Package ‘pipeComp’

January 30, 2026
Type Package

Title pipeComp pipeline benchmarking framework
Version 1.20.0
Depends R (>=4.1)

Description A simple framework to facilitate the comparison of pipelines involving vari-
ous steps and parameters.
The " pipelineDefinition" class represents pipelines as, minimally, a set of functions consecu-
tively executed on
the output of the previous one, and optionally accompanied by step-
wise evaluation and aggregation functions.
Given such an object, a set of alternative parameters/methods, and benchmark datasets, the *run-
Pipeline” function
then proceeds through all combinations arguments, avoiding recomput-
ing the same step twice and compiling evaluations
on the fly to avoid storing potentially large intermediate data.

Imports BiocParallel, S4Vectors, ComplexHeatmap, SingleCellExperiment,
SummarizedExperiment, Seurat, matrixStats, Matrix, cluster,
aricode, methods, utils, dplyr, grid, scales, scran,
viridisLite, clue, randomcoloR, ggplot2, cowplot,
intrinsicDimension, scater, knitr, reshape2, stats, Rtsne,
uwot, circlize, RColorBrewer

Suggests BiocStyle, rmarkdown
License GPL

Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr

URL https://doi.org/10.1186/s13059-020-02136-7

BugReports https://github.com/plger/pipeComp

biocViews GeneExpression, Transcriptomics, Clustering,
DataRepresentation

git_url https://git.bioconductor.org/packages/pipeComp
git_branch RELEASE_3_22

git_last_commit e37c3d3

git_last_commit_date 2025-10-29

https://doi.org/10.1186/s13059-020-02136-7
https://github.com/plger/pipeComp

Contents

Repository Bioconductor 3.22
Date/Publication 2026-01-29
Author Pierre-Luc Germain [cre, aut] (ORCID:

<https://orcid.org/0000-0003-3418-4218>),
Anthony Sonrel [aut] (ORCID: <https://orcid.org/0000-0002-2414-715X>),
Mark D. Robinson [aut, fnd] (ORCID:
<https://orcid.org/0000-0002-3048-5518>)

Maintainer Pierre-Luc Germain <pierre-luc.germain@hest.ethz.ch>

Contents
pipeComp-package e
addPipelineStep 3
aggregatePipelineResults L o 4
buildCombMatrix e 4
checkPipelinePackages 5
clustMetricsCorr L e e 5
colCenterScale e 6
Crlgenes e e 6
dea_evalPlot_curve e 7
dea_pipeline e 8
defaultStepAggregation 8
evalHeatmap e 9
evaluateClustering L 11
evaluateDEA e 11
evaluateDimRed L 12
evaluateNOrm 13
exampleDEAresults 14
exampleResults 14
farthestPoint L 14
getDimensionality 15
getQualitativePalette 15
match_evaluate_multiple 16
mergePipelineResults L 16
mockPipeline 17
parsePipNames e e e 18
PipelineDefinition oL 18
PipelineDefinition-methods oL o 19
plotElapsed 21
readPipelineResults L 22
runPipeline e 22
scrna_describeDatasets e 24
scrna_evalPlot_filtering 24
scrna_evalPlot_overall 25
scrna_evalPlot_silh oo L 26
scrna_pipeline 28
stableG e 29

Index 30

https://orcid.org/0000-0003-3418-4218
https://orcid.org/0000-0002-2414-715X
https://orcid.org/0000-0002-3048-5518

pipeComp-package 3

pipeComp-package pipeComp - a framework for pipeline benchmarking

Description

pipeComp is a simple framework to facilitate the comparison of pipelines involving various steps
and parameters. It was initially developed to benchmark single-cell RNA sequencing pipelines, and
contains pre-defined PipelineDefinitions and functions to that effect, but could be applied to
any context. See ‘vignette("pipeComp")‘ for an introduction.

Author(s)

Pierre-Luc Germain <pierre-luc.germain@hest.ethz.ch>
Anthony Sonrel <anthony. sonrel@uzh.ch>

Mark D. Robinson <mark.robinson@imls.uzh.ch>

addPipelineStep addPipelineStep

Description

Add a step to an existing PipelineDefinition

Usage

addPipelineStep(object, name, after = NULL, slots = list())

Arguments
object A PipelineDefinition
name The name of the step to add
after The name of the step after which to add the new step. If NULL, will add the
step at the beginning of the pipeline.
slots A optional named list with slots to fill for that step (i.e. ‘functions®, ‘evaluation®,
‘aggregation‘, ‘descriptions‘ - will be parsed)
Value

A PipelineDefinition

See Also

PipelineDefinition, PipelineDefinition-methods

Examples

pd <- mockPipeline()

pd

pd <- addPipelineStep(pd, name="newstep”, after="stepl”,
slots=1list(description="Step that does nothing..."))

pd

4 buildCombMatrix

aggregatePipelineResults
aggregatePipelineResults

Description
Aggregates the evaluation and running times of ‘runPipeline‘ results. Results should be indicated
either as a ‘path® prefix or as a vector of paths to ‘evaluation\.rds‘ files (‘resfiles®).

