Package ‘mitoClone2’

January 30, 2026

Type Package

Title Clonal Population Identification in Single-Cell RNA-Seq Data
using Mitochondrial and Somatic Mutations

LinkingTo Rhtslib (>=1.13.1)
Version 1.16.0

Description This package primarily identifies variants in mitochondrial genomes from BAM align-
ment files. It filters these variants to remove RNA editing events then estimates their evolution-
ary relationship (i.e. their phylogenetic tree) and groups single cells into clones. It also visual-
izes the mutations and providing additional genomic context.

License GPL-3
VignetteBuilder knitr
Encoding UTF-8
LazyData false

biocViews Annotation, Datalmport, Genetics, SNP, Software, SingleCell,
Alignment

Imports reshape2, GenomicRanges, pheatmap, deepSNV, grDevices, Matrix,
graphics, stats, utils, S4Vectors, Rhtslib, parallel, methods,

ggplot2
Suggests knitr, rmarkdown, Biostrings, testthat

RoxygenNote 7.1.0
SystemRequirements GNU make, PhISCS (optional)
Depends R (>=4.4.0)

NeedsCompilation yes

URL https://github.com/benstory/mitoClone2
Bugreports https://github.com/benstory/mitoClone2/issues
git_url https://git.bioconductor.org/packages/mitoClone2
git_branch RELEASE_3_22

git_last_commit 43b5799

git_last commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

https://github.com/benstory/mitoClone2

2 bam2R_10x

Author Benjamin Story [aut, cre],
Lars Velten [aut],
Gregor Monke [aut]

Maintainer Benjamin Story <story.benjamin@gmail.com>

Contents
bam2R_10X e 2
baseCountsFromBamlList 4
clusterMetaclones e e 5
data e e 5
getAlleleCount L e e e e e e 6
getCloneLikelihood e 7
getVarsCandidate L 8
mitoPlot L e 8
mut2GR . . . e 9
mutationCalls-class 10
mutationCallsFromCohorto 10
mutationCallsFromExclusionlist 12
mutationCallsFromMatrix 13
overwriteMetaclones e e 14
plotClones 15
predictCellAssignment Lo e e 16
pullcountsVars 16
quick_cluster 17
removeWindow L e 17
setVarsCandidate 18
varCIuSter e e e e e e e e e e e e 19
VITEO . . o o e e e e e e e e e e e e 20
VIreoFit e e e 21

Index 22

bam2R_10x Read nucleotide counts from a 10x Genomics .bam file
Description

This function uses a C interface to read the nucleotide counts on each position of a .bam alignment.
The counts are individually tabulated for each cell barcode as specified by the user. The counts of
both strands are reported separately and nucleotides below a quality cutoff are masked.

Usage

bam2R_10x(
file,
sites = "MT:1-16569",
q = 25,
mq = 0,
s =2,
head.clip = 0,

bam2R_10x 3

max.depth = 1e+06,

verbose = FALSE,

mask = 0,

keepflag = 0,
max.mismatches = NULL,
ncores = 1,
ignore_nonstandard = FALSE,
min_reads_per_barcode = 50

)
Arguments
file The file location of the BAM file as a string.
sites The chromosome locations of interest in BED format as a string. Alternatively
a single GRanges object will also work.
q An optional cutoff for the nucleotide Phred quality. Default q = 25. Nucleotides
with Q < q will be masked by "N’.
mq An optional cutoff for the read mapping quality. Default mq = 0 (no filter). reads
with MQ < mq will be discarded.
s Optional choice of the strand. Defaults to s = 2 (both).
head.clip Should n nucleotides from the head of reads be clipped? Default 0.
max.depth The maximal depth for the pileup command. Default 1,000,000.
verbose Boolean. Set to TRUE if you want to get additional output.
mask Integer indicating which flags to filter. Default O (no mask). Try 1796 (BAM_DEF_MASK).
keepflag Integer indicating which flags to keep. Default O (no mask). Try 3 (PAIREDIPROPERLY_PAIRED).
max.mismatches Integer indicating maximum MN value to allow in a read. Default NULL (no
filter).
ncores Integer indicating the number of threads to use for the parallel function call that

summarize the results for each bam file. Default 1.
ignore_nonstandard
Boolean indicating whether or not gapped alignments, insertions, or deletions
should be included in the final output. Default FALSE. If you have an inflation
of spliced mitochondrial reads it is recommended to set this to TRUE.
min_reads_per_barcode
Int defining how many reads a barcode must for it to be considered in the pileup
tabulations. Default 50

