExperiment)

se <- SummarizedExperiment(matrix(rpois(50, 5), ncol = 10))
se_result <- PCzinb(se, method = "poi")

# SingleCellExperiment input

library(SingleCellExperiment)

sce <- SingleCellExperiment(matrix(rpois(50, 5), ncol = 10))
sce_result <- PCzinb(sce, method = "poi")
rowPair(sce_result)

plotg Visualize Graphs from Adjacency Matrices

Description

Generates and arranges multiple graph visualizations from a list of adjacency matrices. Each ma-
trix is converted into an undirected igraph object and visualized using a force-directed layout via
ggraph.

Usage

plotg(adj_matrix_list)

Arguments

adj_matrix_list
A list of square, symmetric adjacency matrices with zeros on the diagonal (no
self-loops), or a SummarizedExperiment object containing such matrices as as-
says. Each matrix represents an undirected graph.
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Details

Each adjacency matrix is validated to ensure it is square and symmetric. Disconnected nodes (de-
gree zero) are removed prior to visualization. Graphs are visualized with a force-directed layout
using ggraph, and multiple plots are arranged into a grid with gridExtra.

Each subplot title includes the graph index, number of nodes, and number of edges.

Value

A grid of plots displaying all valid graphs in the input list.

Note

This function requires the following packages: igraph, ggraph, and gridExtra. If any are missing,
an informative error will be thrown.

Examples

data(toy_counts)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores = 1
)
head(networks[[1]1])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores = 1,
debug = TRUE

)

head(binary_se[[11])

plotg(binary_se)

plotROC Plot ROC Curves for Inferred Networks

Description

Computes and visualizes Receiver Operating Characteristic (ROC) curves for predicted adjacency
matrices stored in a SummarizedExperiment object, compared against a binary ground truth net-
work.
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Usage

plotROC

plotROC(predicted_se, ground_truth, plot_title, is_binary = FALSE)

Arguments

predicted_se

ground_truth

plot_title

is_binary

Details

A SummarizedExperiment object containing predicted adjacency matrices as
assays. Each matrix must share dimnames with ground_truth;entries may be
binary (0/1) or continuous weights.

A square binary matrix indicating true interactions (1) in the upper triangle.
Must match dims and names of each assay in predicted_se.

Character string. Title for the ROC plot.

Logical. If TRUE, treat matrices as binary predictions. Default FALSE for weighted
predictions.

For binary matrices, a single TPR/FPR point is computed per matrix. For weighted ones, a full
ROC curve is computed from continuous scores. Diagonals are ignored; symmetry is not enforced.

Value

A list with:

auc: data frame of AUC per matrix.
plot: the ROC plot (via ggplot2).

Examples

data(toy_counts)

data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)

head(networks[[111)

# Generate and symmetrize adjacency matrices (returns SummarizedExperiment)
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# plotROC now accepts SummarizedExperiment directly
roc_res <- plotROC(

swadj_se,

toy_adj_matrix,
plot_title = "ROC Curve: GENIE3",
is_binary = FALSE

)

roc_res$plot

auc_joint <- roc_res$auc
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plot_community_comparison
Visualize Community and Topology Comparison

Description

Creates visualization plots for community assignment metrics and topological properties compari-
son.

Usage

plot_community_comparison(
community_metrics,
topology_measures,
control_topology

)

Arguments

community_metrics
A data frame with VI, NMI, and ARI scores (output from compute_community_metrics()).
topology_measures

A data frame with Modularity, Communities, Density, and Transitivity (from
compute_topology_metrics()).

control_topology
A named numeric vector of control network topology metrics (from compute_topology_metrics())

Details

This function requires the fmsb package for radar chart visualization. The radar plot shows nor-
malized community similarity metrics. The bar plots compare raw topological properties between
predicted and control networks.

Value

Invisibly returns NULL. Displays a radar plot for community metrics and bar plots for topology
comparison.

