Package ‘multicrispr’

January 30, 2026

Title Multi-locus multi-purpose Crispr/Cas design
Version 1.20.0
Encoding UTF-8

Description This package is for designing Crispr/Cas9 and Prime Editing experiments.
It contains functions to (1) define and transform genomic targets, (2) find spacers
(4) count offtarget (mis)matches, and (5) compute Doench2016/2014 targeting efficiency.
Care has been taken for multicrispr to scale well towards large target sets,
enabling the design of large Crispr/Cas9 libraries.

License GPL-2
LazyData true
RoxygenNote 7.3.2
Depends R (>=4.0)

Imports BiocGenerics, Biostrings, BSgenome, CRISPRseek, data.table,
Seqinfo, GenomicFeatures, GenomicRanges, ggplot2, grid,
karyoploteR, magrittr, methods, parallel, plyranges, Rbowtie,
reticulate, rtracklayer, stats, stringi, tidyr, tidyselect,
utils

Suggests AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Mmusculus.UCSC.mm10,
BSgenome.Scerevisiae. UCSC.sacCerl, ensembldb, IRanges,
GenomelnfoDb, knitr, magick, rmarkdown, testthat,
TxDb.Mmusculus.UCSC.mm10.knownGene

VignetteBuilder knitr
biocViews CRISPR, Software

BugReports https://github.com/bhagwataditya/multicrispr/issues

URL https://github.com/bhagwataditya/multicrispr
git_url https://git.bioconductor.org/packages/multicrispr
git_branch RELEASE_3_22

git_last_commit 1e84407

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

https://github.com/bhagwataditya/multicrispr/issues
https://github.com/bhagwataditya/multicrispr

add_genome_matches

Author Aditya Bhagwat [aut, cre],

Richie “Cotton [aut],
Rene Wiegandt [ctb],
Mette Bentsen [ctb],

Jens Preussner [ctb],
Michael Lawrence [ctb],
Hervé Pages [ctb],
Johannes Graumann [sad],
Mario Looso [sad, rth]

Maintainer Aditya Bhagwat <aditya.bhagwat@uni-marburg.de>

Contents
add_genome_matches 2
add_inverse_strand L. L. e e e e e e e e 3
add_seq e 4
add_target_matches L 5
bed_to_granges e e e e e 6
char_to_granges e 7
double flank L e 7
extend_for_pe 9
extend_pe_to_gg e e e e e 10
extract_matchranges L 10
extract_subranges e e e 11
find_gg 12
find_primespacers e e e e 13
find_spacers 14
GENES_tO_GIANZES . . « . v v v v e e e e e e e e e e e e e e e e e e e 16
gr2dt . .. e e 17
has_been_indexed 18
INdEX_ENOME it e e e e e e e e e e e e 18
Index_targets e e e e e e 19
plot_intervals 20
plot_karyogram L e e e 21
SCOTE_ONLATZELS . « . . v v v v e et e e e e e e e e e e e 22
up_flank L 24
WILE_TANZES . .« « v v v v v v e e e e e e e e e e e e e e e e e e 26

Index 27

add_genome_matches Add genome matches
Description

Add genome matches

add_inverse_strand

Usage

add_genome_matches(
spacers,
bsgenome = getBSgenome(genome(spacers)[1]),
mismatches = 2,
pam = "NGG",
offtargetmethod = c("bowtie”, "pdict”)[1],
outdir = OUTDIR,
indexedgenomesdir = INDEXEDGENOMESDIR,
verbose = TRUE

)
Arguments
spacers GRanges
bsgenome BSgenome
mismatches number
pam string
of ftargetmethod
bowtie’ or "pdict’
outdir bowtie output directory
indexedgenomesdir
directory with indexed genomes
verbose TRUE (default) or FALSE
Value
GRanges
Examples
require(magrittr)

file <- system.file('extdata/SRF.bed', package='multicrispr')

bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm10@

targets@ <- bed_to_granges(file, 'mm10')

targets <- extend(targetso)

spacers <- find_spacers(targets, bsgenome, complement = FALSE,
ontargetmethod = NULL, offtargetmethod = NULL)

spacers %<>% extract(1:100)

spacers %<>% add_genome_matches(bsgenome)

add_inverse_strand Add inverse strand

Description

Add inverse strand

Usage
add_inverse_strand(gr, verbose = FALSE, plot = FALSE, ...)

