Package ‘rqubic’

January 30, 2026
Type Package

Title Qualitative biclustering algorithm for expression data analysis
in R

Version 1.56.0

Date 2020-05-23

Description This package implements the QUBIC algorithm introduced by Li et al. for the qualita-
tive biclustering with gene expression data.

Imports methods, Biobase, BiocGenerics, biclust
Suggests RColorBrewer

Collates onload.R AllClasses.R AllMethods.R c_output_parser.R
r_qubic_implementation.R rqubic_to_c_funcs.R combineBiclust.R

biocViews Clustering

License GPL-2

LazyLoad yes

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/rqubic
git_branch RELEASE_3_22

git_last_commit 8629810

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Jitao David Zhang [aut, cre, ctb] (ORCID:
<https://orcid.org/0000-0002-3085-0909>)

Maintainer Jitao David Zhang <jitao_david.zhang@roche.com>

Contents

rqubic-package
combineBiclusts-methods
eSetDImName e e e e
fecFilter. e e e
fcFilter-methods
features-methods e e

https://orcid.org/0000-0002-3085-0909

2 rqubic-package

generateSeeds-methods Lo 7
parseQubicBlocks L 9
quantileDiscretize L 10
QUBICBiclusterSet-class o e e e 12
quBicluster 13
readBiclusterResults L 14
writeQubicInputFile 0oL 15
Index 17
rqubic-package Qualitative biclustering algorithm for expression data analysis
Description

QUBIC is a qualitative biclustering algorithm for high-throughput expression data analysis. rqubic
package implements this algorithm in R, partly with the codes contributed by Haibao Tang and Qin
Ma (version 0.23 released without any limitation).

The rqubic package also provides parsers for the command line tool of qubic written in C.

Details

Package: rqubic

Type: Package
Version: 1.5
Date: 2011-04-11

License: LGPL-2
LazylLoad: yes

Part of the source code in C is modified from the source code of the QUBIC command line tool (in
C) provided by Haibao Tang and Qin Ma <maqin@csbl.bmb.uga.edu>, downloaded from http:
//csbl.bmb.uga.edu/~magin/bicluster/ on 01.03.2011, version 0.23.

Source code of QUBIC also uses open-source data structure library codes. See the README file
included in the QUBIC command line tool source.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>, Laura Badi and Martin Ebeling Maintainer:
Jitao David Zhang <jitao_david.zhang @roche.com>

References

Li et al. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Nucleic Acids Research 37:e101

http://csbl.bmb.uga.edu/~maqin/bicluster/
http://csbl.bmb.uga.edu/~maqin/bicluster/

combineBiclusts-methods 3

combineBiclusts-methods
Combine two or more Biclust objects into one

Description

Combining two or more Biclust objects into one object. These objects must be of same dimension,
namely have same numbers of features and samples, although the numbers of biclusters do not have
to be the same (and usually are not).

Methods

signature(x = "Biclust"”, y = "Biclust"”) Method for any Biclust objects

signature(x = "QUBICBiclusterSet"”, y = "QUBICBiclusterSet") Method for QUBICBiclusterSet
only. Besides combining biclusters, they will also combine parameters and information stored
in each QUBICBiclusterSet into the returning object.

signature(x ="list", y = "missing"”) Method for a list of Biclust or QUBICBiclusterSet
objects.

Examples

data(sample.ExpressionSet, package="Biobase")
rel.discret <- quantileDiscretize(sample.ExpressionSet, rank=1L)
rel.sel.seeds <- generateSeeds(rel.discret, minColWidth=2L)
rel.blocks <- quBicluster(rel.sel.seeds,

rel.discret,

report.no=50L,

filter.proportion=0.1)

re2.discret <- quantileDiscretize(sample.ExpressionSet, rank=2L)
re2.sel.seeds <- generateSeeds(re2.discret, minColWidth=2L)
re2.blocks <- quBicluster(re2.sel.seeds,

re2.discret,

report.no=50L,

filter.proportion=0.1)

re3.discret <- quantileDiscretize(sample.ExpressionSet, rank=3L)
re3.sel.seeds <- generateSeeds(re3.discret, minColWidth=2L)
re3.blocks <- quBicluster(re2.sel.seeds,

re2.discret,

report.no=50L,

filter.proportion=0.1)

rel2.blocks <- combineBiclusts(rel.blocks, re2.blocks)

re123.blocks <- combineBiclusts(rel.blocks, re2.blocks, re3.blocks)
re123.list.blocks <- combineBiclusts(list(rel.blocks, re2.blocks,
re3.blocks))

stopifnot(identical(re123.blocks, rel23.list.blocks))

4 eSetDimName

eSetDimName Get dimname from an eSet object

Description

This function is implemented to automatically validate and choose feature (sample) names from
the user input. This function is exported for the purpose of easing other Bioconductor developers
performing the similar job, and is not tended to be called by end-user directly.