Usage

aggregatePipelineResults(res, pipDef = NULL)

Arguments
res A (named) list of results (per dataset), as produced by readPipelineResults
(or ‘mergePipelineResults®).
pipDef An optional PipelineDefinition containing the aggregation methods. If omit-
ted, that from the results will be used.
Value

A list with a slot for each step for which there is an aggregation method, or (if no aggregation
method available) a list of the ‘stepIntermediateReturnObjects‘ of ‘runPipeline*

Examples

we produce mock pipeline results:

pip <- mockPipeline()

datasets <- list(ds1=1:3, ds2=c(5,10,15))

tmpdirl <- paste@(tempdir(),'/")

res <- runPipeline(datasets, pipelineDef=pip, output.prefix=tmpdirl,
alternatives=list())

we read the evaluation files:

res <- readPipelineResults(tmpdir1)

we aggregate the results (equivalent to the output of “runPipeline”):

res <- aggregatePipelineResults(res)

buildCombMatrix buildCombMatrix

Description

Builds a matrix of parameter combinations from a list of alternative values.

Usage

buildCombMatrix(alt, returnIndexMatrix = FALSE)

checkPipelinePackages 5

Arguments
alt A named list of alternative parameter values
returnIndexMatrix
Logical; whether to return a matrix of indices, rather than a data.frame of factors.
Value

a matrix or data.frame

Examples

buildCombMatrix(list(param1=LETTERS[1:3], param2=1:2))

checkPipelinePackages checkPipelinePackages

Description

Checks whether the packages required by a pipeline and its alternative methods are available.

Usage
checkPipelinePackages(alternatives, pipDef = NULL)

Arguments

alternatives A named list of alternative parameter values
pipDef An object of class ‘PipelineDefinition‘.

Value

Logical.

Examples

checkPipelinePackages(list(argumenti="mean"), scrna_pipeline())

clustMetricsCorr Correlations across clustering evaluation metrics

Description

A list of two matrices containing, respectively, the Pearson and Spearman pairwise correlations
between various clustering evalution metrics, computed across a wide range of scRNAseq clustering
analyses (see reference).

Value

a list.

References

See https://doi.org/10.1101/2020.02.02.930578

6 ctrigenes

colCenterScale colCenterScale

Description

Matrix scaling by centering columns separately and then performing variance scaling on the whole
matrix, in a NA-robust fashion. With the default arguments, the output will be the number of
(matrix-)median absolute deviations from the column-median.

Usage

colCenterScale(
X,
centerFn = median,
scaleFn = function(x, na.rm) median(abs(x), na.rm = na.rm)

)
Arguments
X A numeric matrix.
centerFn The function for calculating centers. Should accept the ‘na.rm‘ argument. E.g.
‘centerFn=mean° or ‘centerFn=median‘.
scalefn The function for calculating the (matrix-wise) scaling factor. Should accept the
‘na.rm‘ argument. Default ‘median(abs(x))‘.
Value

A scaled matrix of the same dimensions as ‘x°.

Examples

random data with column mean differences
d <- cbind(A=rnorm(5, 10, 2), B=rnorm(5, 20, 2), C=rnorm(5,30, 2))
colCenterScale(d)

ctrlgenes Lists of control genes

Description
Lists of mouse and human control genes (mitochondrial, ribosomal, protein-coding), as ensembl
gene ids or official symbols, for computing cell QC.

Value

a list.

dea_evalPlot_curve 7

dea_evalPlot_curve dea_evalPlot_curve

Description

dea_evalPlot_curve

Usage
dea_evalPlot_curve(
res,
scales = "free",
agg.by = NULL,

agg.fn = mean,

xlim = c(NA, NA),
colourBy = "method”,
shapeBy = NULL,
pointsize = 4

)
Arguments
res Aggregated results of the DEA pipeline
scales Passed to ‘facet_grid*
agg.by Aggregate results by these columns (default no aggregation)
agg.fn Function for aggregation (default mean)
x1lim Optional vector of x limits
colourBy Name of column by which to colour
shapeBy Name of column determining the shape of the points. If omitted, the shape will
indicate whether the nominal FDR is below or equal the real FDR.
pointsize Size of the points
Value
A ggplot.
Examples

data("exampleDEAresults”, package="pipeComp")
dea_evalPlot_curve(exampleDEAresults, agg.by=c("sva.method"))

8 defaultStepAggregation

dea_pipeline dea_pipeline

Description

The ‘PipelineDefinition‘ for bulk RNAseq differential expression analysis (DEA).

Usage

dea_pipeline()

Value

A ‘PipelineDefinition‘ object to be used with ‘runPipeline‘.

Examples

pip <- dea_pipeline()
pip

defaultStepAggregation
defaultStepAggregation

Description

defaultStepAggregation

Usage

defaultStepAggregation(x)

Arguments
X A list of results per dataset, each containing a list (1 element per combination of
parameters) of evaluation metrics (coercible to vectors or matrix).
Value

A data.frame.

evalHeatmap

evalHeatmap

evalHeatmap

Description

General heatmap representation of aggregated evaluation results. By default, the actual metric
values are printed in the cells, and while the coloring is determined by colCenterScale (number
of matrix-median absolute deviations from the column means). Unless the total number of analyses
is small, it is strongly recommended to use the ‘agg.by‘ argument to limit the size and improve the
readability of the heatmap.