Details

This code is an adaption of code that was originally written by Moritz Gerstung for the deepSNV
package

Value

A named list of matrix with rows corresponding to genomic positions and columns for the nu-
cleotide counts (A, T, C, G, -), masked nucleotides (N), (INS)ertions, (DEL)etions that count how
often a read begins and ends at the given position, respectively. Each member of the list corresponds
to an invididual cells or entity based on the cell barcode of interest. The names of the elements of
the list correspond to the respective cell barcodes. For the intents and purposes of the mitoClone2

4 baseCountsFromBamList

package this object is equivalent to the output from the baseCountsFromBamList function. The
returned list has a variable length depending on the ignore_nonstandard parameter and each ele-
ment contains a matrix has 8 columns and (stop - start + 1) rows. The two strands have their counts
merged. If no counts are present in the provided sites parameter nothing will be returned. IMPOR-
TANT: The names of the list will NOT reflect the source filename and will exclusively be named
based on the respective the barcodes extracted from said file. If merging multiple datasets, it is
important to change the list’s names once imported to avoid naming collisions.

Author(s)

Benjamin Story (adapted from original code with permission from Moritz Gerstung)

Examples

bamCounts <- bam2R_10x(file = system.file("extdata",
"mm10@_10x.bam"”, package="mitoClone2"), sites="chrM:1-15000")

baseCountsFromBamList Create a list object from a list of single-cell BAM files where each
contains a matrix of the of AGCT nt counts at chosen sites

Description

Uses the deepSNV package to count nucleotide frequencies at every position in the mitochondrial
genome for every cell.

Usage
baseCountsFromBamList(
bamfiles,
sites = "chrM:1-16569",
ncores = 1,
ignore_nonstandard = FALSE
)
Arguments
bamfiles A character vector specifying the bam file paths
sites String specifying genomic regions, defaults to the entire mitochondrial genome
ncores Number of threads to use for the computation. Default 1

ignore_nonstandard
Ignore basecalls that are not AGCTN

Value

A list of base count matrices which can serve as an input to mutationCallsFromExclusionlist
or mutationCallsFromCohort

Examples

bamCounts <- baseCountsFromBamList(bamfiles =
list(system.file("extdata”, "mm10@_10x.bam",
package="mitoClone2")),sites="chrM:1-15000", ncores=1)

clusterMetaclones 5

clusterMetaclones Cluster mutations into clones - following the tree structure

Description

PhISCS orders all mutations into a hierarchical mutational tree; in many cases, the exact order of
the acquisition of individual mutations in not unanimously determined from the data. This function
computes the change in likelihood of the infered clonal assignment if two mutations are merged
into a clone. Hierarchical clustering is then used to determine the clonal structure. The result is
visualized and should be fine-tuned using the min.lik parameter.

Usage

clusterMetaclones(mutcalls, min.lik = 1, plot = TRUE)

Arguments
mutcalls mutcalls object of class mutationCalls for which varCluster has been run
min.lik specifies the minimum difference in likelihood required. This parameter is set
arbitrarily, see the vignette "Computation of clonal hierarchies and clustering of
mutations” for more information.
plot whether dendrograms should be plotted.
Value

Returns the provided mutationCalls class object with an additional ‘'mainClone’ metadata which
allows for further refinement of clonal population and association of cells with a cluster of mutations
(in this case clones).

Examples

P1 <- readRDS(system.file("extdata/sample_examplel.RDS", 6 package = "mitoClone2"))
P1 <- clusterMetaclones(P1)
access via mainClone metadata

data Mitochondrial exclusionlist

Description

List of variants that are likely not true somatic mutations and should thus be excluded

M: Mutant allele counts; N: Reference allele counts. P1: Patient 1; P2: Patient 2

6 getAlleleCount

Usage

exclusionlists
M_P1
N_P1
M_P2

N_P2

Format
A list with four entries: #’
* three: Regions of the mitochondrial genome that are within 1 nt of a 3-mer homopolymer (e.g.
AAA)

* mutaseq: Mutations in the mitochondrial genome that were reoccuring across patients (present
in more than one individual in the MutaSeq dataset)

* masked: Regions of the mitochondrial genome that are soft-masked in the UCSC or Ensembl
annotations

* rnaEDIT: Regions of the mitochondrial genome that are thought to be subject to RNA-editing
according to the REDIportal V2.0
a data frame of variable sites (columns) across single cells (rows)
An object of class data. frame with 1430 rows and 16 columns.
An object of class data. frame with 1430 rows and 16 columns.
An object of class data. frame with 1066 rows and 22 columns.