Usage

eSetDimName(eset, input, type = c("feature”, "sample”))
Arguments

eset An object of eSet class, mostly an ExpressionSet class.

input The user input, see details below

type Either ‘feature’ or ‘sample’, indicating which dimension should be determined
Details

The input can be one of the following three possibilities:

* Missing. Depending on the type, the results of calling featureNames (“feature”) or sampleNames
(“sample”) on the eset object will be returned.

* A character string of length 1. Depending on the type, it is first to be machted to the column
names of either fData or pData results of the eset object. If found, the values in that column
are returned (coerced to characters if necessary). If not found, the function stops by raising an
error.

* A character vector of the length equal to one of the two dimensions of the eset. In this scenario,
the function only validates the equality of the length, coerces the input into characters, and
return them.

If none of the scenarios above was met, the function stops by raising an error.

Value

A vector of characters, the length of which determined by the dimension of the input object.

Note

A special case arises if one of the dimensions of the eset object is 1: In this case, the input value is
interpreted as the new name and returned. No column name match will take place in this case.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

sampleNames, featureNames, fData, pData

writeQubicInputFile calls the function.

fcFilter 5

Examples

data(sample.ExpressionSet, package="Biobase")
sub.eset <- sample.ExpressionSet[1:3, 1:3]

usage one:
eSetDimName(sub.eset, type="feature")
eSetDimName(sub.eset, type="sample")

usage two

"sex" is one column in the pData(sub.eset)
eSetDimName(sub.eset, input="sex", type="sample")

Not run: eSetDimName(sub.eset, input="foo", type="sample")

usage three

eSetDimName(sub.eset, input=paste(”Sample”, 1:3), type="sample")
Not run: eSetDimName(sub.eset, input=paste(”Sample”, 1:4),
type="sample")

End(Not run)

special case: dim equals to one
eSetDimName(sub.eset[,1], input="foo", type="sample")

fcFilter Feature-Condition Filter

Description

Filter Biclusters by feature and concition counts. Biclusters with fewer features or conditions than
specified thresholds are removed.

Usage
fcFilter(object, ...)
Arguments
object A Biclust object
Two parameters are accepted: feat.min and cond.min. They indicate the min-
imum number of features (conditions) in biclusters, which are to be accepted. It
is allowed to only specify one threshold. If both are specified, only biclusters
fulfilling both criterion are accepted.
Value

A Biclust object.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

6 features-methods

Examples

data(sample.ExpressionSet, package="Biobase")
rqubic.example.discret <- quantileDiscretize(sample.ExpressionSet, rank=2L)

rqubic.example.sel.seeds <- generateSeeds(rqubic.example.discret, minColWidth=2L)

rqubic.example.blocks <- quBicluster(rqubic.example.sel.seeds,
rqubic.example.discret,
report.no=200L,
filter.proportion=0.1)

print(rqubic.example.blocks)
print(fcFilter(rqubic.example.blocks,feat.min=10))
print(fcFilter(rqubic.example.blocks,cond.min=2))
print(fcFilter(rqubic.example.blocks,feat.min=10, cond.min=2))

fcFilter-methods Feature-Condition Filter

Description

Feature-Condition Filter for biclusters

Methods

signature(object = "Biclust”) Use help("fcFilter") see help and examples

features-methods Extract features and conditions

Description

Generic function features and conditions, as well as auxillary count functions, are implemented
for Biclust objects.

They can be used in one of the following forms:

1. Used on a Biclust, and without specifying index, features or conditions returns the
unique and ordered features or conditions involved in at least one bicluster, and featureCount
or conditionCount returns the length of repsective vectors. To get the feature/condition num-
bers in each bicluster of the set, use BCfeatureCount/BCconditionCount.

2. Used on a Biclust and provided index (indices), the features/conditions or their counts are

returned for specified biclusters.