Usage
evalHeatmap(
res,
step = NULL,
what,
what2 = NULL,
agg.by = NULL,

agg.fn = mean,

filterExpr = NULL,

scale = "colCenterScale”,
value_format = "%.2f",
reorder_rows = FALSE,
show_heatmap_legend = FALSE,
show_column_names = FALSE,
col = NULL,

font_factor = 0.9,

row_split = NULL,

shortNames = TRUE,

value_cols = c("black”, "white"),
title = NULL,

name = NULL,

anno_legend = TRUE,

Aggregated pipeline results (i.e. the output of ‘runPipeline or ‘aggregateRe-
Name of the step for which to plot the evaluation results. If unspecified, will use
If the step has more than one benchmark data.frame, which one to use. The
function will attempt to guess that automatically based on ‘what‘, and will notify

Aggregate results by these columns (default no aggregation)

Arguments
res
sults)
step
the latest step that has evaluation results.
what What metric to plot.
what?2
in case of ambiguity.
agg.by
agg.fn Function for aggregation (default mean)

10

filterExpr

scale

value_format

reorder_rows

evalHeatmap

An optional filtering expression based on the columns of the target dataframe,
(e.g. “filterExpr=param1=="valuel"").

Controls the scaling of the columns for the color mapping. Can either be a
logical (TRUE will use NA-safe column z-scores, FALSE will not scale) or a
function performing the scaling. The default uses the ‘colCenterScale* function
(per-column centering, but per-matrix variance scaling).

Format for displaying cells’ values (use ‘value_format="""* to disable)

Logical; whether to sort rows (default FALSE). The row names themselves can
also be passed to specify an order, or a ‘ComplexHeatmap®.

show_heatmap_legend

Passed to ‘Heatmap* (default FALSE)

show_column_names

col

font_factor

row_split

shortNames

value_cols

title
name

anno_legend

Value

A Heatmap

Examples

Passed to ‘Heatmap* (default FALSE)

Colors for the heatmap, or a color-mapping function as produced by ‘color-
Ramp2‘. If passing a vector of colors and the data is scaled, there should be an
odd number of colors. By default, will apply linear mapping (if the data is not
scaled) or signed sqrt mapping (if scaled) on the ‘viridisLite::inferno* palette.

A scaling factor applied to fontsizes (default 1)

Optional column (included in ‘agg.by‘) by which to split the rows. Alternatively,
an expression using the columns (retained after aggregation) can be passed.

Logical; whether to use short row names (with only the parameter values instead
of the parameter name and value pairs), default TRUE.

A vector of length 2 indicating the colors of the values (above and below the
mean), if printed

Plot title
Heatmap name (e.g. used for the legend)
Logical; whether to plot the legend for the datasets

Passed to ‘Heatmap*

data("exampleResults”, package="pipeComp")

evalHeatmap(exampleResults, step="clustering”, what=c("ARI","MI","min_pr"),
agg.by=c("filt", "norm”), row_split = "norm”) +

evalHeatmap(exampleResults, step="clustering”, what="ARI",
agg.by=c("filt", "norm"), filterExpr=n_clus==true.nbClusts,
name="ARI at true k", title="ARI at

true K")

evaluateClustering 11

evaluateClustering evaluateClustering

Description

Evaluates a clustering using ’true’ labels. Entries with missing true labels (i.e. NA) are excluded
from calculations. If using ‘evaluteClustering‘ in a custom pipeline, you might want to use the
corresponding ‘pipeComp:::.aggregateClusterEvaluation‘ aggregation function.

Usage

evaluateClustering(x, tl = NULL)

Arguments
X The clustering labels
tl The true labels
Value

A numeric vector of metrics (see the ‘pipeComp_scRNA* vignette for details)

Examples

random data
dat <- data.frame(
cluster=rep(LETTERS[1:3], each=10),
x=c(rnorm(20, ©), rnorm(10, 1)),
y=c(rnorm(1@, 1), rnorm(20, 0))
)
clustering
dat$predicted <- kmeans(dist(dat[,-11),3)$cluster
evaluation
evaluateClustering(dat$predicted, dat$cluster)

evaluateDEA evaluateDEA

Description

Evaluates a differential expression analysis (DEA).

Usage

evaluateDEA(dea, truth = NULL, th = c(0.01, 0.05, 0.1))

12 evaluateDimRed

Arguments
dea Expects a data.frame with logFC and FDR, as produced by ‘edgeR::topTags‘,
‘limma::topTable‘ or ‘DESeq?2::results‘.
truth A data.frame containing the columns ‘expected.beta‘ (real logFC) and ‘isDE‘
(logical indicating whether there is a difference or not; accepts NA values)
th The significance thresholds for which to compute the metrics.
Value

A list with two slots: ‘logFC* (vector of metrics on logFC) and ‘significance table of significance-
related statistics.