4 add_seq

Arguments
gr GRanges-class
verbose TRUE or FALSE (default)
plot TRUE or FALSE (default)
plot_intervals arguments
Value

GRanges-class

Examples

PE example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+"', # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-', # del
CFTR = 'chr7:117559593-117559595:+"), # ins

bsgenome)

add_inverse_strand(gr, plot = TRUE)
TFBS example

bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, genome = 'mm1@')
add_inverse_strand(gr)
add_seq Add sequence to GRanges
Description
Add sequence to GRanges
Usage

add_seq(gr, bsgenome, verbose = FALSE, as.character = TRUE)

Arguments
gr GRanges-class
bsgenome BSgenome-class
verbose TRUE or FALSE (default)

as.character TRUE (default) or FALSE

Value

GRanges-class

add_target_matches

Examples

PE example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-"', # del
CFTR = 'chr7:117559593-117559595:+"), # ins

bsgenome)

(gr %<>% add_seq(bsgenome))

TFBS example

bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm10@
bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, 'mm10@')
(gr %<>% add_seq(bsgenome))
add_target_matches Add target matches
Description

Add target matches

Usage

add_target_matches(
spacers,
targets,
bsgenome,
mismatches = 2,
pam = "NGG",
outdir = OUTDIR,
verbose = TRUE

)
Arguments

spacers GRanges

targets GRanges

bsgenome BSgenome

mismatches number

pam string

outdir bowtie output directory

verbose TRUE (default) or FALSE
Value

GRanges

6 bed_to_granges

Examples

require(magrittr)

file <- system.file('extdata/SRF.bed', package='multicrispr')

bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm1@

targets@ <- bed_to_granges(file, 'mm10@')

targets <- extend(targets®)

spacers <- find_spacers(targets, bsgenome, complement = FALSE,
ontargetmethod = NULL, offtargetmethod = NULL)

spacers %<>% add_target_matches(targets, bsgenome)

bed_to_granges Read bedfile into GRanges

Description

Read bedfile into GRanges

Usage
bed_to_granges(
bedfile,
genome,
txdb = NULL,
do_order = TRUE,
plot = TRUE,
verbose = TRUE
)
Arguments
bedfile file path
genome string: UCSC genome name (e.g. 'mm10’)
txdb NULL (default) or TxDb-class (used for gene annotation)
do_order TRUE (default) or FALSE: order on seqnames and star?
plot TRUE (default) or FALSE: plot karyogram?
verbose TRUE (default) or FALSE
Value

GRanges-class

See Also

char_to_granges, genes_to_granges

Examples

bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
bsgenome <- BSgenome.Mmusculus.UCSC.mm10@: :BSgenome.Mmusculus.UCSC.mm1@
(gr <- bed_to_granges(bedfile, genome='mmi10'))

char_to_granges

char_to_granges Convert character vector into GRanges

Description

Convert character vector into GRanges

Usage

char_to_granges(x, bsgenome)

Arguments
X character vector
bsgenome BSgenome-class
Value

GRanges-class

See Also

bed_to_granges, genes_to_granges

Examples
require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
x <= c¢(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-"', # del

CFTR = 'chr7:117559593-117559595:+"') # ins
gr <- char_to_granges(x, bsgenome)

plot_intervals(gr, facet_var = c('targetname', 'segnames'))
double_flank Double flank
Description

Double flank

Usage
double_flank(
gr,
upstart = -200,
upend = -1,

downstart = 1,
downend = 200,
strandaware = TRUE,

plot = FALSE,

linetype_var = "set”,
)