An object of class data. frame with 1066 rows and 22 columns.

getAlleleCount mutationCalls counts accessor

Description

Extracts the counts of allele for either the mutant or all the non-mutant alleles

Usage

getAlleleCount(mutcall, type = c("mutant”, "nonmutant”))

Arguments
mutcall object of class mutationCalls.
type character that is either ‘mutant or ‘nonmutant‘ depending on which allele count
the user wants to access
Value

Returns matrix of either mutant or non-mutant allele counts

getCloneLikelihood 7

Examples

load(system.file("extdata/LudwigFig7.Rda",package = "mitoClone2"))
mutantAllele_count <- getAlleleCount(LudwigFig7,type="mutant')

getClonelLikelihood mutationCalls accessors

Description

Retrieves the full matrix of likelihoods associating single cells with clones

Usage

getCloneLikelihood(mutcall, mainClones = length(mutcall@mut2clone) > @)
getMainClone(mutcall, mainClones = length(mutcall@mut2clone) > 0)
getConfidence(mutcall, mainClones = length(mutcall@mut2clone) > @)

getMut2Clone(mutcall)

Arguments
mutcall object of class mutationCalls.
mainClones Retrieve likelihoods associated with the main Clones. Defaults to TRUE if clusterMetaclones
has been run.
Value

Return TRUE if clusterMetaclones has been run otherwise returns the cell by clone matrix of
likelihood associating each cell to a given clone.

Functions

* getMainClone(): Retrieve the most likely clone associate with each cell.
» getConfidence(): Retrieve the likelihood of the most likely clone for each cell.

* getMut2Clone(): Retrieve the assignment of mutations to clones, once clusterMetaclones
has been run.

Examples

load(system.file("extdata/LudwigFig7.Rda",package =
"mitoClone2"))
likelihood_matrix <- getClonelLikelihood(LudwigFig7)

8 mitoPlot

getVarsCandidate mutationCalls cluster accessor

Description

Extracts all the putative variants that we want to use for clustering

Usage

getVarsCandidate(mutcall)

Arguments

mutcall object of class mutationCalls.

Value

Returns a character vector including all the variants to be used for clustering

Examples

load(system.file("extdata/LudwigFig7.Rda",package =
"mitoClone2"))
mutations_to_cluster <- getVarsCandidate(LudwigFig7)

mitoPlot Plot clone-specific variants in circular plots

Description

Plot clone-specific variants in circular plots

Usage

mitoPlot(
variants,
patient = NULL,
genome = "hg38",
customGenome = NULL,
showLegend = TRUE,
showLabel = TRUE

mut2GR 9

Arguments
variants Character vector of variants to plot in format 5643G>T or 5643 G>T.
patient Characet vector identifying which variant belongs to what clone. The order

should match that of the ’vars’ parameter and shoul dbe of identical length. If
none is provided, the function assumes all variants are from one single sample
which will be named "Main Clone". Default: NULL.

genome The mitochondrial genome of the sample being investigated. Please note that
this is the UCSC standard chromosome sequence. Default: hg38.

customGenome A GRanges object containing a custom annotation. If provided, this genome will
be used instead of the predefined options specified by the ‘genome* parameter.

Default is NULL.

showLegend Boolean for whether or not the gene legend should be present in the final output
plot. Default: TRUE.

showlLabel Boolean for whether or not the name of the variant should be shown as a label

in the final output plot. Default: TRUE.

Value

A ggplot object illustrating the clone specific mutations.

Examples

known.variants <- c("9001 T>C","12345 G>A","1337 G>A")
mitoPlot(known.variants)

mut2GR Convert mutation string to GRanges

Description

Convert mutation string to GRanges

Usage
mut2GR(mut)

Arguments

mut The mutation to convert to a GRanges in the format of "position reference>alternate".