In addition, featureNames and sampleNames are of the same implementation as features and
conditions.

generateSeeds-methods 7

Methods

signature(object = "QUBICBicluster”) Information about all the biclusters.

signature(object = "Biclust”, index = "missing"”) Information about all the biclusters in the
set.

signature(object = "Biclust”, index = "ANY") Information about selected biclusters in the set,
the index can be integers or logical variables for subsetting.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

References

Guojun Li, Qin Ma, Haibao Tang, Andrew H. Paternson and Ying Xu (2009) QUBIC: a qualitative
biclustering algorithm for analyses of gene expression data. Nucleic Acids Research, 37:e101

See Also

See other methods implemented for the Biclust class in the biclust package. And the methods
specific for QUBICBiclustersSet.

Examples

library(Biobase)
library(biclust)
example.file <- system.file("extdata”, "sampleExpressionSet.blocks”, package="rqubic")

example.block <- parseQubicBlocks(example.file)

head(features(example.block))
featureCount(example.block)
head(conditions(example.block))
conditionCount(example.block)

BCfeatureCount(example.block)
BCfeatures(example.block)[1:2]
BCconditionCount(example.block)
BCconditions(example.block)[1:2]

head(featureNames(example.block))
head(sampleNames (example.block))

generateSeeds-methods Generate seeds for biclustering

Description

generateSeeds takes either matrix or an ExpressionSet object to generate seeds. Seeds are de-
fined as pairs of genes (edges) which share coincident expression levels in samples. The higher the
coincidence, the higher the score of the seeds will be. The seeds are generated by subsequent com-
paring each pair of genes. When all seeds have been produced, they are sorted by the coincidence
scores and returned as an object. See the details section for notes on implementation.

8 generateSeeds-methods

Methods

In the rqubic package, generateSeeds currently supports two data types: ExpressionSet (an
inherited type of eSet, or numeric matrix.

Both methods requires in addition a parameter, minColWidth, specifying the minimum number of
conditions shared by the two genes of each seed. Its default value is 2. When this default value
is used, the minimum coincidence score is defined as max (2, ncol /20), where ncol represents the
number of conditions. When a non-default value is provided, the value is used to select seeds.

signature(object = "eSet") An object representing expression data. Note that the exprs must
be a matrix of integers, otherwise the method warns and coerces the storage mode of matrix
into integer.

signature(object = "matrix”) A matrix of integers. In case filled by non-integers, the method
warns and coerces the storage mode into integer

Details

The function compares all pairs of genes, namely all edges of a complete graph composed by
genes. The weight of each edge is defined as the number of samples, in which two genes have the
same expression level. This weight, also known as the coincidence score, reflects the co-regulation
relationship between two genes.

The seed is chosen by picking edges with higher scores than the minimum score, provided by the
minColWidth parameter (default: 2).

To implement such a selection algorithm, a Fibonacci heap is constructed in the C codes. Its size is
predefined as a constant, which should be reduced in case the gene number is too large to run the
algorithm. A new seed, which was selected by having a higher coincidence score than the minimum,
is inserted to the heap. And dependent on whether the heap is full or not, it is either inserted by
squeezing the minimum seed out, or put into the heap directly.

Once the heap is filled by examining all pairs of genes, it is dumped into an array of edge pointers,
with decreasingly ordered edge pointers by their scores. This array is captured as an external pointer,
attached as an attribute of an rqubicSeeds object.

An rqubicSeeds object holds an integer, which records the height of the heap. It has (besides the
class identifier) two attributes: one for the external pointer, and the other one for the threshold of
the coincidence score.

Note

In the rqubic implementation, the variable arr_c[i][j] holds the level symbols (—1,0, 1 in the
default case), whereas in the QUBIC implementation, this variable holds the index of level symbols,
and the level symbols are saved in the global variable symbols.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

data(sample.ExpressionSet, package="Biobase")
sample.disc <- quantileDiscretize(sample.ExpressionSet)
sample.seeds <- generateSeeds(sample.disc)

sample.seeds

with higher threshold of incidence score

parseQubicBlocks

sample.seeds.higher <- generateSeeds(sample.disc, minColWidth=5)
sample.seeds.higher

parseQubicBlocks Parse QUBIC Command Line Tool Output Files

Description

These functions parse output files of the QUBIC command line tool developed by Ma et al.

