Package ‘knowYourCG’

January 30, 2026

Type Package
Title Functional analysis of DNA methylome datasets
Version 1.6.3

Description KnowYourCG (KYCG) is a supervised learning framework designed for
the functional analysis of DNA methylation data. Unlike existing
tools that focus on genes or genomic intervals, Know YourCG
directly targets CpG dinucleotides, featuring automated
supervised screenings of diverse biological and technical
influences, including sequence motifs, transcription factor
binding, histone modifications, replication timing,
cell-type-specific methylation, and trait-epigenome
associations. Know YourCG addresses the challenges of data
sparsity in various methylation datasets, including low-pass
Nanopore sequencing, single-cell DNA methylomes,
5-hydroxymethylation profiles, spatial DNA methylation maps, and
array-based datasets for epigenome-wide association studies and
epigenetic clocks.

Depends R (>=4.4.0)
URL https://github.com/zhou-1lab/knowYourCG

BugReports https://github.com/zhou-lab/knowYourCG/issues
License MIT + file LICENSE

VignetteBuilder knitr

Encoding UTF-8

LazyData false

RoxygenNote 7.3.3

Imports sesameData, ExperimentHub, AnnotationHub, dplyr, methods,
rlang, GenomicRanges, IRanges, reshape2, S4 Vectors, stats,
stringr, utils, ggplot2, ggrepel, tibble, wheatmap, magrittr

biocViews Epigenetics, DNAMethylation, Sequencing, SingleCell,
Spatial, Transcription, MethylationArray

Suggests testthat (>= 3.0.0), SummarizedExperiment, rmarkdown, knitr,
sesame, gprofiler2, ggrastr

Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/know YourCG

1

https://github.com/zhou-lab/knowYourCG
https://github.com/zhou-lab/knowYourCG/issues

2 Contents

git_branch RELEASE_3_22

git_last_commit cal28fc

git_last_commit_date 2026-01-07

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Zhou Wanding [aut, fnd] (ORCID:

<https://orcid.org/0000-0001-9126-1932>),
Goldberg David [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9622-4708>),
Fu Hongxiang [ctb]

Maintainer Goldberg David <golddc72@pennmedicine.upenn.edu>

Contents
aggregateTestEnrichments 3
annoProbes L L L e e 3
buildGeneDBs e 4
dbStats e e e e 5
df_master e e 6
getDBs . . . e 7
kycgDataCache e 8
kycgDataGet e e e 8
KYCG_plotBar e 9
KYCG_plotDot e 9
KYCG_plotEnrichAll o o 10
KYCG_plotLollipop o 11
KYCG_plotManhattan e 12
KYCG_plotMeta e 13
KYCG_plotMetaEnrichment 13
KYCG_plotPointRange 14
KYCG_plotSetEnrichment 14
KYCG_plotVolcano o e 15
KYCG_plotWaterfall 16
linkProbesToProximalGenes 16
LStDBGroups o e e 17
testEnrichment e 18
testEnrichment2 19
testEnrichmentFisher 20
testEnrichmentSEA 21
testEnrichmentSpearmano oL oo 22
testProbeProximity L. e 22

Index 24

https://orcid.org/0000-0001-9126-1932
https://orcid.org/0000-0002-9622-4708

aggregateTestEnrichments

aggregateTestEnrichments
Aggregate test enrichment results

Description

Aggregate test enrichment results

Usage

aggregateTestEnrichments(result_list, column = "estimate”, return_df = FALSE)
Arguments

result_list a list of results from testEnrichment

column the column name to aggregate (Default: estimate)

return_df whether to return a merged data frame
Value

a matrix for all results

Examples

pick some big TFBS-overlapping CpG groups
kycgDataCache(data_titles=
c("KYCG.MM285. TFBSconsensus.20220116", "KYCG.MM285. chromHMM. 20210210"))

sesameData: : sesameDataCache(data_titles=
c("probeIDSignature”, "MM285.address"))

cg_lists <- getDBs("MM285.TFBS")

queries <- cg_lists[(sapply(cg_lists, length) > 40000)]
result_list <- lapply(queries, testEnrichment, "MM285.chromHMM")
mtx <- aggregateTestEnrichments(result_list)

annoProbes Annotate Probe IDs using KYCG databases

Description

see sesameData_annoProbes if you’d like to annotate by genomic coordinates (in GRanges)