Value

Returns a GRanges object containg the site of the variant along with reference/alternate allele data
in the metacolumns

Examples

mutation.as.granges <- mut2GR('1434 G>A')
mutation.as.granges.no.space <- mut2GR('1434G>A")

10 mutationCallsFromCohort

mutationCalls-class mutationCalls class

Description

To create this class from a list of bam files (where each bam file corresponds to a single cell), use
mutationCallsFromCohort ormutationCallsFromExclusionlist. To create this class if you al-
ready have the matrices of mutation counts, use its contstructor, i.e. mutationCallsFromMatrix(M
=datal, N=data2).

Slots

M A matrix of read counts mapping to the mutant allele. Columns are genomic sites and rows and
single cells.

N A matrix of read counts mapping to the nonmutant alleles. Columns are genomic sites and rows
and single cells.

ternary Discretized version describing the mutational status of each gene in each cell, where 1
signfiies mutant, O signifies reference, and ? signifies dropout

cluster Boolean vector of length ncol (M) specifying if the given mutation should be included for
clustering (TRUE) or only used for annotation.

metadata Metadata frame for annotation of single cells (used for plotting). Row names should be
the same as in M

tree Inferred mutation tree

cell2clone Probability matrix of single cells and their assignment to clones.
mut2clone Maps mutations to main clones

mainClone Probability matrix of single cells and their assignment to main clones

treeLikelihoods Likelihood matrix underlying the inference of main clones, see clusterMetaclones

mutationCallsFromCohort
Create a mutationCalls objects from nucleotide base calls and defines
a exclusionlist (cohort)

Description

Identifies relevant mitochondrial somatic variants from raw counts of nucleotide frequencies mea-
sured in single cells from several individuals. Applies two sets of filters: In the first step, filters
on coverage to include potentially noisy variants; in the second step, compares allele frequencies
between patients to remove variants that were observed in several individuals and that therefore
are unlikely to represent true somatic variants (e.g. RNA editing events). The exclusionlist derived
from the original Velten et al. 2021 dataset is available internal and can be used on single individuals
using mutationCallsFromExclusionlist

mutationCallsFromCohort 11

Usage

mutationCallsFromCohort(
BaseCounts,
sites,
patient,
MINREADS = 5,
MINCELL = 20,
MINFRAC = 0.1,
MINCELLS.PATIENT = 10,
MINFRAC.PATIENT = 9.01,
MINFRAC.OTHER = 0.1,
USE.REFERENCE = TRUE,
genome = "hg38",
customGenome = NULL

[l

)
Arguments

BaseCounts A list of base call matrices (one matrix per cell) as produced by baseCountsFromBamList
or bam2R_10x.

sites Vector specifying genomic regions, defaults to the entire mitochondrial genome.
Excepts a string but may be included as a GRanges object.

patient A character vector associating each cell / entry in the BaseCount list with a
patient

MINREADS Minimum number of reads on a site in a single cell to qualify the site as covered

MINCELL Minimum number of cells across the whole data set to cover a site

MINFRAC Fraction of reads on the mutant allele to provisionally classify a cell as mutant

MINCELLS.PATIENT
Minimum number of mutant cells per patient to classify the mutation as relevant
in that patient, AND

MINFRAC.PATIENT
Minimum fraction of mutant cells per patient to classify the mutation as relevant
in that patient

MINFRAC.OTHER Minimum fraction of mutant cells identified in a second patient for the mutation
to be excluded. Fraction relative to the fraction of of cells from the patient where
a variant is enriched.

USE.REFERENCE Boolean. The variant calls will be of the format REF>ALT where REF is de-
cided based on the selected genome annotation. If set to FALSE, the reference
allele will be the most abundant.

genome The mitochondrial genome of the sample being investigated. Please note that
this is the UCSC standard chromosome sequence. Default: hg38.

customGenome A GRanges object containing a custom annotation. If provided, this genome will
be used instead of the predefined options specified by the ‘genome* parameter.
Default is NULL.