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)

# Generate adjacency matrices
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wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,
n=1,
method = "GENIE3",
quantile_threshold = 0.95,
nCores =1

)

consensus <- create_consensus(binary_se, method = "union")
comm_cons <- community_path(consensus)
comm_truth <- community_path(toy_adj_matrix)

comm_metrics <- compute_community_metrics(comm_truth, list(comm_cons))
topo_metrics <- compute_topology_metrics(comm_truth, list(comm_cons))

plot_community_comparison(
comm_metrics,
topo_metrics$topology_measures,
topo_metrics$control_topology

plot_network_comparison
Visualize Network Comparison

Description

Creates visualization plots comparing consensus and reference networks, showing True Positives
(TP), False Negatives (FN), and optionally False Positives (FP) edges.

Usage

plot_network_comparison(edge_classification, show_fp = FALSE)

Arguments

edge_classification
A list output from classify_edges() containing edge classifications and graph
objects.

show_fp Logical. If TRUE, displays False Positive edges in a separate plot. Default:
FALSE.

Details

This function requires the ggraph and ggplot2 packages. If show_fp = TRUE, the patchwork pack-
age is also required.

The plots differentiate:
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» TP/CE (True Positives/Confirmed Edges): Red edges present in both
* FN/ME (False Negatives/Missing Edges): Blue edges in reference only
» FP/EE (False Positives/Extra Edges): Edges in consensus only

If STRINGdb was used for reference, labels are CE/ME/EE. Otherwise, TP/FN/FP.

Value

A ggplot object visualizing the comparison. If show_fp = TRUE, a combined plot using patchwork
is returned.

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores =1

)

# Generate and symmetrize adjacency matrices (returns SummarizedExperiment)
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean")

# Apply cutoff (returns SummarizedExperiment)
binary_se <- cutoff_adjacency(

count_matrices = toy_counts,

weighted_adjm_list = swadj_se,

n=1,

method = "GENIE3",

quantile_threshold = 0.95,

nCores = 1

)

# Create consensus (returns SummarizedExperiment)
consensus <- create_consensus(binary_se, method = "union")

# Wrap reference matrix in SummarizedExperiment
ref_se <- build_network_se(list(reference = toy_adj_matrix))

# Classify edges
edge_class <- classify_edges(consensus, ref_se)

# Plot comparison
plot_network_comparison(edge_class, show_fp = FALSE)
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pscores Compute Performance Scores for Predicted Adjacency Matrices

Description

Computes classification metrics by comparing predicted adjacency matrices to a ground truth binary
network and visualizes the performance via a radar (spider) plot.

Usage

pscores(ground_truth, predicted_list, zero_diag = TRUE)

Arguments
ground_truth A square binary adjacency matrix representing the ground truth network. Values
must be 0 or 1. Only the upper triangle is used for evaluation.

predicted_list A list of predicted adjacency matrices to evaluate, or a SummarizedExperiment
object containing such matrices as assays. Each matrix must have the same
dimensions and row/column names as ground_truth.

zero_diag Logical. If TRUE (default), sets the diagonal of ground_truth to zero before
evaluation, removing self-loops.

Details

For each predicted matrix, the confusion matrix is computed using the upper triangle (non-self
edges). Metrics including True Positive Rate (TPR), False Positive Rate (FPR), Precision, F1-score,
and Matthews Correlation Coefficient (MCC) are calculated.

A radar plot is automatically generated summarizing the key scores across matrices.

Value

A list with one element:
Statistics: Data frame of evaluation metrics (TP, TN, FP, FN, TPR, FPR, Precision, F1, MCC)
for each predicted matrix.

Note

Requires the fmsb, dplyr, and tidyr packages.

Examples

data(toy_counts)
data(toy_adj_matrix)

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1
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# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)
swadj_se <- symmetrize(wadj_se, weight_function = "mean"”)

# Apply cutoff

binary_se <- cutoff_adjacency(
count_matrices = toy_counts,
weighted_adjm_list = swadj_se,

n=1,

method = "GENIE3",
quantile_threshold = 0.95,

nCores = 1,
debug = TRUE

)

pscores_data <- pscores(toy_adj_matrix, binary_se)

selgene

Select Top Expressed Genes from Single-Cell Data

Description

Identifies and returns the top n most highly expressed genes across all cells or within a specific
cell type. Supports objects of class Seurat, SingleCellExperiment, or a numeric expression matrix

(genes x cells).