Arguments

gr GRanges-class
upstart upstream flank start in relation to start(gr)
upend upstream flank end in relation to start(gr)
downstart downstream flank start in relation to end(gr)
downend downstream flank end in relation to end(gr)
strandaware TRUE (default) or FALSE
plot TRUE or FALSE (default)

linetype_var gr var mapped to linetype

passed to plot_intervals

Value

GRanges-class

Examples

Prime Editing example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-", # snp
HEXA = 'chr15:72346580-72346583:-"', # del
CFTR = 'chr7:117559593-117559595:+"'), # ins

bsgenome)

double_flank(gr, -10, -1, +1, +20, plot = TRUE)
TFBS example
bedfile <- system.file('extdata/SRF.bed', package='multicrispr')

gr <- bed_to_granges(bedfile, genome = 'mm1@', plot = FALSE)
double_flank(gr, plot = TRUE)

double_flank

extend_for_pe

extend_for_pe

Extend ranges for prime editing

Description

Extend target ranges to span in which to look for spacer-pam seqs

Usage

extend_for_pe(
gr,
bsgenome,
nrt = 16,

spacer = strrep("N", 20),

pam = "NGG",
plot = FALSE

Arguments
gr
bsgenome
nrt
spacer
pam

plot

Details

GRanges-class

BSgenome-class

number: reverse transcription length

string: spacer pattern in extended IUPAC alphabet
string: pam pattern in extended IUPAC alphabet
TRUE (default) or FALSE

Extend target ranges to find nearby spacers for prime editing

Value

GRanges-class

Examples

require(magrittr)

bsgenome <- BSgenome.Hsapiens.

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+',

HBB = 'chr11:5227002:-",

HEXA 'chr15:72346580-72346583:-",

CFTR 'chr7:117559593-117559595:+"),
bsgenome = bsgenome)

find_primespacers(gr, bsgenome)
(grext <- extend_for_pe(gr))
find_spacers(grext, bsgenome, complement = FALSE)

UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

snp
snp
del
ins

10 extract_matchranges

extend_pe_to_gg Extend prime editing target to find GG sites

Description

Extend prime editing target to find GG sites in accessible neighbourhood

Usage

extend_pe_to_gg(gr, nrt = 16, plot = FALSE)

Arguments
gr target GRanges-class
nrt n RT nucleotides (default 16, recommended 10-16)
plot TRUE or FALSE (default)

Details

Extends each target range to the area in which to search for a prime editing GG duplet, as shown in
the sketch below.

>—GG >—GG > ¥ < GG—< GG—-<
Value
GRanges-class
Examples
PE example

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+"', # snp
HBB = 'chr11:5227002:-', # snp
HEXA = 'chr15:72346580-72346583:-", # del
CFTR = 'chr7:117559593-117559595:+'), # ins
bsgenome)

extend_pe_to_gg(gr, plot = TRUE)

extract_matchranges Extract matching subranges

Description

Extract subranges that match pattern

Usage

extract_matchranges(gr, bsgenome, pattern, plot = FALSE)

extract_subranges

11

Arguments
gr GRanges-class
bsgenome BSgenome{BSgenome-class}
pattern string: search pattern in extended IUPAC alphabet
plot TRUE or FALSE (default)
Value
GRanges-class
Examples
PE example

require(magrittr)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-", # del
CFTR = 'chr7:117559593-117559595:+"'), # ins
bsgenome)

gr %<>% extend_for_pe()
pattern <- strrep('N',20) %>% paste@('NGG')
extract_matchranges(gr, bsgenome, pattern, plot = TRUE)

TFBS examples

bsgenome <- BSgen

ome .Mmusculus.UCSC.mm10@: :BSgenome .Mmusculus.UCSC.mm10Q

bedfile <- system.file('extdata/SRF.bed', package='multicrispr')

gr <- bed_to_gran

ges(bedfile, 'mm1@') %>% extend()

extract_matchranges(gr, bsgenome, pattern = strrep('N',20) %>% paste@('NGG'))

extract_subranges

Extract subranges

Description

Extract subranges from a GRanges-class object

Usage

extract_subranges(gr, ir, plot = FALSE)

Arguments
gr
ir
plot
Value

GRanges-class.