4 buildGeneDBs

Usage

annoProbes(
probelDs,
databases,
db_names = NULL,
platform = NULL,
sep = ",",
indicator = FALSE,
silent = FALSE

)
Arguments
probeIDs probe IDs in a character vector
databases character or actual database (i.e. list of probe IDs)
db_names specific database (default to all databases)
platform EPIC, MM28S5 etc. will infer from probe IDs if not given
sep delimiter used in paste
indicator return the indicator matrix instead of a concatenated annotation (in the case of
have multiple annotations)
silent suppress message
Value

named annotation vector, or indicator matrix

Examples

kycgDataCache(data_titles="KYCG.MM285.designGroup.20210210")
probes <- names(sesameData::sesameData_getManifestGRanges("”"MM285"))
anno <- annoProbes(probelDs=probes, "designGroup"”, silent = TRUE)

buildGeneDBs build gene-probe association database

Description

build gene-probe association database

Usage

buildGeneDBs(
probeIDs = NULL,
platform = NULL,
genome = NULL,
max_distance = 10000,
silent = FALSE

dbStats 5

Arguments
probelDs the query probe list. If NULL, use all the probes on the platform
platform HM450, EPIC, MM285, Mammal40, will infer from query if not given
genome hg38, mm10, ..., will infer if not given.

max_distance probe-gene distance for association
silent suppress messages

Value

gene databases

Examples

sesameData: : sesameDataCache(data_titles=
c("EPIC.address"”, "genomeInfo.hg38", "probeIDSignature”))
query <- c("cg@4707299", "cgl13380562", "cgl0480749")
dbs <- buildGeneDBs(query, platform = "EPIC")
testEnrichment(query, dbs, platform = "EPIC")

dbStats dbStats aggregates methylation of a given betas matrix over specified
database set features

Description

dbStats aggregates methylation of a given betas matrix over specified database set features

Usage
dbStats(
betas,
databases,
fun = mean,
na.rm = TRUE,
n_min = NULL,
f_min = 0.1,
long = FALSE
)
Arguments
betas matrix of beta values where probes are on the rows and samples are on the
columns
databases List of vectors corresponding to probe locations for which the features will be
extracted
fun aggregation function, default to mean
na.rm whether to remove NA
n_min min number of non-NA for aggregation function to apply, overrides f_min
f_min min fraction of non-NA for aggregation function to apply

long produce long-form result

6 df_master

Value

matrix with samples on the rows and database set on the columns

Examples

library(SummarizedExperiment)
sesameData: : sesameDataCache(data_titles=

c("MM285.467.SE. tissue20Kprobes”, "KYCG.MM285.probeType.20210630"))
se <- sesameData::sesameDataGet ("MM285.467.SE.tissue20Kprobes")
head(dbStats(assay(se), "MM285.probeType”)[,1:31)
sesameData: : sesameDataGet_resetEnv()

df _master Master data frame for all object to cache

Description

This is an internal object which will be updated on every new release library(ExperimentHub) eh <-
query(ExperimentHub(localHub=FALSE), "know YourCG") eh <- query(ExperimentHub(localHub=FALSE),
"sesameData") # older data data.frame(name=eh$title, eh=names(eh))

Format
A data frame with the following columns:

Comments Additional comments about the database object
EHID ExperimentHub ID for the object

VERSION Package version

IN_USE Logical indicating if the database is currently in use
Title Name of the know YourCG database object
Description Description of the database object

BiocVersion Bioconductor version number

Genome Genome assembly (e.g., hg38, mm10)

SourceType Type of source data (e.g., RDA)

SourceUrl URL to the source of the data

SourceVersion Version or date of the source data

Species Species name (e.g., Homo sapiens)

Taxonomyld NCBI Taxonomy ID

Coordinate_1_based Logical indicating if coordinates are 1-based
DataProvider Provider of the data (e.g., ZhouLab)
Maintainer Maintainer name and email