Usage

parseQubicRules(filename)
parseQubicChars(file, check.names=FALSE, ...)
parseQubicBlocks(filename)

Arguments
filename Input filename
file Input filename
check.names logical, should the column names be checked?
other parameters passed to the read. csv function
Details

Parse QUBIC Command Line Tool Output Files

Value

parseQubicRules and parseQubicChars both return a data frame.

parseQubicBlocks returns an instance of QUBICBiclusterSet class.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

References

http://csbl.bmb.uga.edu/~maqin/bicluster/

Examples

getRqubicFile <- function(filename) system.file("extdata”, filename, package="rqubic")

parse QUBIC rules
rule.file <- getRqubicFile("sampleExpressionSet.rules"”)
rqubic.sample.rule <- parseQubicRules(rule.file)

parse QUBIC chars
chars.file <- getRqubicFile("sampleExpressionSet.chars")
rqubic.sample.chars <- parseQubicChars(chars.file)

http://csbl.bmb.uga.edu/~maqin/bicluster/

10 quantileDiscretize

parse QUBIC blocks
block.file <- getRqubicFile("sampleExpressionSet.blocks")
rqubic.sample.data <- parseQubicBlocks(block.file)

quantileDiscretize Discretize expression matrix for qualitative biclustering

Description

Performs recursive quantilizations on gene expression data across samples, to quantileDiscretize
gene expression matrix. The quantile parameter q determines the estimated proportion of differen-
tially expressed genes (2¢ as for both up- and down-regulatons). The rank parameter r determines
how many discrete levels should differentially expressed genes (or outliers) have. See details below.

Usage
quantileDiscretize(x, ...)
Arguments
X It can be an object of the eSet class or inheriting it. The most commonly used

form is an 1inkS4class{ExpressionSet} class. Alternatively, it can be a nu-
meric matrix.

Currently, the ... accepts two parameter: q and rank, explained below.

» gEstimated proportion of conditions where gene is up- or down-regulated, value between
(0,0.5), default value is set to 0.06. By specifying q one estimates that in 2q of all condi-
tions, the expression value of a gene is considered as outlier.

 rankRanks (levels) of outliers, a positive integer, default is 1L. By default, all conditions get
one label for each gene in —1,0, 1, representing down expression, not changing and high
expression respectively. In case rank > 1, the outliers are further divided into rank levels by
applying recursive quantilization with equal intervals.

Details
Parameter g corresponds to the command line option -qg in the QUBIC command line tool, and the
rank option corresponds to -r.

For each gene, the algorithm applies quantile discretization first to divide conditions into negative
(lower), un-changed and positive (higher) expressions. Negative and positive expressed conditions
are considered as outliers. For outliers in each direction, the algorithm tries to further quantileDis-
cretize the expression values in case rank > 1.

This second discretization step is performed by dividing the sorted outliers into rank tandom groups
with equal conditions. A label is assigned to each of these tandom groups, in the following order:

—1,-2,...,—rank

for outliers with negative expression, from the most negative group to the least negative group (not
the other way around!).

Similarly, for positive outliers, labels in the order of

rank,rank —1,...,1

quantileDiscretize 11

are assigned to tandom groups from the least positive group to the most positive group.

That is, signs of labels indicate the direction of gene expression change, and the absolute value
represents the quantileDiscretized rank in the outliers.

Value

An object of the same class as the input parameter, with the exprs slot replaced by the quantileDis-
cretized matrix, which is a matrix of integer.

Note

Note that the resulting discrete matrix of this implementation can be slighly different from the one
used by the QUBIC command line tool.

The main reason for this is the internal data type: while QUBIC uses float to represent expression
matrix, we use double to represent the matrix.

It has the advantages of interfacing to R, having higher precision and avoiding errors caused by
floating presentation. It is implemented with potential larger costs of memory, however for test data
sets (for example the ALL dataset with more than 120 samples and 12000 genes) the peak memory
use (<100M) as well as the execution time (CPU time 0.028s) are well under control.

The differentially is especially often observed when there are many tied values. These cases how-
ever are very rare cases and we assume they will not affect the results to a large extent.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

References

Li et al. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Nucleic Acids Research 37:¢101

See Also

parseQubicChars parses the quantileDiscretized matrix by the QUBIC command line tool into a
data frame.