Value

A list of mutationCalls objects (one for each patient) and an entry named exclusionlist
containing a exclusionlist of sites with variants in several individuals

12 mutationCallsFromExclusionlist

Examples

sites.gr <- GenomicRanges: :GRanges("chrM:1-15000")

BaseCounts <- bam2R_10x(file = system.file("extdata”,
"mm10_10x.bam", package="mitoClone2"), sites=sites.gr)
mutCalls <- mutationCallsFromCohort(BaseCounts,
patient=c('sample2', 'samplel’, 'sample2', 'sample2', 'samplel’'),
MINCELL=1, MINFRAC=0, MINCELLS.PATIENT=1, genome='mm1@',
sites=sites.gr)

mutationCallsFromExclusionlist
Create a mutationCalls object from nucleotide base calls using a ex-
clusionlist (single individual)

Description

Identifies relevant mitochondrial somatic variants from raw counts of nucleotide frequencies. Ap-
plies two sets of filters: In the first step, filters on coverage and minimum allele frequency to exclude
potentially noisy variants; in the second step, filters against a exclusionlist of variants that were ob-
served in several individuals and that therefore are unlikely to represent true somatic variants (e.g.
RNA editing events). These exclusionlists are created using mutationCallsFromCohort

Usage

mutationCallsFromExclusionlist(
BaseCounts,
lim.cov = 20,
min.af = 0.2,
min.num.samples = 0.01 * length(BaseCounts),
min.af.universal = min.af,
universal.var.cells = 0.95 * length(BaseCounts),
exclusionlists.use = exclusionlists,
max.var.na = 0.5,
max.cell.na = 0.95,
genome = "hg38",
customDNA = NULL,

ncores = 1,
)
Arguments
BaseCounts A list of base call matrices (one matrix per cell) as produced by baseCountsFromBamList
lim.cov Minimal coverage required per cell for a cell to be classified as covered
min.af Minimal allele frequency for a cell to be classified as mutant

min.num.samples
Minimal number of cells required to be classified as covered and mutant accord-
ing to the thresholds set in 1im.cov and min. af. Usually specified as a fraction
of the total number of cells.

mutationCallsFromMatrix 13

min.af.universal

Minimal allele frequency for a cell to be classified as mutant, in the context of
removing universal variants. Defaults to min.af, but can be set to lower values.

universal.var.cells

Maximum number of cells required to be classified as mutant according to the
threshold set in min.af.universal. Usually specified as a fraction of the total
number of cells; serves to avoid e.g. germline variants.

exclusionlists.use

max.var.na

max.cell.na

genome

customDNA

ncores

Value

List of sites to exclude for variants calling. The default exclusionlists object
included with this package contains exclude or hardmask in GRanges format.
The four exclusionlists included in this case are: "three" (hg38 sites that are
part of homopolymer(e.g. AAA) of at least 3 bp in length), "mutaseq" (sites
discovered to be overrepresented in AML SmartSeq2 data analysis from Velten
et al 2021), "masked" (sites that are softmasked in either the UCSC or Refseq
genome annotations), and "rnaEDIT" which are sites that are subjected to RNA-
editing according to the REDIportal. These lists can also be input manually by
a researcher and provided as either coordinates (as a string) or as a GRanges
objects.

Final filtering step: Remove all mutations with no coverage in more than this
fraction of cells

Final filtering step: Remove all cells with no coverage in more than this fraction
of mutations

The mitochondrial genome of the sample being investigated. Please note that
this is the UCSC standard chromosome sequence. Default: hg38.

A character vector containing a custom DNA sequence. If provided, this se-
quence will be used instead of the predefined options specified by the ‘genome*
parameter. Default is NULL.

number of cores to use for tabulating potential variants (defaults to 2)

Parameters passed to mutationCallsFromMatrix

An object of class mutationCalls

Examples

load(system.file("extdata/example_counts.Rda"”,package = "mitoClone2"))
Example <- mutationCallsFromExclusionlist(example.counts,

min.af=0.05, min.num.samples=5,

universal.var.cells = 0.5 x length(example.counts),

binarize = 0.1)

mutationCallsFromMatrix

mutationCalls constructor

Description

To be used when allele-specific count matrices are available.