RDataClass R class of the data object

DispatchClass Dispatch class for loading the data
RDataPath Path to the RData file

Location_Prefix Prefix for alternative data location (e.g., Zenodo)
Tags Additional tags for categorization

Notes Additional notes about the database object

getDBs

Details

Cache location is default to /Users/zhouw3/Library/Caches/org.R-project.R/R/ExperimentHub/

Value

master sheet of know YourCG objects

getDBs Get databases by full or partial names of the database group(s)

Description

Get databases by full or partial names of the database group(s)

Usage

getDBs(
group_nms,
db_names = NULL,
platform = NULL,
summary = FALSE,
allow_multi = FALSE,

type = NULL,
silent = FALSE
)
Arguments
group_nms database group names
db_names name of the database, fetech only the given databases
platform EPIC, HM450, MM285, ... If given, will restrict to that platform.
summary return a summary of database instead of db itself
allow_multi allow multiple groups to be returned for
type numerical, categorical, default: all
silent no messages each query.
Value

a list of databases, return NULL if no database is found

Examples

kycgDataCache(data_titles=
c("KYCG.MM285.chromHMM. 20210210" , "KYCG.MM285 . probeType. 20210630"))
dbs <- getDBs("MM285.chromHMM™)

dbs <- getDBs(c("MM285.chromHMM", "MM285.probeType”))

kycgDataGet

kycgDataCache Cache KnowYourCG data

Description

Cache KnowYourCG data

Usage

kycgDataCache(data_titles = NULL)

Arguments

data_titles data to cache, if not given will cache all

Value

TRUE

Examples

kycgDataCache("KYCG.HM27 .Mask.20220123")
to cache all data: kycgDataCache()

kycgDataGet Get KnowYourCG data

Description

Get Know YourCG data

Usage

kycgDataGet(title, verbose = FALSE)

Arguments

title title of the data

verbose whether to output ExperimentHub message
Value

data object

Examples

kycgDataCache ("KYCG.MSA.CGI.20220904")
EPIC.1.SigDF <- kycgDataGet('KYCG.MSA.CGI.20220904")

KYCG_plotBar

KYCG_plotBar Bar plot to show most enriched CG groups from testEnrichment

Description

The input data frame should have an "estimate" and a "FDR" columns.

Usage

KYCG_plotBar(df, y = "-logl1@(FDR)", n = 20, order_by = "FDR", label = FALSE)
Arguments

df KYCG result data frame

y the column to be plotted on y-axis

n number of CG groups to plot

order_by the column by which CG groups are ordered

label whether to label significant bars
Details

Top CG groups are determined by estimate (descending order).

Value

grid plot object

Examples

KYCG_plotBar(data. frame(
estimate=runif(10,0,10), FDR=runif(10,0,1), nD=10,

non

overlap=as.integer(runif(10,0,30)), group="g", dbname=seq_len(10)))

KYCG_plotDot Dot plot to show most enriched CG groups from testEnrichment

Description

The input data frame should have an "estimate" and a "FDR" columns.

10 KYCG_plotEnrichAll

Usage
KYCG_plotDot(
df,
y = "-log1@(FDR)",
n = 20,
order_by = "FDR",
title = "Enriched Knowledgebases",
label_by = "dbname”,
size_by = "overlap”,
color_by = "estimate”,
short_label = FALSE
)
Arguments
df KYCG result data frame
y the column to be plotted on y-axis
n number of CG groups to plot
order_by the column by which CG groups are ordered
title plot title
label_by the column for label
size_by the column by which CG group size plot
color_by the column by which CG groups are colored
short_label omit group in label
Details

Top CG groups are determined by estimate (descending order).

Value

grid plot object (by ggplot)

Examples

KYCG_plotDot(data. frame(
estimate=runif(10,0,10), FDR=runif(10,0,1), nD=runif(10,10,20),

non

overlap=as.integer(runif(10,0,30)), group="g", dbname=seq_len(10)))

KYCG_plotEnrichAll plot enrichment test result

Description

plot enrichment test result

KYCG_plotLollipop

11

Usage
KYCG_plotEnrichAll(
df,
fdr_max = 25,
n_label = 15,

min_estimate = 0,

short_label =

Arguments

df

fdr_max
n_label
min_estimate

short_label

Value

grid object

Examples

TRUE

test enrichment result data frame
maximum fdr for capping
number of database to label
minimum estimate

use short label

query <- getDBs("MM285.designGroup”)[["PGCMeth"]]
res <- testEnrichment(query, platform="MM285")

KYCG_plotEnrichAl

1(res)

KYCG_plotLollipop

creates a lollipop plot of log(estimate) given data with fields estimate.