GRanges-class
IRanges-class: subranges to be extracted
TRUE or FALSE (default)

12 find_gg

Examples

Extract a subrange

gr <- GenomicRanges::GRanges(c(A = 'chr1:1-100:+', B = 'chr1:1-100:-"))
gr$targetname <- 'AB'

ir <- IRanges::IRanges(c(A = '1-10', A = '"11-20', B = '"1-10', B = '11-20"))
extract_subranges(gr, ir, plot = TRUE)

Return empty GRanges for empty IRanges
extract_subranges(GenomicRanges: :GRanges('chr1:345-456"'), IRanges::IRanges())

find_gg Find GG

Description

Find GG

Usage

find_gg(gr)

Arguments

gr GRanges-class

Value

GRanges-class

Examples

PE example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-"', # del
CFTR = 'chr7:117559593-117559595:+"'), # ins

bsgenome)

gr %<>% extend_pe_to_gg(plot = TRUE) %>% add_seq(bsgenome)
find_gg(gr)

find_primespacers 13

find_primespacers Find prime editing spacers

Description

Find prime editing spacers around target ranges

Usage
fi

nd_primespacers(

gr,

bsgenome,

edits = get_plus_seq(bsgenome, gr),
nprimer = 13,

nrt = 16,

ontargetmethod = c(”"Doench2014", "Doench2016")[11],
offtargetmethod = c("bowtie”, "pdict”)[1],
mismatches = 0,

nickmatches = 2,

indexedgenomesdir = INDEXEDGENOMESDIR,
outdir = OUTDIR,

verbose = TRUE,

plot = TRUE,
)
Arguments

gr GRanges-class

bsgenome BSgenome-class

edits character vector: desired edits on ’+’ strand. If named, names should be identi-
cal to those of gr

nprimer n primer nucleotides (default 13, max 17)

nrt n rev transcr nucleotides (default 16, recomm. 10-16)

ontargetmethod ’Doench2014’ or 'Doench2016’: on-target scoring method

of

mi
ni
in

ou

ve

pl

ftargetmethod
’bowtie’ or “pdict’

smatches no of primespacer mismatches (default 0, to suppress offtarget analysis: -1)

ckmatches no of nickspacer offtarget mismatches (default 2, to suppresses offtarget analy-
sis: -1)

dexedgenomesdir
directory with indexed genomes (as created by index_genome)

tdir directory whre offtarget analysis output is written

rbose TRUE (default) or FALSE

ot TRUE (default) or FALSE

passed to plot_intervals

14 find_spacers

Details

Below the architecture of a prime editing site. Edits can be performed anywhere in the revtranscript

area.
spacer pam ——————————=== primer revtranscript | DT 17....
..................... CC.......... ————extension——-

Value

GRanges-class with prime editing spacer ranges and following mcols: * crisprspacer: N20 spac-
ers * crisprpam: NGG PAMs * crisprprimer: primer (on PAM strand) * crisprtranscript: reverse
transcript (on PAM strand) * crisprextension: 3’ extension of gRNA contains: reverse transcrip-
tion template + primer binding site sequence can be found on non-PAM strand * crisprextrange:
genomic range of crispr extension * Doench201614: on-target efficiency scores * off0, off1, off2:
number of offtargets with 0, 1, 2 mismatches * off: total number of offtargets: off = offO + off1 + ...
* nickrange: nickspacer range * nickspacer: nickspacer sequence * nickDoench201614: nickspacer
Doench scores * nickoff: nickspacer offtarget counts

See Also

find_spacers to find standard crispr sites

Examples

Find PE spacers for 4 clinically relevant loci (Anzalone et al, 2019)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(

PRNP = 'chr20:4699600:+", # snp: prion disease

HBB = 'chr11:5227002:-", # snp: sickle cell anemia
HEXA = 'chr15:72346580-72346583:-", # del: tay sachs disease
CFTR = 'chr7:117559593-117559595:+"'), # ins: cystic fibrosis
bsgenome)

spacers <- find_primespacers(gr, bsgenome)
spacers <- find_spacers(extend_for_pe(gr), bsgenome, complement = FALSE)

Edit PRNP locus for resistance against prion disease (Anzalone et al, 2019)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+'), bsgenome)
find_primespacers(gr, bsgenome)

find_primespacers(gr, bsgenome, edits = 'T')
find_spacers Find crispr spacers in targetranges
Description