14 overwriteMetaclones

Usage

mutationCallsFromMatrix(
M,
N,
cluster = NULL,
metadata = data.frame(row.names = rownames(M)),
binarize = 0.05

)
Arguments
M A matrix of read counts mapping to the mutant allele. Columns are genomic
sites and rows and single cells.
N A matrix of read counts mapping to the referece allele. Columns are genomic
sites and rows and single cells.
cluster If NULL, only mutations with coverage in 20 percent of the cells or more will be
used for the clustering, and all other mutations will be used for cluster annotation
only. Alternatively, a boolean vector of length ncol (M) that specifies the desired
behavior for each genomic site.
metadata A data.frame of metadata that will be transfered to the final output where the
row.names(metadata) correspond to the the row.names(M).
binarize Allele frequency threshold to define a site as mutant (required for some cluster-
ing methods)
Value

An object of class mutationCalls.

Examples

load(system.file("extdata/example_counts.Rda",package = "mitoClone2"))

we have loaded the example.counts object

known.variants <- c("8 T>C","4 G>A","11 G>A","7 A>G","5 G>A","15 G>A","14 G>A")
known.subset <- pullcountsVars(example.counts, known.variants)

known.subset <- mutationCallsFromMatrix(t(known.subset$M), t(known.subset$N),
cluster = rep(TRUE, length(known.variants)))

overwriteMetaclones Manually overwrite clustering of mutations into clones

Description

The function clusterMetaclones provides an automated way to group mutations into clones for
subsequent analyses (such as differential expression analyses). In practice, it may make sense to
overwrite these results manually. See the vignette ’Computation of clonal hierarchies and clustering
of mutations’ for an example.

Usage

overwriteMetaclones(mutcalls, mutation2clones)

plotClones 15

Arguments
mutcalls mutcalls object of class mutationCalls for which clusterMetaclones has
been run
mutation2clones
Named integer vector that assigns mutations to clones. See the vignette *Com-
putation of clonal hierarchies and clustering of mutations’ for an example.
Value

Returns the provided mutationCalls class object with the 'mainClone’ metadata overwritten with
the manual values provided by the user.

Examples

P1 <- readRDS(system.file("extdata/sample_examplel.RDS",package = "mitoClone2"))
new.n <- seq(17)

names(new.n) <- names(getMut2Clone(P1))

P1.newid <- overwriteMetaclones(P1,new.n)

plotClones Plot clonal assignment of single cells

Description

Creates a heatmap of single cell mutation calls, clustered using PhISCS.

Usage
plotClones(mutcalls, what = c("alleleFreq”, "ternary"), show = c(), ...)
Arguments
mutcalls object of class mutationCalls.
what One of the following: alleleFreq: The fraction of reads mapping to the mutant
allele or ternary: Ternarized mutation status
show boolean vector specifying for each mutation if it should be plotted on top of the
heatmap as metadata; defaults to mutations not used for the clustering !mutcalls@cluster
any arguments passed to pheatmap
Value

Returns TRUE only used for generating a PostScript tree image of the putative mutation tree

Examples

P1 <-
readRDS(system.file("extdata/sample_examplel.RDS",package =
"mitoClone2"))

plotClones(P1)

16 pullcounts Vars

predictCellAssignment Predict cell assignments from fitted Vireo model

Description

Predict cell assignments from fitted Vireo model

Usage
predictCellAssignment(model, threshold = 0.9)

Arguments

model Fitted Vireo model

threshold Minimum probability threshold for assignment
Value

Data frame with cell assignments and probabilities

Examples

load(system.file("extdata/LudwigFig7.Rda",package = "mitoClone2"))

test.data <- list(N=as.matrix(t(LudwigFig7@N)),M=as.matrix(t(LudwigFig7@M)))

vireoModel <- vireoFit(test.data, n.donor =9, filter.variants = FALSE, min_cells_per_sample = 5)
cellAssignments <- predictCellAssignment(vireoModel, threshold = 0.9)

pullcountsVars Pull variant counts

Description

Pull variant counts

Usage

pullcountsVars(BaseCounts, vars, cells = NULL)

Arguments
BaseCounts A list of base call matrices (one matrix per cell) as produced by baseCountsFromBamList
vars Character vector of variants to pull, in format 5643G>T
cells Character vector for cells to select, or NULL if all cells from the input are to be
used
Value

A list with two entries, M (count table on the variant allele) and N (count table on the reference
allele)

quick_cluster 17

Examples

load(system.file("extdata/example_counts.Rda"”,package = "mitoClone2"))
known.variants <- c("9 T>C","12 G>A","13 G>A")
counts.known.vars <- pullcountsVars(example.counts, vars=known.variants)

quick_cluster Quick clustering of mutations

Description

Performs a quick hierarchical clustering on a object of class mutationCalls. See varCluster for
an alternative that infers mutational trees and uses sound models of dropout.