Description

creates a lollipop plot of log(estimate) given data with fields estimate.

Usage

KYCG_plotLollipop(df, label_column = "dbname"”, n = 20)

Arguments

df
label_column

n

Value

ggplot lollipop plot

DataFrame where each row is a database name with its estimate.
column in df to be used as the label (default: dbname)

Integer representing the number of top enrichments to report. Optional. (De-
fault: 10)

12 KYCG_plotManhattan

Examples

KYCG_plotLollipop(data.frame(
estimate=runif(10,0,10), FDR=runif(10,0,1), nD=runif(10,10,20),

overlap=as.integer(runif(10,0,30)), group="g",
dbname=as.character(seq_len(10))))

KYCG_plotManhattan KYCG_plotManhattan makes a manhattan plot to summarize EWAS
results

Description

KYCG_plotManhattan makes a manhattan plot to summarize EWAS results

Usage

KYCG_plotManhattan(
vals,
platform = NULL,
genome = NULL,
title = NULL,
rasterize = FALSE,
rasterize_thres = 3,
label_min = 100,

col = c("wheat1”, "sienna3"),
ylabel = "Value”
)
Arguments
vals named vector of values (P,Q etc), vector name is Probe ID.
platform String corresponding to the type of platform to use for retrieving GRanges coor-
dinates of probes. Either MM285, EPIC, HM450, or HM27. If it is not provided,
it will be inferred from the query set probelDs (Default: NA).
genome hg38, mm10, ..., will infer if not given. and provide the following argument ...,
genome = sesameAnno_buildManifestGRanges("downloaded_file"),... to this
function.
title title for plot
rasterize if true use ggrastr to rasterize non-significant data.

rasterize_thres
the threshold of rasterize

label_min Threshold above which data points will be labelled with Probe ID
col color
ylabel y-axis label

Value

a ggplot object

KYCG_plotMeta 13

Examples

see vignette for examples

KYCG_plotMeta Plot meta gene or other meta genomic features

Description

Plot meta gene or other meta genomic features

Usage
KYCG_plotMeta(betas, platform = NULL)

Arguments

betas a named numeric vector or a matrix (row: probes; column: samples)

platform if not given and x is a SigDF, will be inferred the meta features

Value

a grid plot object

Examples

library(sesameData)

library(sesame)

sdf <- sesameDataGet("EPIC.1.SigDF")
KYCG_plotMeta(getBetas(sdf))

KYCG_plotMetaEnrichment
Plot meta gene or other meta genomic features

Description

Plot meta gene or other meta genomic features

Usage
KYCG_plotMetaEnrichment (result_list)

Arguments

result_list one or a list of testEnrichment

Value

a grid plot object

14 KYCG_plotSetEnrichment

Examples

cg_lists <- getDBs("MM285.TFBS")

queries <- cg_lists[(sapply(cg_lists, length) > 40000)]

result_list <- lapply(queries, testEnrichment,
"MM285.metagene”, silent=TRUE, platform="MM285")

KYCG_plotMetaEnrichment(result_list)

KYCG_plotPointRange Plot point range for a list of enrichment testing results against the
same set of databases

Description

Plot point range for a list of enrichment testing results against the same set of databases

Usage

KYCG_plotPointRange(result_list)

Arguments

result_list a list of testEnrichment resultsx

Value

grid plot object

Examples

pick some big TFBS-overlapping CpG groups

cg_lists <- getDBs("MM285.TFBS")

queries <- cg_lists[(sapply(cg_lists, length) > 40000)]

result_list <- lapply(queries, testEnrichment,
"MM285.chromHMM" | platform="MM285")

KYCG_plotPointRange(result_list)