Examples

fake DEA results

dea <- data.frame(row.names=paste@("gene"”,1:10), logFC=rnorm(10))

dea$PValue <- dea$FDR <- c(2:8/100, 0.2, 0.5, 1)

truth <- data.frame(row.names=paste@(”gene"”,1:10), expected.beta=rnorm(10),
isDE=rep(c(TRUE,FALSE, TRUE,FALSE), c(3,1,2,4)))

evaluateDEA(dea, truth)

evaluateDimRed evaluateDimRed

Description

Gathers evaluation statistics on a reduced space using known cell labels. If using ‘evaluteDimRed’
in a custom pipeline, you will probably want to use ‘pipeComp:::.aggregateDR* as the correspond-
ing aggregation function.

Usage

evaluateDimRed(x, clusters = NULL, n = c(10, 20, 50), covars)

Arguments

X The matrix of the reduced space, with cells as rows and components as columns

clusters The vector indicating each cell’s cluster.

n A numeric vector indiciating the number of top dimensions at which to gather
statistics (default ‘c(10,20,50)‘). Will use all available dimensions if a higher
number is given.

covars A character vectors containing any additional covariates (column names of ‘col-
Data®) to track during evalutation. If missing, will attempt to use default covari-
ates. To disable, set ‘covars=c()°.

Value

A list with the following components: * silhouettes: a matrix of the silhouette for each cell-cluster
pair at each value of ‘n‘ * clust.avg.silwidth: a matrix of the cluster average width at each value of
‘n‘ * R2: the proportion of variance in each component (up to ‘max(n)‘) that is explained by the
clusters (i.e. R-squared of a linear model).

evaluateNorm 13

Examples

random data

library(scater)

sce <- runPCA(logNormCounts(mockSCE(ngenes = 500)))

sce <- addPerCellQC(sce)

random population labels

sce$cluster <- sample(LETTERS[1:3], ncol(sce), replace=TRUE)
res <- evaluateDimRed(sce, sce$cluster, covars=c("sum”,"detected"))
average silhouette widths:

res$clust.avg.silwidth

adjusted R2 of covariates:

res$covar.adjR2

evaluateNorm evaluateNorm

Description

evaluateNorm

Usage

evaluateNorm(x, clusters = NULL, covars)

Arguments
X An object of class ’Seurat’ or ’SingleCellExperiment’ with normalized data
clusters A vector of true cluster identities. If missing, will attempt to fetch it from the
‘phenoid‘ colData.
covars Covariates to include, either as data.frame or as colData columns of ‘x°
Value

a data.frame.

Examples

random data

library(scater)

sce <- logNormCounts(mockSCE(ngenes = 500))

sce <- addPerCellQC(sce)

random population labels

sce$cluster <- sample(LETTERS[1:3], ncol(sce), replace=TRUE)
evaluateNorm(sce, sce$cluster, covars="detected")

14 farthestPoint

exampleDEAresults Example results from the DEA pipeline

Description

Example benchmarking results from a DEA pipeline (see vignette ‘pipeComp_dea‘).

Value

a list.

exampleResults Example pipeline results

Description

Example benchmarking results from a scRNAseq pipeline (see vignette ‘pipeComp_scRNA).

Value

a list.

farthestPoint farthestPoint

Description
Identifies the point farthest from a line passing through by the first and last points. Used for autom-
atization of the elbow method.

Usage
farthestPoint(y, x = NULL)

Arguments
y Monotonically inscreasing or decreasing values
Optional x coordinates corresponding to ‘y* (defaults to seq)
Value

The value of ‘x* farthest from the diagonal.

Examples

y <= 2(10:1)

plot(y)

x <- farthestPoint(y)
points(x,y[x],pch=16)

getDimensionality 15

getDimensionality getDimensionality

Description

Returns the estimated intrinsic dimensionality of a dataset.

Usage

getDimensionality(dat, method, maxDims = NULL)

Arguments
dat A Seurat or SCE object with a pca embedding.
method The dimensionality method to use.
maxDims Deprecated and ignored.
Value
An integer.

getQualitativePalette getQualitativePalette

Description
Returns a qualitative color palette of the given size. If less than 23 colors are required, the colors
are based on Paul Tol’s palettes. If more, the ‘randomcoloR‘ package is used.

Usage

getQualitativePalette(nbcolors)

Arguments

nbcolors A positive integer indicating the number of colors

Value

A vector of colors

Examples

getQualitativePalette(5)

16 mergePipelineResults

match_evaluate_multiple
match_evaluate_multiple

Description

Function to match cluster labels with ’true’ clusters using the Hungarian algorithm, and return
precision, recall, and F1 score. Written by Lukas Weber in August 2016 as part of his cytometry
clustering comparison, with just slight modifications on initial handling of input arguments.

Usage

match_evaluate_multiple(clus_algorithm, clus_truth = NULL)

Arguments

clus_algorithm cluster labels from algorithm

clus_truth true cluster labels. If NULL, will attempt to read them from the names of
‘clus_algorithm* (expecting the format ‘clusterName.cellName*®)

Value

A list.

Examples

random data
dat <- data.frame(
cluster=rep(LETTERS[1:3], each=10),
x=c(rnorm(20, @), rnorm(10, 1)),
y=c(rnorm(10, 1), rnorm(20, 0))
)
clustering
dat$predicted <- kmeans(dist(dat[,-1]),3)$cluster
evaluation
match_evaluate_multiple(dat$predicted, dat$cluster)

mergePipelineResults mergePipelineResults

Description

Merges the (non-aggregated) results of any number of runs of ‘runPipeline‘ using the same PipelineDefinition
(but on different datasets and/or using different parameters). First read the different sets of results
using readPipelineResults, and pass them to this function.