Usage

selgene(
object,
top_n,

cell_type = NULL,
cell_type_col = "cell_type”,

assay = NULL,

remove_mt = FALSE,
remove_rib = FALSE

Arguments

object
top_n
cell_type

cell_type_col

assay

remove_mt

remove_rib

A Seurat object, SingleCellExperiment object, or numeric matrix (genes x cells).
Integer. Number of top expressed genes to return.

Optional string. If provided, filters the expression matrix to only include cells
of this type.

Character. Name of the column in metadata (Seurat meta.data or SCE colData)
containing cell type annotations. Default is "cell_type".

Character. For SingleCellExperiment objects only. Name of the assay to use. If
NULL, defaults to "logcounts”.

Logical. If TRUE, remove mitochondrial genes matching "*MT-" (case-insensitive).

Logical. If TRUE, remove ribosomal genes matching "*RP[SL]" (case-insensitive).
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Details

The function assumes that log-normalized values are available in the "data” slot (for Seurat objects)
or the "logcounts” assay (for SingleCellExperiment). If raw counts are provided as a matrix, no
transformation is applied.

Optional filtering is available to exclude mitochondrial genes (" *MT-") and ribosomal genes ("*RP[SL]1"),
which may otherwise dominate the top expressed genes.

Value

A character vector of the top n most highly expressed gene names.

Details

When using a Seurat object, the function retrieves the log-normalized data from the default assay’s
"data” slot. For SingleCellExperiment, it uses the specified assay (default is "logcounts”). For
matrices, no checks or transformations are applied, and subsetting by cell type is not supported.

Mitochondrial and ribosomal gene removal is based on regular expressions matching gene names.
These should follow standard naming conventions (e.g., MT-ND1, RPL13A, RPS6).

See Also

SingleCellExperiment

Examples

data(toy_counts)

genes <- selgene(
object = toy_counts[[1]],
top_n = 5,
cell_type = "T_cells”,
cell_type_col = "CELL_TYPE",
remove_rib = TRUE,
remove_mt = TRUE,
assay = "counts”

stringdb_adjacency Build Adjacency Matrices for Physical Interactions from STRING
(POST API)

Description

Constructs weighted and binary adj matrices for physical protein-protein interactions using a POST
request to the STRING database API.
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Usage

stringdb_adjacency(
genes,
species = 9606,

required_score = 400,
keep_all_genes = TRUE,
verbose = TRUE
)
Arguments
genes A character vector of gene symbols or identifiers, e.g., c("TP53", "BRCA1",
L.
species Integer. NCBI taxonomy ID of the species. Default is 9606 (human).
required_score Integer in \[0,1000\]. Minimum confidence score for interactions. Default is
400.
keep_all_genes Logical. If TRUE (default), includes all input genes in the final matrix even if
unmapped.
verbose Logical. If TRUE, displays progress messages. Default is TRUE.

Details
This function:
1. Maps input genes to STRING internal IDs.
2. Uses a POST request to retrieve physical protein-protein interactions from STRING.

3. Builds a weighted adjacency matrix using the STRING combined score.

4. Builds a binary adjacency matrix indicating presence/absence.

Genes not mapped to STRING are optionally retained as zero rows/columns if keep_all_genes =
TRUE.

Value
A list containing:

* weighted: A square numeric adjacency matrix with scores as weights.

* binary: A corresponding binary (0/1) adjacency matrix.

Note
Requires packages: STRINGdDb, httr, jsonlite.