KYCG_plotSetEnrichment
Plot Set Enrichment

Description

Plot Set Enrichment

Usage

KYCG_plotSetEnrichment(result, n_sample = 1000, n_presence = 200)

KYCG_plotVolcano 15

Arguments
result result object as returned from an element of the list of testEnrichmentSEAC(...,
prepPlot=TRUE)
n_sample number of CpGs to sample
n_presence number of overlap to sample for the plot
Value
grid object for plot
Examples

query <- getDBs("KYCG.MM285.designGroup”)[["VMR"]]
db <- getDBs("MM285.seqContextN", "distToTSS")

res <- testEnrichmentSEA(query, db, prepPlot = TRUE)
KYCG_plotSetEnrichment (res[[1]1])

KYCG_plotVolcano creates a volcano plot of -log2(p.value) and log(estimate) given data
with fields estimate and p.value.

Description

creates a volcano plot of -log2(p.value) and log(estimate) given data with fields estimate and p.value.

Usage
KYCG_plotVolcano(df, label_by = "dbname"”, alpha = 0.05)

Arguments

df DataFrame where each field is a database name with two fields for the estimate

and p.value.

label_by column in df to be used as the label (default: dbname)

alpha Float representing the cut-off alpha value for the plot. Optional. (Default: 0.05)
Value

ggplot volcano plot
Examples

KYCG_plotVolcano(data. frame(
estimate=runif(10,0,10), FDR=runif(10,0,1), nD=runif(10,10,20),

"non

overlap=as.integer(runif(10,0,30)), group="g", dbname=seq_len(10)))

16 linkProbesToProximalGenes

KYCG_plotWaterfall create a waterfall plot of log(estimate) given test enrichment

Description

create a waterfall plot of log(estimate) given test enrichment

Usage
KYCG_plotWaterfall(
df,
order_by = "Log2(OR)",
size_by = "-logl1@(FDR)",
label_by = "dbname”,
n_label = 10
)
Arguments
df data frame where each row is a database with test enrichment result
order_by the column by which CG groups are ordered
size_by the column by which CG group size plot
label_by column in df to be used as the label (default: dbname)
n_label number of datapoints to label
Value
grid
Examples
library(SummarizedExperiment)
library(sesameData)
df <- rowData(sesameDataGet('MM285.tissueSignature'))
query <- df$Probe_ID[df$branch == "fetal_brain” & df$type == "Hypo"]

results <- testEnrichment(query, "TFBS", platform="MM285")
KYCG_plotWaterfall(results)

linkProbesToProximalGenes
find genes in genomic proximity to given Infinium probes

Description

This is a convenient function that uses sesameData_getGenomelnfo() to retrieve stored gene mod-
els.

listDBGroups 17

Usage

linkProbesToProximalGenes(probeIDs, platform = NULL, genome = NULL)

Arguments
probelDs character vector of probe IDs
platform HM450, EPIC, EPICv2, MM285, MSA, ..., will infer from probe ID if not given
genome hg38, hg19, mm10, this is usually inferred from platform.

Details

For finer control, such as taking only genes by their promoters, please use sesameData_getTxnGRanges
followed by sesameData_annoProbes(). See code of this convenient function for details.

Value

a data frame annotate gene list linked to each given probes

Examples

library(SummarizedExperiment)
probes = rowData(sesameData::sesameDataGet('MM285.tissueSignature'))$Probe_ID[1:10]
linkProbesToProximalGenes(probes, platform = "MM285")

1istDBGroups List database group names

Description

List database group names

Usage

listDBGroups(filter = NULL, path = NULL, type = NULL)

Arguments
filter keywords for filtering
path file path to downloaded knowledgebase sets
type categorical, numerical (default: all)

Value

a list of db group names

Examples

head(1istDBGroups("”chromHMM"))
or listDBGroups(path = "~/Downloads”)

18

testEnrichment

testEnrichment

testEnrichment tests for the enrichment of query in knowledgebase sets

Description

testEnrichment tests for the enrichment of query in knowledgebase sets

Usage

testEnrichment(

query,

databases =

universe =

alternative
include_genes

NULL,
NULL,

"greater”,
= FALSE,

platform = NULL,
silent = FALSE,
mtc_by_group = TRUE,
mtc_method = "fdr"

Arguments

query

databases

universe

alternative

include_genes

platform

silent
mtc_by_group

mtc_method

Value

For array input, it is a vector of probes of interest (e.g., significant differen-
tial methylated probes). For sequencing data input, it expect the file name for
YAME-compressed CG sets.