Examples

library(Biobase)

data(sample.ExpressionSet, package="Biobase")
sample.disc <- quantileDiscretize(sample.ExpressionSet)
exprs(sample.disc)[1:6, 1:6]

Equivalent to pass a numeric matrix

sample.mat.disc <- quantileDiscretize(exprs(sample.ExpressionSet))
sample.mat.disc[1:6, 1:6]

Not run: identical(exprs(sample.disc),sample.mat.disc)

with multiple ranks
sample.rank3 <- quantileDiscretize(sample.ExpressionSet, rank=3)
exprs(sample.rank3)[1:6, 1:6]

12 QUBICBiclusterSet-class

QUBICBiclusterSet-class
Class "QUBICBiclusterSet"

Description

Object representing a set of biclusters identified by the QUBIC algorithm. The class structure
inherits the Biclust class in the biclust package.

Objects from the Class

Created by functions parsing the output files of QUBIC command line tool, or functions calling
QUBIC algorithm implementations in R.

Not intended to be created manually by end-users. However, interested users are invited to review
the source code or use the showClass method to view the construction of the class.

Slots
See the class structure of Biclust. The slots Parameter and Info have been filled with lists
releveant to the QUBIC algorithm, and all items should be accessed by S4-methods to make
sure the consistency.

Methods

Svalue signature(object = "QUBICBiclusterSet”, index = "missing”): Return S values of
QUBIC biclusters as a vector

Svalue signature(object = "QUBICBiclusterSet”, index = "numeric”): S values of speci-
fied bicluster(s) are returned. Index is one or a vector of integers. Non-integers will be
coereced.

[signature(x = "QUBICBiclusterSet”, i = "ANY", j = "missing", drop = "missing"): Return-

ing a subset of the current QUBICBiclusterSet.

parameter signature(object = "Biclust”, index = "character"”): return an input parameter
specified by the parameter name

parameter signature(object = "Biclust"”, index = "missing"): return a list of input param-
eters used by the biclustering algorithm, for example QUBIC

info signature(object = "Biclust”, index = "ANY"): return information of the biclusters. For

end-users, specific information accessors should be preferred, for example features, conditions

and Svalue

info signature(object = "Biclust”, index = "missing"): return all information of the biclus-
ters in a list. For end-users, specific information accessors should be preferred, for example
features, conditions and Svalue

show signature(object = "QUBICBiclusterSet"): showing method

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

quBicluster 13

References
Guojun Li, Qin Ma, Haibao Tang, Andrew H. Paternson and Ying Xu (2009) QUBIC: a qualitative
biclustering algorithm for analyses of gene expression data. Nucleic Acids Research, 37:e101

See Also

Biclust is the basic block accomodating biclusters identified by the QUBIC algorithm.

Examples

showClass("QUBICBiclusterSet")

quBicluster Qualitative Biclustering

Description

The function takes seeds and quantileDiscretized ExpressionSet as input, biclusters the data and
returns an object holding biclusters. Users may control the report number of clusters, tolerance of
incoherent genes (or conditions), as well as the filtering of redundant clusters.

Usage

quBicluster(seeds, eset, report.no = 100L, tolerance = 0.95, filter.proportion = 1)

Arguments

seeds An object of the S3-class rqubicSeeds, representing seeds generated from the
quantileDiscretized expression data

eset Discretized expression data

report.no Number of biclusters that should be reported. Detected biclusters are ranked by
the S-score, which is defined by the product of gene counts and sample counts.
They are ordered and the top ones are reported.

tolerance Percentage of tolerated incoherent samples, 0.95 by default

filter.proportion
Proportion of a cluster, over which the cluster is considered as redudant. Each
bicluster is compared to all better ranking biclusters, and the overlapping pro-
portion is measured by the proportion of the product of overlapping samples and
overlapping genes, to the product samples and genes. If the proportion is larger
than the given threshold, the block will be considered redundant and therefore
not reported. Setting the threshold to 1 (default) does not perform any filtering.

Details

The function calls a C routine to perform the biclustering. Currently the routine returns blocks with
fewer samples specified by the minimum column number, due to the set of tolerance values. This
might be changed in the fewer versions.

Value

An object of the QUBICBiclusterSet-class, holding all biclusters.

14 readBiclusterResults

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

References

Li et al. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Nucleic Acids Research 37:¢101

See Also

quantileDiscretize and generateSeeds

Examples

data(sample.ExpressionSet, package="Biobase")
rqubic.example.discret <- quantileDiscretize(sample.ExpressionSet, rank=2L)

rqubic.example.sel.seeds <- generateSeeds(rqubic.example.discret, minColWidth=2L)

rqubic.example.blocks <- quBicluster(rqubic.example.sel.seeds,
rqubic.example.discret,
report.no=200L,
filter.proportion=0.1)

print features in each bicluster
BCfeatures(rqubic.example.blocks)

readBiclusterResults Import bicluster results from plain text files

Description

This function complements the functionality of writeBiclusterResults in the biclust package.
It constructs a Biclust object from a plain text file.