Usage
mergePipelineResults(..., rr = NULL, verbose = TRUE)

https://github.com/lmweber/cytometry-clustering-comparison
https://github.com/lmweber/cytometry-clustering-comparison

mockPipeline 17

Arguments
Any number of lists of pipeline results, each as produced by readPipelineResults
rr Alternatively, the pipeline results can be passed as a list (in which case ‘...° is
ignored)
verbose Whether to print processing information
Value

A list of merged pipeline results.

Examples

we produce 2 mock pipeline results:

pip <- mockPipeline()

datasets <- list(ds1=1:3, ds2=c(5,10,15))

tmpdir1l <- paste@(tempdir(),'/")

res <- runPipeline(datasets, pipelineDef=pip, output.prefix=tmpdirl,
alternatives=list())

alternatives <- list(methl=c('log2','sqrt'), meth2='cumsum')

tmpdir2 <- paste@(tempdir(),'/")

res <- runPipeline(datasets, alternatives, pip, output.prefix=tmpdir2)

we read the evaluation files:

res1 <- readPipelineResults(tmpdirl)

res2 <- readPipelineResults(tmpdir2)

we merge them:

res <- mergePipelineResults(resl,res2)

and we aggregate:

res <- aggregatePipelineResults(res)

mockPipeline mockPipeline

Description

A mock ‘PipelineDefinition* for use in examples.

Usage

mockPipeline()

Value

a ‘PipelineDefinition*

Examples

mockPipeline()

18 PipelineDefinition

parsePipNames parsePipNames

Description

Parses the names of analyses performed through ‘runPipeline‘ to extract a data.frame of parameter
values (with decent classes).

Usage
parsePipNames(x, setRowNames = FALSE, addcolumns = NULL)

Arguments
X The names to parse, or a data.frame with the names to parse as row.names. All
names are expected to contain the same parameters.
setRowNames Logical; whether to set original names as row.names of the output data.frame
(default FALSE)
addcolumns An optional data.frame of ‘length(x)‘ rows to cbind to the output.
Value

A data.frame

Examples

my_names <- c("paraml=A;param2=5","param1=B;param2=0")
parsePipNames(my_names)

PipelineDefinition PipelineDefinition

Description

Creates on object of class ‘PipelineDefinition‘ containing step functions, as well as optionally step
evaluation and aggregation functions.

Usage

PipelineDefinition(
functions,
descriptions = NULL,
evaluation = NULL,
aggregation = NULL,
initiation = identity,
defaultArguments = list(),
misc = list(),
verbose = TRUE

PipelineDefinition-methods 19

Arguments

functions A list of functions for each step

descriptions A list of descriptions for each step

evaluation A list of optional evaluation functions for each step

aggregation A list of optional aggregation functions for each step

initiation A function ran when initiating a dataset

defaultArguments

A Isit of optional default arguments

misc A list of whatever.

verbose Whether to output additional warnings (default TRUE).
Value

An object of class ‘PipelineDefinition‘, with the slots functions, descriptions, evaluation, aggrega-
tion, defaultArguments, and misc.

See Also

PipelineDefinition-methods, addPipelineStep. For an example pipeline, see scrna_pipeline.

Examples

PipelineDefinition(
list(stepl=function(x, meth1){ get(meth1)(x) },
step2=function(x, meth2){ get(meth2)(x) })

PipelineDefinition-methods
Methods for PipelineDefinition class

Description

Methods for PipelineDefinition class
get names of PipelineDefinition steps

set names of PipelineDefinition steps

Usage
S4 method for signature 'PipelineDefinition'
show(object)
S4 method for signature 'PipelineDefinition’

names (x)

[

S4 replacement method for signature 'PipelineDefinition
names(x) <- value

S4 method for signature 'PipelineDefinition’

20 PipelineDefinition-methods

x$name

S4 method for signature 'PipelineDefinition’
length(x)

S4 method for signature 'PipelineDefinition,ANY,ANY,ANY'
x[1i]

S4 method for signature 'PipelineDefinition’
as.list(x)

arguments(object)

S4 method for signature 'PipelineDefinition’
arguments(object)

defaultArguments(object)
defaultArguments(object) <- value

S4 method for signature 'PipelineDefinition'
defaultArguments(object)

S4 replacement method for signature 'PipelineDefinition'’
defaultArguments(object) <- value

stepFn(object, step = NULL, type)

S4 method for signature 'PipelineDefinition'
stepFn(object, step = NULL, type)

stepFn(object, step, type) <- value

S4 replacement method for signature 'PipelineDefinition’
stepFn(object, step, type) <- value

Arguments
object An object of class PipelineDefinition
X An object of class PipelineDefinition
value Replacement values
name The step name
i The index(es) of the steps
step The name of the step for which to set or get the function
type The type of function to set/get, either ‘functions’, ‘evaluation‘, ‘aggregation‘,
‘descriptions, or ‘initiation‘ (will parse partial matches)
Value

Depends on the method.

plotElapsed

See Also

PipelineDefinition, addPipelineStep

Examples

pd <- mockPipeline()
length(pd)

names (pd)

pd$stepl

pd[2:1]

plotElapsed plotElapsed

Description

Plot total elapsed time per run, split per step.