Find crispr spacers in targetranges

find_spacers

Usage

find_spacers(
gr,
bsgenome,
spacer = strrep(”"N", 20),
pam = "NGG",
complement = TRUE,
ontargetmethod = c("Doench2014"”, "Doench2016")[1],
offtargetmethod = c("bowtie”, "pdict")[1],
offtargetfilterby = character(Q),
subtract_targets = FALSE,
mismatches = 2,
indexedgenomesdir = INDEXEDGENOMESDIR,
outdir = OUTDIR,
verbose = TRUE,

plot = TRUE,
)
Arguments
gr GRanges-class
bsgenome BSgenome-class
spacer string: spacer pattern in extended [UPAC alphabet
pam string: pam pattern in extended [UPAC alphabet
complement TRUE (default) or FALSE: also search in compl ranges?
ontargetmethod ’Doench2016’,Doench2016’ or NULL (no on-target score)
offtargetmethod
bowtie’, "pdict’, or NULL (no offtarget analysis)
offtargetfilterby

filter for best off-target counts by this variable
subtract_targets

15

TRUE or FALSE (default): whether to subtract target (mis)matches from offtar-

get counts

mismatches 0-3: allowed mismatches in offtargetanalysis (choose mismatch=-1 to suppress

offtarget analysis)
indexedgenomesdir
directory with Bowtie-indexed genomes (as produced with index_genome)

outdir directory where bowtie analysis results are written to
verbose TRUE (default) or FALSE
plot TRUE (default) or FALSE

passed to plot_intervals

Value

GRanges-class

See Also

find_primespacers to find prime editing spacers

16 genes_to_granges

Examples

PE example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-", # del
CFTR = 'chr7:117559593-117559595:+"'), # ins

bsgenome)

plot_intervals(gr)

find_primespacers(gr, bsgenome)

find_spacers(extend_for_pe(gr), bsgenome, complement=FALSE, mismatches=0)
complement = FALSE because extend_for_pe already
adds reverse complements and does so in a strand-specific
manner

TFBS example

bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm10Q
bedfile <- system.file('extdata/SRF.bed', package='multicrispr')

gr <- bed_to_granges(bedfile, 'mm10@') %>% extend()

gr %<>% extract(1:100)

find_spacers(gr, bsgenome, subtract_targets = TRUE)

genes_to_granges Convert geneids into GRanges

Description

Convert geneids into GRanges

Usage
genes_to_granges(geneids, txdb, complement = TRUE, plot = TRUE, verbose = TRUE)
genefile_to_granges(file, txdb, complement = TRUE, plot = TRUE)
Arguments
geneids Gene identifier vector
txdb TxDb-class or EnsDb-class
complement TRUE (default) or FALSE: add complementary strand?
plot TRUE (default) or FALSE
verbose TRUE (default) or FALSE
file Gene identifier file (one per row)
Value

GRanges-class

gr2dt

See Also

char_to_granges, bed_to_granges

Examples

Entrez

genefile <- system.file('extdata/SRF.entrez', package='multicrispr')

geneids <- as.character(read.table(genefile)[[1]])

txdb <- getFromNamespace('TxDb.Mmusculus.UCSC.mm10@.knownGene',
'TxDb.Mmusculus.UCSC.mm1@.knownGene ")

(gr <- genes_to_granges(geneids, txdb))

(gr <- genefile_to_granges(genefile, txdb))

Ensembl

txdb <- AnnotationHub::AnnotationHub()[["AH75036"1]

genefile <- system.file('extdata/SRF.ensembl', package='multicrispr')
geneids <- as.character(read.table(genefile)[[1]1])

(gr <- genes_to_granges(geneids, txdb))

(gr <- genefile_to_granges(genefile, txdb))

gr2dt GRanges <-> data.table

Description

GRanges <-> data.table

Usage
gr2dt(gr)

dt2gr(dt, seqinfo)

Arguments
gr GRanges-class
dt data.table
seqginfo Seqinfo-class
Value

data.table (gr2dt) or GRanges (dt2gr)

Examples

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+"', # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-"', # del
CFTR 'chr7:117559593-117559595:+"'), # ins

18

bsgenome)
(dt <- gr2dt(gr))
(gr <- dt2gr(dt, BSgenome::seqinfo(bsgenome)))

index_genome

has_been_indexed Has been indexed?