Usage

readBiclusterResults(filename, featureNames, sampleNames, delimiter = ";", ...)
Arguments

filename Character, name of the file storing biclustering information

featureNames Optional character vector, feature names of the underlying expression dataset.
See details.

sampleNames Optional character vector, sample names of the underlying expression dataset.
See details.

delimiter Character used to separate features, samples and counts of them.

Other parameters passed to the readLines function.

writeQubiclnputFile 15

Details

Currently output files written by the writeBiclusterResults function does not contain original
feature names or sample names in the expression dataset from which biclusters were mined. The
featureNames and sampleNames allow to use this information to construct a Biclust object that
has the same dimension as the original expression dataset.

Value

A Biclust object

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

In case several biclustering algorithms were applied to the same expression dataset, they can be
combined with combineBiclusts once the results were read from plain texts.

Examples

temp <- tempfile()

library(biclust)

data(BicatYeast, package="biclust")

res <- biclust(BicatYeast, method=BCBimax(), number=5)

writeBiclusterResults(temp, res,"CC with delta 1.5",dimnames(BicatYeast)[[1]1],dimnames(BicatYeast)[[2]], del

res.back <- readBiclusterResults(temp, delimiter=";")
res.full.back <- readBiclusterResults(temp, featureNames=rownames(BicatYeast), sampleNames=colnames(BicatYea:

writeQubicInputFile Write an ExpressionSet object into the file format required by the
QUBIC command line tool

Description

The QUBIC commmand line tool (developed by Ma et al.) requires a tab-limited data matrix as
input file, with some special requirements (see details below). This function takes an object of
ExpressionSet and outputs the file.

Usage
writeQubicInputFile(x, file = "", featureNames, sampleNames)
Arguments
X An object inheriting the eSet class, most commonly an ExpressionSet object,

representing expression data of features across samples.

file Filename to output, or a connection to write to (e.g. stdout()).

16 writeQubicInputFile

featureNames Specifies the feature names. It can be left blank, in which case the result of
calling featureNames on x will be used. Alternatively, it can be one character
string, specifying which column in the fData should be used. The third possi-
bility, it can be a vector of characters, with the same length as features in the
object. In the last option, all other types will be converted to characters.

sampleNames Specifies the sample names. It can be left blank, in which case the result of call-
ing sampleNames on x will be used. Alternatively, it can be one character string,
specifying which column in the pData should be used. The third possibility, it
can be a vector of characters, with the same length as features in the object. In
the last option, all other types will be converted to characters.

Details

The description of the data format can be checked by running the QUBIC tool in the command line
mode, with the option -4 (for help). A special requirement, which makes it different from the results

TP

of the write. table function in R, is that before the sample names (column names), an “0”” must be
added.

Value

No visible value will be returned, the function is called for its side effect.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

eSetDimName, write. table

Examples

tmpfile <- tempfile()
data(sample.ExpressionSet, package="Biobase")
sub.eset <- sample.ExpressionSet[1:3, 1:3]

write to standard output
writeQubicInputFile(sub.eset)

write to a temporary file
writeQubicInputFile(sub.eset, tmpfile)
head(readLines(tmpfile))

specify names with one column name in fData/pData
writeQubicInputFile(sub.eset, file="", sampleNames="sex")

alternatively specifiy names manually
writeQubicInputFile(sub.eset, file="",h sampleNames=paste("Sample”, 1:3))

Index

x classes combineBiclusts,list,missing-method
QUBICBiclusterSet-class, 12 (combineBiclusts-methods), 3

* methods combineBiclusts,QUBICBiclusterSet,QUBICBiclusterSet-me1
combineBiclusts-methods, 3 (combineBiclusts-methods), 3
fcFilter-methods, 6 combineBiclusts-methods, 3
features-methods, 6 conditionCount (features-methods), 6

* package conditionCount,Biclust-method
rqubic-package, 2 (features-methods), 6

[,Biclust,ANY,missing,missing-method conditionCount-methods

(QUBICBiclusterSet-class), 12 (features-methods), 6
conditions, 6, 12
BCconditionCount, 6 conditions (features-methods), 6