Examples

data(toy_counts)

genes <- selgene(
object = toy_counts[[1]],
top_n = 5,
cell_type = "T_cells”,
cell_type_col = "CELL_TYPE",
remove_rib = TRUE,
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remove_mt = TRUE,
assay = "counts”

)

str_res <- stringdb_adjacency(
genes = genes,
species = 9606,
required_score = 900,
keep_all_genes = FALSE

)

wadj_truth <- str_res$weighted

toy_adj_matrix <- str_res$binary

symmetrize Symmetrize Adjacency Matrices in a SummarizedExperiment

Description

Symmetrizes each adjacency matrix in a SummarizedExperiment by ensuring entries (i, j) and (j, 1)
are identical, using a specified combination function.

Usage
symmetrize(matrix_list, weight_function = "mean”, nCores = 1)
Arguments
matrix_list A SummarizedExperiment object containing adjacency matrices to symmetrize.

weight_function
Character string or function. Method to combine entries (i, j) and (j, i). Options

n o n non

include "mean”, "max”, "min", or a user-defined function.

nCores Integer. Number of CPU cores to use for parallel processing. Defaults to the
number of available workers in the current BiocParallel backend.
Details

For each pair of off-diagonal elements (i, j) and (j, 1):

« If one value is zero, the non-zero value is used.

* If both are non-zero, they are combined using the specified weight_function.

Diagonal entries are preserved as-is and not modified.

Parallelization is managed via BiocParallel for improved performance.

Value

A SummarizedExperiment object with symmetrized adjacency matrices, where for each matrix
Ali, j] = Alj,d] forall i # j.
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Examples

data("toy_counts")

# Infer networks (toy_counts is already a MultiAssayExperiment)
networks <- infer_networks(

count_matrices_list = toy_counts,

method = "GENIE3",

nCores = 1

)
head(networks[[11])

# Generate adjacency matrices
wadj_se <- generate_adjacency(networks)

swadj_se <- symmetrize(wadj_se, weight_function = "mean")
toy_adj_matrix Toy adjacency matrix for examples
Description

An adjacency matrix generated using real dataset and STRINGdb for demonstrating functions in
the scGraphVerse package.
Usage

data(toy_adj_matrix)

Format

A matrix of dimension 10x10.

Examples

data(toy_adj_matrix)
str(toy_adj_matrix)

toy_counts Toy MultiAssayExperiment for Network Inference

Description
A simulated dataset generated using zinb_simdata() for demonstrating network inference functions
in the scGraphVerse package.

Usage

data(toy_counts)
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Format

A MultiAssayExperiment object containing 3 SingleCellExperiment objects (experiments), each
with 10 genes x 40 cells. The data was simulated using a known ground truth network (toy_adj_matrix)
with zero-inflated negative binomial distributions.

Examples

data(toy_counts)
toy_counts

# Access individual experiments
MultiAssayExperiment: :experiments(toy_counts)

# Use directly with infer_networks
networks <- infer_networks(
count_matrices_list = toy_counts,
method = "GENIE3",
nCores = 1

zinb.regression.parseModel
Parse ZINB regression model

Description

Given the parameters of a ZINB regression model, this function parses the model and computes
the vector of log(mu), logit(pi), and the dimensions of the different components of the vector of
parameters.

Usage

zinb.regression.parseModel(alpha, A.mu, A.pi)

Arguments
alpha the vectors of parameters c(a.mu, a.pi) concatenated
A.mu matrix of the model (default=empty)
A.pi matrix of the model (default=empty)

Value

A list with slots logMu, logitPi, dim.alpha (a vector of length 2 with the dimension of each of
the vectors a.mu, a.pi in alpha), and start.alpha (a vector of length 2 with the starting indices
of the 2 vectors in alpha)
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zinb@.noT Structure learning with zero-inflated negative binomial model (mean
only)

Description
This function estimates the adjacency matrix of a ZINB model given a matrix of counts, using the
optim function. Uses BiocParallel for parallelization.