Description

Has been indexed?

Usage

has_been_indexed(bsgenome, indexedgenomesdir = INDEXEDGENOMESDIR)

Arguments
bsgenome BSgenome
indexedgenomesdir
directory with indexed genomes
Value
TRUE or FALSE
Examples

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
has_been_indexed(bsgenome)

index_genome Index genome

Description

Bowtie index genome

Usage

index_genome (
bsgenome,
indexedgenomesdir = INDEXEDGENOMESDIR,
download = TRUE,
overwrite = FALSE

index_targets 19

Arguments
bsgenome BSgenome-class
indexedgenomesdir
string: directory with bowtie-indexed genome
download TRUE (default) or FALSE: whether to download pre-indexed version if available
overwrite TRUE or FALSE (default)
Details

Checks whether already available locally. If not, checks whether indexed version can be down-
loaded from our s3 storage. If not, builds the index with bowtie. This can take a few hours, but is a
one-time operation.

Value

invisible(genomdir)

Examples

bsgenome <- BSgenome.Scerevisiae.UCSC.sacCer1::Scerevisiae
index_genome(bsgenome, indexedgenomesdir = tempdir())

index_targets Index targets

Description

Bowtie index targets

Usage

index_targets(
targets,
bsgenome = getBSgenome(genome(targets)[1]),
outdir = OUTDIR,
verbose = TRUE

)
Arguments
targets GRanges-class
bsgenome BSgenome-class
outdir string: output directory
verbose TRUE (default) or FALSE
Value

invisible(targetdir)

20 plot_intervals

Examples

require(magrittr)

bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm10@
bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
targets <- extend(bed_to_granges(bedfile, genome = 'mm10'))
index_targets(targets, bsgenome)

plot_intervals Interval plot GRanges

Description

Interval plot GRanges

Usage

plot_intervals(
gr,
xref = "targetname”,
y = default_y(gr),
nperchrom = 2,
nchrom = 4,
color_var = "targetname",
facet_var = "segnames”,
linetype_var = default_linetype(gr),
size_var = default_size_var(gr),
alpha_var = default_alpha_var(gr),

title = NULL,
scales = "free”
)
Arguments
gr GRanges-class
xref gr var used for scaling x axis
y ‘names’ (default) or name of gr variable
nperchrom number (default 1): n head (and n tail) targets shown per chromosome
nchrom number (default 6) of chromosomes shown
color_var ’seqnames’ (default) or other gr variable
facet_var NULL(default) or gr variable mapped to facet
linetype_var = NULL (default) or gr variable mapped to linetype
size_var NULL (default) or gr variable mapped to size
alpha_var NULL or gr variable mapped to alpha
title NULL or string: plot title
scales *free’, *fixed’, etc
Value

ggplot object

plot_karyogram 21

See Also

plot_karyogram

Examples

SRF sites
require(magrittr)
bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm10@
bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')
targets <- bed_to_granges(bedfile, 'mm1@', plot = FALSE)
plot_intervals(targets)

PE targets
bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(PRNP = 'chr20:4699600:+",
HBB 'chr11:5227002:-",
HEXA 'chr15:72346580-72346583:-",
CFTR = 'chr7:117559593-117559595:+"),
bsgenome)
spacers <- find_primespacers(gr, bsgenome, plot = FALSE)
plot_intervals(gr)
plot_intervals(extend_for_pe(gr))
plot_intervals(spacers)

Empty gr
plot_intervals(GenomicRanges: :GRanges())

plot_karyogram Karyo/Interval Plot GRanges(List)

Description

Karyo/Interval Plot GRanges(List)

Usage

plot_karyogram(grlist, title = unique(genome(grlist)))

Arguments

grlist GRanges-class

title plot title

Value

list

See Also

plot_intervals

22

Examples

Plot GRanges
bedfile <-

score_ontargets

system.file('extdata/SRF.bed', package = 'multicrispr')

gr <- bed_to_granges(bedfile, 'mm1@', plot = FALSE)
plot_karyogram(gr)