Usage
plotElapsed(
res,
steps = names(res$elapsed$stepwise),
agg.by,
agg.fn = mean,
width = 0.9,

split.datasets = TRUE,
return.df = FALSE

)
Arguments
res Aggregated pipeline results
steps The step(s) to plot (default all)
agg.by The parameters by which to aggregate (set to FALSE to disable aggregation)
agg.fn Aggregation function
width Width of the bar; default 0.9, use 1 to remove the gaps
split.datasets Logical; whether to split the datasets into facets
return.df Logical; whether to return the data.frame instead of plot
Value

A ggplot, or a data.frame if ‘return.df=TRUE*

Examples

data("exampleResults”, package="pipeComp")
plotElapsed(exampleResults, agg.by = "norm”)

22 runPipeline

readPipelineResults readPipelineResults

Description

readPipelineResults

Usage

readPipelineResults(path = NULL, resfiles = NULL)

Arguments
path The path (e.g. folder or prefix) to the results. Either ‘path® or ‘resfiles‘ should
be given.
resfiles A vector of paths to ‘*.evaluation.rds® files. Either ‘path® or ‘resfiles‘ should be
given.
Value

A list of results.

Examples

we produce mock pipeline results:

pip <- mockPipeline()

datasets <- list(ds1=1:3, ds2=c(5,10,15))

tmpdirl <- paste@(tempdir(),'/")

res <- runPipeline(datasets, pipelineDef=pip, output.prefix=tmpdirl,
alternatives=list())

we read the evaluation files:

res <- readPipelineResults(tmpdir1)

runPipeline runPipeline

Description

This function runs a pipeline with combinations of parameter variations on nested steps. The
pipeline has to be defined as a list of functions applied consecutively on their respective outputs.
See ’examples’ for more details.

Usage

runPipeline(
datasets,
alternatives,
pipelineDef,
comb = NULL,
output.prefix =

nn

runPipeline

nthreads = 1,

23

saveEndResults = TRUE,
debug = FALSE,

skipErrors =

Arguments

datasets
alternatives
pipelineDef

comb

output.prefix

nthreads

saveEndResults

debug

skipErrors

Value

TRUE,

A named vector of initial objects or paths to rds files.
The (named) list of alternative values for each parameter.
An object of class PipelineDefinition.

An optional matrix of indexes indicating the combination to run. Each column
should correspond to an element of ‘alternatives‘, and contain indexes relative
to this element. If omitted, all combinations will be performed.

An optional prefix for the output files.

Number of threads, default 1. If the memory requirements are very high or the
first steps very long to compute, consider setting this as the number of datasets
or below.

Logical; whether to save the output of the last step.

Logical (default FALSE). When enabled, disables multithreading and prints ex-
tra information.

Logical. When enabled, ‘runPipeline‘ will continue even when an error has been
encountered, and report the list of steps/datasets in which errors were encoun-
tered.

passed to MulticoreParam. Can for instance be used to set ‘makeCluster® argu-
ments, or set ‘threshold="TRACE"‘ when debugging in a multithreaded context.

A SimpleList with elapsed time and the results of the evaluation functions defined by the given

‘pipelineDef".

The results are also stored in the output folder with:

* The clustering results for each dataset (‘endOutputs.rds‘ files),

* A SimpletList of elapsed time and evaluations for each dataset (‘evaluation.rds* files),

* A list of the ‘pipelineDef", ‘alternatives®, ‘sessionInfo()‘ and function call used to produce the
results (‘runPipelineInfo.rds‘ file),

* A copy of the SimpleList returned by the function (‘aggregated.rds‘file).

Examples

pip <- mockPipeline()

datasets <- list(ds1=1:3, ds2=c(5,10,15))

tmpdirl <- paste@(tempdir(),"/")

res <- runPipeline(datasets, pipelineDef=pip, output.prefix=tmpdirl,

alternatives=list())

See the “pipeComp_scRNA™ vignette for a more complex example

24 scrna_evalPlot_filtering

scrna_describeDatasets
scrna_describeDatasets

Description

Plots descriptive information about the datasets

Usage
scrna_describeDatasets(sces, pt.size = 0.3, ...)
Arguments
sces A character vector of paths to SCE rds files, or a list of SCEs
pt.size Point size (for reduced dims)
Passed to geom_point()
Value

A plot_grid output

scrna_evalPlot_filtering
scrna_evalPlot_filtering

Description

scrna_evalPlot_filtering

Usage

scrna_evalPlot_filtering(
res,
steps = c("doublet”, "filtering"),
clustMetric = "mean_F1",
filterExpr = TRUE,
atNearestK = FALSE,
returnTable = FALSE,
point.size = 2.2,

scrna_evalPlot_overall 25

Arguments
res Aggregated pipeline results (i.e. the output of ‘runPipeline or ‘aggregateRe-
sults*)
steps Steps to include (default *doublet’ and ’filtering’); other steps will be averaged.
clustMetric Clustering accuracy metric to use (default ‘mean_F1°)
filterExpr An optional filtering expression based on the columns of the clustering evalua-
tion (e.g. ‘filterExpr=paraml=="valuel"* or ‘filterExpr=n_clus==true.nbClusts®).
atNearestK Logical; whether to restrict analyses to those giving the smallest deviation from
the real number of clusters (default FALSE).
returnTable Logical; whether to return the data rather than plot.
point.size Size of the points
passed to ‘geom_point’
Value

A ggplot, or a data.frame if ‘returnTable=TRUE*

Examples

data("exampleResults”, package="pipeComp")
scrna_evalPlot_filtering(exampleResults)

scrna_evalPlot_overall
scrna_evalPlot _overall

Description

3

Plots a multi-level summary heatmap of many analyses of the ‘scrna_pipeline°.