Usage

zinb@.noT(X, maxcard, alpha, extend, nCores = 1)

Arguments
X the matrix of counts (n times p).
maxcard the uper bound of the cardinality of the conditional sets K
alpha the significant level of the tests
extend if TRUE it considers the union of the tests, otherwise it considers the intersec-
tion.
nCores number of cores for parallelization
Details

This approach assumes that the structure of the graph only depends on the mean parameter, treating
zero inflation as a technical noise effect. We call this model zinb@.

Value

the estimated adjacency matrix of the graph.

zinb1.noT Structure learning with zero-inflated negative binomial model

Description
This function estimates the adjacency matrix of a ZINB model given a matrix of counts, using the
optim function. Uses BiocParallel for parallelization.

Usage

zinb1.noT(X, maxcard, alpha, extend, nCores = 1)

Arguments
X the matrix of counts (n times p).
maxcard the uper bound of the cardinality of the conditional sets K
alpha the significant level of the tests
extend if TRUE it considers the union of the tests, otherwise it considers the intersec-

tion.
nCores number of cores for parallelization
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Details
This approach assumes that the structure of the graph depends on both the mean parameter and the
zero inflation parameter. We call this model zinb1.

Value

the estimated adjacency matrix of the graph.

zinbOptimizeDispersion
(ZINB) model. The ZINB distribution is parametrized by three pa-
rameters: the mean value and the dispersion of the negative binomial
distribution, and the probability of the zero component.

Description
(ZINB) model. The ZINB distribution is parametrized by three parameters: the mean value and the
dispersion of the negative binomial distribution, and the probability of the zero component.

Usage

zinbOptimizeDispersion(mu, logitPi, Y, n)

Arguments
mu the vector mean of the negative binomial
logitPi the vector of logit of the probabilities of the zero component
Y the vector of counts
n length of the returned vector
Value

A vector of length n with the optimized dispersion parameter values.

zinb_simdata Simulate Zero-Inflated Negative Binomial (ZINB) Count Matrices with
Sequencing Depth

Description

Simulates one or more count matrices following a zero-inflated negative binomial (ZINB) distribu-
tion, incorporating gene-gene interaction structures and cell-specific sequencing depth variation.
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Usage
zinb_simdata(

n7
P,
B,
mu_range,
mu_noise,
theta,
pi,
kmat = 1,
depth_range =

Arguments

n

mu_range

mu_noise

theta
pi

kmat

depth_range

Details
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NA

Integer. Number of cells (samples) in each simulated matrix.
Integer. Number of genes (features) in each simulated matrix.

A symmetric binary adjacency matrix (0/1) defining gene-gene connectivity.
Row and column names correspond to gene names.

List of numeric vectors (length 2 each). Range of gene expression means for
each simulated matrix.

Numeric vector. Mean of background noise for each matrix.

Numeric vector. Dispersion parameters of the negative binomial distribution for
each matrix. Smaller theta implies higher overdispersion.

Numeric vector. Probability of excess zeros (@ < pi < 1) for each matrix.
Integer. Number of count matrices to simulate. Default is 1.

Numeric vector of length 2 or NA. Range of total sequencing depth per cell. If
NA, no depth adjustment is performed.

Each simulated matrix:

1. Generates gene expression values based on a ZINB model.

2. Modulates expression using the adjacency matrix B.

3. Applies random sequencing depth scaling if depth_range is provided.

Useful for benchmarking single-cell RNA-seq network inference methods with dropout events and

network structure.

Value

A list containing kmat matrices. Each matrix has:

* Rows representing cells (cell_1, ..., cell_n).

» Columns representing genes (rownames(B)).

¢ Count values

following a ZINB distribution.
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Examples

data(toy_adj_matrix)
nodes <- nrow(toy_adj_matrix)
sims <- zinb_simdata(

n = 50,
p = nodes,
B = toy_adj_matrix,

mu_range = list(c(1, 4), c(1, 7), c(1, 10)),
mu_noise = c(1, 3, 5),

theta = c(1, 0.7, 0.5),

pi = c(0.2, 0.2, 0.2),

kmat = 3,

depth_range = c(0.8 * nodes * 3, 1.2 * nodes * 3)
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