Plot GRangeslList
flanks <- up_flank(gr, stranded=FALSE)
grlist <- GenomicRanges::GRangesList(sites = gr, flanks = flanks)
plot_karyogram(grlist)

score_ontargets

Add on-target efficiency scores

Description

Add Doench2014 or Doench2016 on-target efficiency scores

Usage

score_ontargets(

spacers,
bsgenome,

ontargetmethod = c(”"Doench2014"”, "Doench2016")[1],

chunksize =

10000,

verbose = TRUE,

plot = TRUE,

Arguments

spacers
bsgenome

ontargetmethod

chunksize
verbose

plot

Details

GRanges-class: spacers
BSgenome-class

’Doench2014’ (default) or ’Doench2016’ (requires non-NULL argument python,
virtualenv, or condaenv)

Doench2016 is executed in chunks of chunksize
TRUE (default) or FALSE
TRUE (default) or FALSE

passed to plot_intervals

add_ontargets adds efficiency scores filter_ontargets adds efficiency scores and filters on

them

Value

numeric vector

score_ontargets 23

References

Doench 2014, Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactiva-
tion. Nature Biotechnology, doi: 10.1038/nbt.3026

Doench 2016, Optimized sgRNA design to maximize activity and minimize off-target effects of
CRISPR-Cas9. Nature Biotechnology, doi: 10.1038/nbt.3437

Python module azimuth: github/MicrosoftResearch/azimuth

Examples

Install azimuth

With reticulate

require(reticulate)

conda_create('azienv', c('python=2.7"))

use_condaenv('azienv')

py_install(c('azimuth', 'scikit-learn==0.17.1"', 'biopython=='1.76"),
'azienv', pip = TRUE)

Directly

conda create --name azienv python=2.7
conda activate azienv

pip install scikit-learn==0.17.1

pip install biopython==1.76

pip install azimuth

PE example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

targets <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-", # snp
HEXA = 'chr15:72346580-72346583:-", # del
CFTR = 'chr7:117559593-117559595:+"'), # ins

bsgenome)

spacers <- find_primespacers(targets, bsgenome, ontargetmethod=NULL,
of ftargetmethod=NULL)

spacers %<>% score_ontargets(bsgenome, 'Doench2014')

reticulate::use_condaenv('azienv')

reticulate::import('azimuth"')

spacers %<>% score_ontargets(bsgenome, 'Doench2016')

TFBS example

bedfile <- system.file('extdata/SRF.bed', package = 'multicrispr')

bsgenome <- BSgenome.Mmusculus.UCSC.mm1@: :BSgenome.Mmusculus.UCSC.mm10@

targets <- extend(bed_to_granges(bedfile, 'mm10'))

spacers <- find_spacers(targets, bsgenome, ontargetmethod=NULL,
offtargetmethod=NULL)

spacers %<>% score_ontargets(bsgenome, 'Doench2014')

reticulate::use_condaenv('azienv')

reticulate::import('azimuth"')

spacers %>% score_ontargets(bsgenome, 'Doench2016')

24 up_flank

up_flank Extend or Flank GRanges

Description

Returns extensions, upstream flanks, or downstream flanks

Usage

up_flank(
gr,
start = -200,
end = -1,
strandaware = TRUE,
bsgenome = NULL,
verbose = FALSE,
plot = FALSE,
linetype_var = "set”,

)

down_flank(
gr,
start = 1,
end = 200,
strandaware = TRUE,
bsgenome = NULL,
verbose = FALSE,

plot = FALSE,
linetype_var = "set”,
)
extend(
gr,
start = -22,
end = 22,

strandaware = TRUE,
bsgenome = NULL,
verbose = FALSE,

plot = FALSE,
linetype_var = "set”,
)
Arguments
gr GRanges-class
start number or vector (same length as gr): start definition, relative to gr start (up_flank,

extend) or gr end (down_flank).

up_flank 25

end number or vector (same length as gr): end definition, relative to gr start (up_flank)
or gr end (extend, down_flank).

strandaware TRUE (default) or FALSE: consider strand information?