Usage
scrna_evalPlot_overall(
res,
agg.by = NULL,
width = NULL,

datasets_as_columnNames = TRUE,

rowAnnoColors = NULL,

column_names_gp = gpar(fontsize = 10),

column_title_gp = gpar(fontsize = 12),

heatmap_legend_param = list(by_row = TRUE, direction = "horizontal”, nrow = 1),

26

Arguments

res

agg.by
width

datasets_

scrna_evalPlot_silh

Aggregated pipeline results (i.e. the output of ‘runPipeline or ‘aggregateRe-
sults®)

The paramters by which to aggregate.
The width of individual heatmap bodies.
as_columnNames

Logical; whether dataset names should be printed below the columns (except for
silhouette) rather than using a legend.

rowAnnoColors Optional list of colors for the row annotation variables (passed to ‘HeatmapAn-

notation(col=...)°)

column_names_gp

Passed to each calls to ‘Heatmap*

column_title_gp

Passed to each calls to ‘Heatmap®

heatmap_legend_param

Value

Passed to each calls to ‘Heatmap®

Passed to each calls to ‘Heatmap*

A HeatmapList

Examples

library(ComplexHeatmap)
data("exampleResults")

h <- scrna_evalPlot_overall(exampleResults)
draw(h, heatmap_legend_side="bottom")

scrna_evalPlot_silh scrna_evalPlot_silh

Description

Plot a min/max/mean/median silhouette width heatmap from aggregated evaluation results of the
‘scrna_pipeline°.

Usage

scrna_evalPlot_silh(

res,
what =
step =
dims
agg. by
agg.fn

c("minSilWidth", "meanSilWidth"),
"dimreduction”,

1,

= NULL,

= mean,

filterExpr = NULL,

value_format =

nn

reorder_rows = FALSE,

scrna_evalPlot _silh

27

reorder_columns = TRUE,
show_heatmap_legend = TRUE,
show_column_names = FALSE,

col = rev(RColorBrewer::brewer.pal(n = 11,
font_factor

IIRdBuU)) ,
0.9,

row_split = NULL,

shortNames

TRUE,

value_cols = c("white”, "black"),

title = NULL,

anno_legend = TRUE,

Arguments

res
what
step
dims
agg.by
agg.fn

filterExpr

value_format

reorder_rows

reorder_columns

Aggregated pipeline results (i.e. the output of ‘runPipeline or ‘aggregateRe-
sults®)

What metric to plot, possible values are “minSilWidth”, “meanSilWidth” (de-
fault), “medianSilWidth”, or “maxSilWidth”.

Name of the step for which to plot the evaluation results. Defaults to "dimre-
duction".

If multiple sets of dimensions are available, which one to use (defaults to the
first).

Aggregate results by these columns (default no aggregation)
Function for aggregation (default mean)

An optional filtering expression based on the columns of the target dataframe,
(e.g. ‘filterExpr=param1=="valuel"").

Format for displaying cells’ values (no label by default)

Whether to sort rows (default FALSE). The row names themselves can also be
passed to specify an order, or a ‘ComplexHeatmap*.

Whether to sort columns (default TRUE).

show_heatmap_legend

Passed to ‘Heatmap* (default FALSE)

show_column_names

col
font_factor

row_split

shortNames

value_cols

title

anno_legend

Passed to ‘Heatmap* (default FALSE)
Colors for the heatmap
A scaling factor applied to fontsizes (default 1)

Optional column (included in ‘agg.by ‘) by which to split the rows. Alternatively,
an expression using the columns (retained after aggregation) can be passed.

Logical; whether to use short row names (with only the parameter values instead
of the parameter name and value pairs), default TRUE.

A vector of length 2 indicating the colors of the values (above and below the
mean), if printed

Plot title
Logical; whether to plot the legend for the datasets

Passed to ‘Heatmap*

28

Value

scrna_pipeline

A Heatmap

Examples

data("exampleResults"”, package="pipeComp")
scrna_evalPlot_silh(exampleResults, agg.by=c("filt"”,"norm"),

non

—_n

row_split="norm”)