List of vectors corresponding to the database sets of interest with associated
meta data as an attribute to each element. Optional. (Default: NA)

Vector of probes in the universe set containing all of the probes to be considered
in the test. If it is not provided, it will be inferred from the provided platform.
(Default: NA).

"two.sided", "greater", or "less"
include gene link enrichment testing

String corresponding to the type of platform to use. Either MM285, EPIC,
HM450, or HM27. If it is not provided, it will be inferred from the query set
probelDs (Default: NA).

output message? (Default: FALSE)
peform multiple testing correction within knowledgebase groups (Default: TRUE)

method for multiple test correction (default: fdr)

A data frame containing features corresponding to the test estimate, p-value, and type of test.

testEnrichment2

Examples

library(SummarizedExperiment)

library(sesameData)

library(knowYourCG)
kycgDataCache(data_titles="KYCG.MM285.chromHMM.20210210")
sesameDataCache ("MM285. tissueSignature")

df <- rowData(sesameDataGet("MM285.tissueSignature”))
probes <- df$Probe_ID[df$branch == "B_cell”]

res <- testEnrichment(probes, "chromHMM”, platform="MM285")

Define temporary directory and file URLs

temp_dir <- tempdir()

knowledgebase <- file.path(temp_dir, "ChromHMM.20220414.cm")
query <- file.path(temp_dir, "mm10_f3_10cells.cg")

URLs for the knowledgebase and query files

knowledgebase_url <- paste@(
"https://zenodo.org/records/18175656/files/",
"ChromHMM. 20220414 .cm"

)

query_url <- paste@d(
"https://zenodo.org/records/18176004/files/",
"mm10_f3_10cells.cg"

)

Download the files

download.file(knowledgebase_url, destfile = knowledgebase)
download.file(query_url, destfile = query)

Confirm file download

list.files(temp_dir)

res = testEnrichment(query, knowledgebase)

testEnrichment?2 Test enrichment from YAME-compressed CG sets

Description

Test enrichment from YAME-compressed CG sets

Usage

testEnrichment2(
query_fn,
knowledge_fn,
universe_fn = NULL,
alternative = "greater"

Arguments

query_fn File path to query

20 testEnrichmentFisher

knowledge_fn File path to knowledgebase

universe_fn optional file path to universe
alternative greater, less
Value

A single concatenated string.

Examples

if (.Platform$0S.type!="windows") {

kfn = system.file("extdata”, "chromhmm.cm”, package = "knowYourCG")
gfn = system.file("extdata”, "onecell.cg", package = "knowYourCG")
testEnrichment2(qfn, kfn)

}

testEnrichmentFisher testEnrichmentFisher uses Fisher’s exact test to estimate the associa-
tion between two categorical variables.

Description

Estimates log2 Odds ratio

Usage
testEnrichmentFisher(query, database, universe, alternative = "greater")
Arguments
query Vector of probes of interest (e.g., significant probes)
database Vectors corresponding to the database set of interest with associated meta data
as an attribute to each element.
universe Vector of probes in the universe set containing all of
alternative greater or two.sided (default: greater) the probes to be considered in the test.
(Default: NULL)
Value

A DataFrame with the estimate/statistic, p-value, and name of test for the given results.

testEnrichmentSEA 21

testEnrichmentSEA uses the GSEA-like test to estimate the association of a categorical
variable against a continuous variable.

Description

estimate represent enrichment score and negative estimate indicate a test for depletion

Usage

testEnrichmentSEA(
query,
databases,
platform = NULL,
silent = FALSE,
precise = FALSE,
prepPlot = FALSE

)
Arguments
query query, if numerical, expect categorical database, if categorical expect numerical
database
databases database, numerical or categorical, but needs to be different from query
platform EPIC, MM285, ..., infer if not given
silent suppress message (default: FALSE)
precise whether to compute precise p-value (up to numerical limit) of interest.
prepPlot return the raw enrichment scores and presence vectors for plotting
Value

A DataFrame with the estimate/statistic, p-value, and name of test for the given results.