BCconditionCount (features-methods), 6 conditions,Biclust-method
BCconditionCount,Biclust,ANY-method o (features-methods), 6
(features-methods), 6 conditions-methods (features-methods), 6
BCconditionCount,Biclust,missing-method
(features-methods), 6
BCconditions (features-methods), 6
BCconditions,Biclust,ANY-method
(features-methods), 6
BCconditions,Biclust,missing-method
(features-methods), 6
BCcount (QUBICBiclusterSet-class), 12
BCcount,Biclust-method
(QUBICBiclusterSet-class), 12
BCfeatureCount, 6
BCfeatureCount (features-methods), 6
BCfeatureCount,Biclust, ANY-method
(features-methods), 6
BCfeatureCount,Biclust,missing-method featureNames,Biclust-method
(features-methods), 6 (features-methods), 6
BCfeatures (features-methods), 6 features, 6, 12
BCfeatures,Biclust,ANY-method features (features-methods), 6
(fea?ures—me?ths),6 features,Biclust-method
BCFeatur?;;:;ji;:ﬁﬁg?;ij;f;?ethOd (features-methods), 6
Biclust, 6, 7, 12-15

eSet, 4,8, 10, 15
eSetDimName, 4, 16
ExpressionSet, 4,7, 8, 15

fcFilter, 5

fcFilter,Biclust-method (fcFilter), 5

fcFilter-methods, 6

fData, 4, 16

featureCount (features-methods), 6

featureCount,Biclust-method
(features-methods), 6

featureCount-methods
(features-methods), 6

featureNames, 4, 6, 16

features-methods, 6

generateSeeds, /4

combineBiclusts, 15 generateSeeds (generateSeeds-methods), 7

combineBiclusts generateSeeds, eSet-method
(combineBiclusts-methods), 3 (generateSeeds-methods), 7

combineBiclusts,Biclust,Biclust-method generateSeeds,matrix-method
(combineBiclusts-methods), 3 (generateSeeds-methods), 7

17

18

generateSeeds-methods, 7

info (QUBICBiclusterSet-class), 12

info,Biclust,ANY-method
(QUBICBiclusterSet-class), 12

info,Biclust,missing-method
(QUBICBiclusterSet-class), 12

NumberxCol (QUBICBiclusterSet-class), 12
NumberxCol,Biclust-method
(QUBICBiclusterSet-class), 12

parameter (QUBICBiclusterSet-class), 12

parameter,Biclust,character-method
(QUBICBiclusterSet-class), 12

parameter,Biclust,missing-method
(QUBICBiclusterSet-class), 12

parseQubicBlocks, 9

parseQubicChars, 11

parseQubicChars (parseQubicBlocks), 9

parseQubicRules (parseQubicBlocks), 9

pData, 4, 16

quantileDiscretize, 10, 14
quantileDiscretize,eSet-method

(quantileDiscretize), 10
quantileDiscretize,matrix-method

(quantileDiscretize), 10
quantileDiscretize-methods

(quantileDiscretize), 10
QUBICBiclusterSet, 7, 9
QUBICBiclusterSet-class, 12
quBicluster, 13

read.csv, 9

readBiclusterResults, 14

readLines, /4

RowxNumber (QUBICBiclusterSet-class), 12

RowxNumber,Biclust-method
(QUBICBiclusterSet-class), 12

rqubic (rqubic-package), 2

rqubic-package, 2

sampleNames, 4, 6, 16
sampleNames,Biclust-method
(features-methods), 6
show,QUBICBiclusterSet-method
(QUBICBiclusterSet-class), 12
showClass, 12
Svalue (QUBICBiclusterSet-class), 12
Svalue,eSet,missing-method
(QUBICBiclusterSet-class), 12
Svalue,matrix,missing-method
(QUBICBiclusterSet-class), 12

INDEX

Svalue,QUBICBiclusterSet, ANY-method
(QUBICBiclusterSet-class), 12

Svalue,QUBICBiclusterSet,missing-method
(QUBICBiclusterSet-class), 12

write.table, 16
writeBiclusterResults, /4
writeQubicInputFile, 4, 15

	rqubic-package
	combineBiclusts-methods
	eSetDimName
	fcFilter
	fcFilter-methods
	features-methods
	generateSeeds-methods
	parseQubicBlocks
	quantileDiscretize
	QUBICBiclusterSet-class
	quBicluster
	readBiclusterResults
	writeQubicInputFile
	Index