Usage
quick_cluster(mutcalls, binarize = FALSE, drop_empty = TRUE, ...)
Arguments
mutcalls object of class mutationCalls.
binarize If FALSE, will use raw allele frequencies for the clustering. If TRUE, will use
binarized mutation/reference/dropout calls.
drop_empty Remove all rows in the provided mutcalls object where no cells exhibit a muta-
tion.
Parameters passed to pheatmap
Value

The result of running pheatmap

Examples

load(system.file("extdata/LudwigFig7.Rda",package = "mitoClone2"))
quickCluster <- quick_cluster(LudwigFig7)

removeWindow Remove mutations that occuring at the same site

Description

Mutations co-occuring at the same genomic position may often be the result of sequencing artifacts
or technical biases. In cases where the user which to drop these from a result this function may be
used. ONLY WORKS FOR MITOCHONDRIAL MUTATIONS.

Usage

removeWindow(x, window = 1)

18 setVarsCandidate

Arguments

X A list of strings that comprise sites that will be filtered

window Integer of how close mutations must be to one another (in bp) to be removed
Value

Returns the same list of mutations excluding those, if any, that fall within the same window =

Examples

P1.muts <- rep(TRUE, 3)

names(P1.muts) <- c(”X2537GA","X3351TC","X3350TC")
names(P1.muts) <- gsub("~X","",

gsub (" (\\d+) ([AGCTI) (LAGCTI)", "\\1 \\2>\\3",names(P1.muts)))
P1.muts <- P1.muts[removeWindow(names(P1.muts))]

setVarsCandidate mutationCalls cluster setter

Description

Sets the putative variants that we want to use for clustering

Usage

setVarsCandidate(mutcall, varlist)

Arguments

mutcall object of class mutationCalls.

varlist vector of booleans with the names set to the variants to use for clustering
Value

Sets the cluster slot on a mutationCalls object

Examples

load(system.file("extdata/LudwigFig7.Rda",package =
"mitoClone2"))

mutations_to_cluster <- getVarsCandidate(LudwigFig7)
mutations_to_cluster[] <- rep(c(TRUE,FALSE),each=19)
LudwigFig7 <- setVarsCandidate(LudwigFig7,mutations_to_cluster)

varCluster 19

varCluster Inference of mutational trees by of single cell mutational status

Description

From data on the observed mutational status of single cells at a number of genomic sites, computes
a likely phylogenetic tree using PhISCS (https://github.com/sfu-compbio/PhISCS) and associates
single cells with leaves of the tree. The function clusterMetaclones should be called on the
output in order to group mutations into clones using a likelihood-based approach.

Usage

varCluster(
mutcalls,
fn=0.1,
fp = 0.02,
cores =1,
time = 10000,
tempfolder = tempdir(),
python_env = ""
force_recalc = FALSE,
method = "SCITE"

)
Arguments

mutcalls object of class mutationCalls.

fn false negative rate, i.e. the probability of only observing the reference allele if
there is a mutation. #add gene-wise

fp false positive, i.e. the probability of observing the mutant allele if there is no
mutation.

cores number of cores to use for PhISCS (defaults to 1)

time maximum time to be used for PhISCS optimization, in seconds (defaults to
10000)

tempfolder temporary folder to use for PhISCS output

python_env Any shell commands to execute in order to make the gurobi python package

available. The easiest solution is running R from an environment where the
gurobi python package is avaiable. In some settings (e.g. RStudio Server), this
parameter can be used instead. muta_clone executes PhISCS using a system
call to python. The value of this parameter is prepended to the call. If you have a
conda environment myenv that contains gurobipy, source activate myenv can
work. Occassionally RStudio Server modifies your PATH so that that the conda
and source commands are not available. In that case you can for example use
export PATH=/path/to/conda/: $PATH; source activate myenv. easybuild
users can module load anaconda/v3; source activate myenv

force_recalc Rerun PhISCS even if the tempfolder contains valid PhISCS output

method A string variable of either PhISCS or SCITE depending on the tree-inferring
software the user wants to use. Default: PhISCS

20

Value

vireo

an object of class mutationCalls, with an inferred tree structure and cell to clone assignment

added.