Examples

sesameData: : sesameDataCache(data_titles=
c("KYCG.MM285.designGroup.20210210", "KYCG.MM285. seqContextN.20210630",
"probelDSignature”))

query <- getDBs("KYCG.MM285.designGroup”)[["TSS"]1]

res <- testEnrichmentSEA(query, "MM285.seqContextN")

22 testProbeProximity

testEnrichmentSpearman

testEnrichmentSpearman uses the Spearman statistical test to estimate
the association between two continuous variables.

Description

testEnrichmentSpearman uses the Spearman statistical test to estimate the association between two
continuous variables.

Usage

testEnrichmentSpearman(num_query, num_db)

Arguments
num_query named numeric vector of probes of interest where names are probe IDs (e.g
significant probes)
num_db List of vectors corresponding to the database set of interest with associated meta
data as an attribute to each element.
Value

A DataFrame with the estimate/statistic, p-value, and name of test for the given results.

testProbeProximity testProbeProximity tests if a query set of probes share closer genomic
proximity than if randomly distributed

Description

testProbeProximity tests if a query set of probes share closer genomic proximity than if randomly
distributed

Usage

testProbeProximity(
probelDs,
gr = NULL,
platform = NULL,
iterations = 100,
bin_size = 1500

testProbeProximity

Arguments
probeIDs

gr
platform

iterations

bin_size

Value

23

Vector of probes of interest (e.g., significant probes)
GRanges to draw samples and compute genomic distances

String corresponding to the type of platform to use. Either MM285, EPIC,
HM450, or HM27. If it is not provided, it will be inferred from the query set
probelDs (Default: NA).

Number of random samples to generate null distribution (Default: 100).

the poisson interval size for computing neighboring hits

list containing a dataframe for the poisson statistics and a data frame for the probes in close prox-

imity

Examples

sesameData: : sesameDataCache(data_titles=
c("MM285.tissueSignature”, "MM285.address”, "probeIDSignature”))
library(SummarizedExperiment)

df <- rowData(sesameData::sesameDataGet ("MM285.tissueSignature”))
probes <- df$Probe_ID[df$branch == "B_cell”]

res <- testProbeProximity(probelDs=probes,platform="MM285")
sesameData: : sesameDataGet_resetEnv()

Index

aggregateTestEnrichments, 3
annoProbes, 3

buildGeneDBs, 4

dbStats, 5
df_master, 6

getDBs, 7

KYCG_plotBar, 9
KYCG_plotDot, 9
KYCG_plotEnrichAll, 10
KYCG_plotLollipop, 11
KYCG_plotManhattan, 12
KYCG_plotMeta, 13
KYCG_plotMetaEnrichment, 13
KYCG_plotPointRange, 14
KYCG_plotSetEnrichment, 14
KYCG_plotVolcano, 15
KYCG_plotWaterfall, 16
kycgDataCache, 8
kycgDataGet, 8

linkProbesToProximalGenes, 16
1listDBGroups, 17

testEnrichment, 18
testEnrichment2, 19
testEnrichmentFisher, 20
testEnrichmentSEA, 21
testEnrichmentSpearman, 22
testProbeProximity, 22

24

	aggregateTestEnrichments
	annoProbes
	buildGeneDBs
	dbStats
	df_master
	getDBs
	kycgDataCache
	kycgDataGet
	KYCG_plotBar
	KYCG_plotDot
	KYCG_plotEnrichAll
	KYCG_plotLollipop
	KYCG_plotManhattan
	KYCG_plotMeta
	KYCG_plotMetaEnrichment
	KYCG_plotPointRange
	KYCG_plotSetEnrichment
	KYCG_plotVolcano
	KYCG_plotWaterfall
	linkProbesToProximalGenes
	listDBGroups
	testEnrichment
	testEnrichment2
	testEnrichmentFisher
	testEnrichmentSEA
	testEnrichmentSpearman
	testProbeProximity
	Index