SCrna_

pipeline scrna_pipeline

Description

The ‘PipelineDefinition* for the default scRNAseq clustering pipeline, with steps for doublet iden-
tification, filtering, normalization, feature selection, dimensionality reduction, and clustering. Al-
ternative arguments should be character, numeric or logical vectors of length 1 (e.g. the function
name for a method, the number of dimensions, etc). The default pipeline has the following steps
and arguments:

doublet: ‘doubletmethod‘ (name of the doublet removal function)
filtering: ‘filt (name of the filtering function, or filter string)
normalization: ‘norm‘ (name of the normalization function)

selection: ‘sel (name of the selection function, or variable of rowData on which to select) and
‘selnb‘ (number of features to select)

dimreduction: ‘dr‘ (name of the dimensionality reduction function) and ‘maxdim‘ (maximum
number of components to compute)

clustering: ‘clustmethod‘ (name of the clustering function), ‘dims‘ (number of dimensions
to use), ‘’k* (number of nearest neighbors to use, if applicable), ‘steps‘ (number of steps in
the random walk, if applicable), ‘resolution‘ (resolution, if applicable), ‘min.size‘ (minimum
cluster size, if applicable). If using the ‘scrna_alternatives.R‘ wrappers, the dimensionality

ne

can be automatically estimated by specifying ‘dims = "method_name" ‘.

Usage
scrna_pipeline(saveDimRed = FALSE, pipeClass = c("seurat”, "sce"))
Arguments
saveDimRed Logical; whether to save the dimensionality reduction for each analysis (default
FALSE)
pipeClass ‘sce‘ or ‘seurat‘; which object class to use throughout the pipeline. Note that
the ‘alternatives‘ functions have to be built around the chosen class. Given that,
if running the ‘scrna_alternatives®, the class of whole pipeline is determined by
the output of the filtering, only this step is affected by this option.
Value

A ‘PipelineDefinition‘ object to be used with ‘runPipeline‘.

stableG

Examples

pip <- scrna_pipeline()
pip

29

stableG Lists of stable genes

Description

Genes were simply obtained by querying the respective GO terms

Value

a list.

Index

[,PipelineDefinition, ANY,ANY,ANY-method
(PipelineDefinition-methods),
19

$,PipelineDefinition-method
(PipelineDefinition-methods),
19

addPipelineStep, 3, 19, 21

aggregatePipelineResults, 4

arguments (PipelineDefinition-methods),
19

arguments,PipelineDefinition-method
(PipelineDefinition-methods),
19

as.list,PipelineDefinition-method
(PipelineDefinition-methods),
19

buildCombMatrix, 4

checkPipelinePackages, 5
clustMetricsCorr, 5
colCenterScale, 6, 9
ctrlgenes, 6

dea_evalPlot_curve, 7

dea_pipeline, 8

defaultArguments
(PipelineDefinition-methods),
19

defaultArguments,PipelineDefinition-method

(PipelineDefinition-methods),
19

defaul tArguments<-
(PipelineDefinition-methods),
19

defaultArguments<-,PipelineDefinition-method

(PipelineDefinition-methods),
19
defaultStepAggregation, 8

evalHeatmap, 9
evaluateClustering, 11
evaluateDEA, 11
evaluateDimRed, 12

evaluateNorm, 13
exampleDEAresults, 14
exampleResults, 14

farthestPoint, 14

getDimensionality, 15
getQualitativePalette, 15

length,PipelineDefinition-method
(PipelineDefinition-methods),
19

match_evaluate_multiple, 16
mergePipelineResults, 16
mockPipeline, 17

names,PipelineDefinition-method
(PipelineDefinition-methods),
19

names<-,PipelineDefinition-method
(PipelineDefinition-methods),
19

parsePipNames, 18
pipeComp (pipeComp-package), 3
pipeComp-package, 3
PipelineDefinition, 3, 4, 16, 18, 19-21, 23
PipelineDefinition-class
(PipelineDefinition), 18
PipelineDefinition-method
(PipelineDefinition-methods),
19
PipelineDefinition-methods, 19
plotElapsed, 21

readPipelineResults, 4, 16, 17,22
runPipeline, 22

scrna_describeDatasets, 24
scrna_evalPlot_filtering, 24
scrna_evalPlot_overall, 25
scrna_evalPlot_silh, 26
scrna_pipeline, 19, 28

INDEX

show,PipelineDefinition-method
(PipelineDefinition-methods),
19

stableG, 29

stepFn (PipelineDefinition-methods), 19

stepFn,PipelineDefinition-method
(PipelineDefinition-methods),
19

stepFn<- (PipelineDefinition-methods),
19

stepFn<-,PipelineDefinition-method
(PipelineDefinition-methods),
19

31

	pipeComp-package
	addPipelineStep
	aggregatePipelineResults
	buildCombMatrix
	checkPipelinePackages
	clustMetricsCorr
	colCenterScale
	ctrlgenes
	dea_evalPlot_curve
	dea_pipeline
	defaultStepAggregation
	evalHeatmap
	evaluateClustering
	evaluateDEA
	evaluateDimRed
	evaluateNorm
	exampleDEAresults
	exampleResults
	farthestPoint
	getDimensionality
	getQualitativePalette
	match_evaluate_multiple
	mergePipelineResults
	mockPipeline
	parsePipNames
	PipelineDefinition
	PipelineDefinition-methods
	plotElapsed
	readPipelineResults
	runPipeline
	scrna_describeDatasets
	scrna_evalPlot_filtering
	scrna_evalPlot_overall
	scrna_evalPlot_silh
	scrna_pipeline
	stableG
	Index