bsgenome NULL (default) or BSgenome-class. Required to update gr$seq if present.
verbose TRUE or FALSE (default)
plot TRUE or FALSE (default)

linetype_var string: gr var mapped to linetype

passed to plot_intervals

Details

up_flank returns upstream flanks, in relation to start(gr). down_flank returns downstream flanks,
in relation to end(gr). extend returns extensions, in relation to start(gr) and end(gr)

Value

a GRanges-class

Examples

PE example

require(magrittr)

bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38

gr <- char_to_granges(c(PRNP = 'chr20:4699600:+", # snp
HBB = 'chr11:5227002:-"', # snp
HEXA = 'chr15:72346580-72346583:-', # del

CFTR = 'chr7:117559593-117559595:+"),# ins
bsgenome = bsgenome)
gr %>% up_flank(-22, -1, plot=TRUE)
gr %>% up_flank(c(-10,-20,-30,-40), -1, plot=TRUE)
gr %>% up_flank(-22, -1, plot=TRUE, strandaware=FALSE)

gr %>% down_flank(+1, +22, plot=TRUE)
gr %>% down_flank(+1, c(10, 20, 30, 40), plot=TRUE)
gr %>% down_flank(+1, +22, plot=TRUE, strandaware=FALSE)

gr %>% extend(-10, +20, plot=TRUE)
gr %>% extend(-10, +20, plot=TRUE, strandaware=FALSE)

TFBS example

bedfile <- system.file('extdata/SRF.bed', package='multicrispr')
gr <- bed_to_granges(bedfile, genome = 'mm1@"')

gr %>% extend(plot = TRUE)

gr %>% up_flank(plot = TRUE)

gr %>% down_flank(plot = TRUE)

26

write_ranges

write_ranges Write GRanges to file

Description

Write GRanges to file

Usage

write_ranges(gr, file, verbose = TRUE)

read_ranges(file, bsgenome)

Arguments
gr GRanges-class
file file
verbose TRUE (default) or FALSE
bsgenome BSgenome-class
Value

GRanges-class for read_ranges

Examples

Find PE spacers for 4 clinically relevant loci (Anzalone et al, 2019)
bsgenome <- BSgenome.Hsapiens.UCSC.hg38: :BSgenome.Hsapiens.UCSC.hg38
gr <- char_to_granges(c(

PRNP = 'chr20:4699600:+", # snp: prion disease

HBB = 'chr11:5227002:-", # snp: sickle cell anemia
HEXA = 'chr15:72346580-72346583:-", # del: tay sachs disease
CFTR = 'chr7:117559593-117559595:+"'), # ins: cystic fibrosis
bsgenome)

file <- file.path(tempdir(), 'gr.txt')
write_ranges(gr, file)
read_ranges(file, bsgenome)

Index

add_genome_matches, 2
add_inverse_strand, 3
add_seq, 4

add_target_matches, 5

bed_to_granges, 6,7, 17
BSgenome, 11

char_to_granges, 6,7, 17

double_flank, 7
down_f1lank (up_flank), 24
dt2gr (gradt), 17

extend (up_flank), 24
extend_for_pe, 9
extend_pe_to_gg, 10
extract_matchranges, 10
extract_subranges, 11

find_gg, 12
find_primespacers, 13, 15
find_spacers, 14, 14

genefile_to_granges (genes_to_granges),
16

genes_to_granges, 6, 7, 16

gr2dt, 17

has_been_indexed, 18

index_genome, 13, 15, 18
index_targets, 19

plot_intervals, 4, 20, 21, 22, 25
plot_karyogram, 217, 21

read_ranges (write_ranges), 26
score_ontargets, 22
up_flank, 24

write_ranges, 26

27

	add_genome_matches
	add_inverse_strand
	add_seq
	add_target_matches
	bed_to_granges
	char_to_granges
	double_flank
	extend_for_pe
	extend_pe_to_gg
	extract_matchranges
	extract_subranges
	find_gg
	find_primespacers
	find_spacers
	genes_to_granges
	gr2dt
	has_been_indexed
	index_genome
	index_targets
	plot_intervals
	plot_karyogram
	score_ontargets
	up_flank
	write_ranges
	Index