Examples

load(system.file("extdata/LudwigFig7.Rda",package =

"mitoClone2"))

LudwigFig7 <- varCluster(LudwigFig7,
python_env = "" method="'SCITE')

vireo

Initialize Vireo model

Description

Initialize Vireo model

Usage

vireo(
n.cell,
n.var,
n.donor,
n.gt = 3,

learn.gt = TRUE,

fix.beta.sum

= FALSE,

beta.mu.init = NULL,
beta.sum.init = NULL,
id.prob.init = NULL,
gt.prob.init = NULL

Arguments

n.cell

n.var

n.donor

n.gt

learn.gt
fix.beta.sum
beta.mu.init
beta.sum.init
id.prob.init

gt.prob.init

Number of cells

Number of variants

Number of donors

Number of genotype states (default 3: 0,1,2)
Whether to learn genotype probabilities
Whether to fix beta sum parameters

Initial beta mu values

Initial beta sum values

Initial ID probabilities

Initial genotype probabilities

vireoFit 21

vireoFit Fit Vireo model with multiple initializations

Description

Fit Vireo model with multiple initializations

Usage

vireoFit(
data,
n.donor,
n.gt = 3,
learn.gt =
n.init = 10,
max.iter = 200,
random.seed = NULL,
verbose = TRUE,

TRUE,

)
Arguments
data A mitoClone?2 data object containing M (ALT) and N (non-ALT) matrices
n.donor Number of donors to identify
n.gt Number of genotype states (default 3)
learn.gt Whether to learn genotype probabilities
n.init Number of random initializations
max.iter Maximum iterations per initialization
random. seed Random seed for reproducibility
verbose Print progress messages
Additional arguments passed to vireo.filter
Value
Best fitted Vireo model
Examples

load(system.file("extdata/LudwigFig7.Rda",package = "mitoClone2"))
test.data <- list(N=as.matrix(t(LudwigFig7@N)),M=as.matrix(t(LudwigFig7@M)))
vireoModel <- vireoFit(test.data, n.donor =9, filter.variants = FALSE, min_cells_per_sample = 5)

Index

* datasets removeWindow, 17

data, 5
setVarsCandidate, 18

bam2R_10x, 2, 11

baseCountsFromBamList, 4, 4, 11, 12, 16 varCluster, 5,17, 19
vireo, 20

clusterMetaclones, 5, 7, 10, 14, 15, 19 vireoFit, 21

data, 5

exclusionlists (data), 5

getAlleleCount, 6
getCloneLikelihood, 7

getConfidence (getCloneLikelihood), 7
getMainClone (getCloneLikelihood), 7
getMut2Clone (getClonelLikelihood), 7
getVarsCandidate, 8

list, 3

M_P1 (data), 5

M_P2 (data), 5

matrix, 3

mitoPlot, 8

mut2GR, 9

mutationCalls, 5-8, 11, 13—15, 17-20

mutationCalls (mutationCalls-class), 10

mutationCalls-class, 10

mutationCallsFromCohort, 4, 10, 10, 12

mutationCallsFromExclusionlist, 4, 10,
12

mutationCallsFromMatrix, 13, 13

N_P1 (data), 5
N_P2 (data), 5

overwriteMetaclones, 14
pheatmap, 15, 17
plotClones, 15
predictCellAssignment, 16
pullcountsVars, 16

quick_cluster, 17

22

	bam2R_10x
	baseCountsFromBamList
	clusterMetaclones
	data
	getAlleleCount
	getCloneLikelihood
	getVarsCandidate
	mitoPlot
	mut2GR
	mutationCalls-class
	mutationCallsFromCohort
	mutationCallsFromExclusionlist
	mutationCallsFromMatrix
	overwriteMetaclones
	plotClones
	predictCellAssignment
	pullcountsVars
	quick_cluster
	removeWindow
	setVarsCandidate
	varCluster
	vireo
	vireoFit
	Index

