
Package ‘fmrs’
January 30, 2026

Type Package

Title Variable Selection in Finite Mixture of AFT Regression and FMR
Models

Version 1.20.0

Description The package obtains parameter estimation, i.e., maximum
likelihood estimators (MLE), via the Expectation-Maximization (EM)
algorithm for the Finite Mixture of Regression (FMR) models with Normal
distribution, and MLE for the Finite Mixture of Accelerated Failure Time
Regression (FMAFTR) subject to right censoring with Log-Normal and Weibull
distributions via the EM algorithm and the Newton-Raphson algorithm (for
Weibull distribution).
More importantly, the package obtains the maximum penalized likelihood
(MPLE) for both FMR and FMAFTR models (collectively called FMRs).
A component-wise tuning parameter selection based on a component-wise BIC is
implemented in the package.
Furthermore, this package provides Ridge Regression and Elastic Net.

Depends R (>= 4.3.0)

Imports methods, survival, stats

Date 2023-05-16

biocViews Survival, Regression, DimensionReduction

Suggests BiocGenerics, testthat, knitr, utils

License GPL-3

VignetteBuilder knitr

BugReports https://github.com/shokoohi/fmrs/issues

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation yes

Author Farhad Shokoohi [aut, cre] (<https://orcid.org/0000-0002-6224-2609>)

Maintainer Farhad Shokoohi <shokoohi@icloud.com>

git_url https://git.bioconductor.org/packages/fmrs

git_branch RELEASE_3_22

git_last_commit f742da6

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

1

https://github.com/shokoohi/fmrs/issues
https://orcid.org/0000-0002-6224-2609

2 fmrs-package

Contents
fmrs-package . 2
BIC . 3
coefficients . 4
dispersion . 5
fitted . 6
fmrs.gendata . 7
fmrs.mle . 8
fmrs.tunsel . 10
fmrs.varsel . 13
fmrsfit-class . 16
fmrstunpar-class . 17
logLik . 18
mixProp . 19
ncomp . 20
ncov . 21
nobs . 22
residuals . 23
summary . 24
weights . 25

Index 27

fmrs-package Variable Selection in Finite Mixture of AFT Regression and FMR Mod-
els

Description

The package obtains parameter estimation, i.e., maximum likelihood estimators (MLE), via the
Expectation-Maximization (EM) algorithm for the Finite Mixture of Regression (FMR) models
with Normal distribution, and MLE for the Finite Mixture of Accelerated Failure Time Regression
(FMAFTR) subject to right censoring with Log-Normal and Weibull distributions via the EM algo-
rithm and the Newton-Raphson algorithm (for Weibull distribution). More importantly, the package
obtains the maximum penalized likelihood (MPLE) for both FMR and FMAFTR models (collec-
tively called FMRs). A component-wise tuning parameter selection based on a component-wise
BIC is implemented in the package. Furthermore, this package provides Ridge Regression and
Elastic Net. The fmrs.mle method provides MLE for FMRs models. The fmrs.tunsel method
provides component-wise tuning parameters. The fmrs.varsel method provides variable selection
for FMRs models.

fmrs methods

fmrs.mle, fmrs.tunsel, fmrs.varsel, fmrs.gendata.

fmrs objects

fmrsfit-class, fmrstunpar-class

BIC 3

BIC BIC method

Description

Provides the estimated BIC of an FMRs model from an fmrsfit-class

Usage

BIC(object, ...)

S4 method for signature 'fmrsfit'
BIC(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric value

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

BIC(res.mle)

4 coefficients

coefficients coefficients method

Description

Provides the estimated regression coefficients from the fitted FMRs model from an fmrsfit-class

Usage

coefficients(object, ...)

S4 method for signature 'fmrsfit'
coefficients(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric array of dimension-(nCov+1)-nComp

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

coefficients(res.mle)

dispersion 5

dispersion dispersion method

Description

Provides the estimated dispersions of the fitted FMRs model from an fmrsfit-class

Usage

dispersion(object, ...)

S4 method for signature 'fmrsfit'
dispersion(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric array of dimension-(nCov+1)-nComp

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

dispersion(res.mle)

6 fitted

fitted fitted method

Description

Provides the fitted response of the fitted FMRs model from an fmrsfit-class

Usage

fitted(object, ...)

S4 method for signature 'fmrsfit'
fitted(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric array of dimension-nObs-nComp

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

head(fitted(res.mle))

fmrs.gendata 7

fmrs.gendata fmrs.gendata method

Description

Generates a data set from Finite Mixture of AFT regression models or Finite Mixture of Regression
models under the specified setting.

Usage

fmrs.gendata(nObs, nComp, nCov, coeff, dispersion, mixProp, rho, umax, ...)

S4 method for signature 'ANY'
fmrs.gendata(
nObs,
nComp,
nCov,
coeff,
dispersion,
mixProp,
rho,
umax,
disFamily = "lnorm"

)

Arguments

nObs A numeric value represents sample size

nComp A numeric value represents the order mixture in FMRs

nCov A numeric value represents the number of covariates in design matrix

coeff A vector of all regression coefficients including intercepts. It must be a vector
of length nComp *(nCov+1).

dispersion A vector of positive values for dispersion parameters of sub-distributions in FMRs
models

mixProp A vector of mixing proportions which their sum must be one

rho A numeric value in [-1, 1] which represents the correlation between covariates
of design matrix

umax A numeric value represents the upper bound in Uniform distribution for censor-
ing

... Other possible options

disFamily A sub-distribution family. The options are 'norm' for FMR models, 'lnorm' for
mixture of AFT regression models with Log-Normal sub-distributions,'weibull'
for mixture of AFT regression models with Weibull sub-distributions

Value

A list including response, covariates and censoring variables

8 fmrs.mle

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

See Also

Other lnorm, norm, weibull: fmrs.mle(), fmrs.tunsel(), fmrs.varsel()

Examples

set.seed(1980)
K = 2
D = 10
n = 500
REP = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

fmrs.mle fmrs.mle method

Description

Provides MLE for Finite Mixture of Accelerated Failure Time Regression Models or Finite Mixture
of Regression Models. It also provides Ridge Regression.

Usage

fmrs.mle(y, delta, x, nComp, ...)

S4 method for signature 'ANY'
fmrs.mle(
y,
delta,
x,
nComp = 2,
disFamily = "lnorm",
initCoeff,
initDispersion,
initmixProp,
lambRidge = 0,
nIterEM = 400,
nIterNR = 2,
conveps = 1e-08,
convepsEM = 1e-08,
convepsNR = 1e-08,

fmrs.mle 9

NRpor = 2,
activeset

)

Arguments

y Responses (observations)
delta Censoring indicator vector
x Design matrix (covariates)
nComp Order (Number of components) of mixture model
... Other possible options
disFamily A sub-distribution family. The options are 'norm' for FMR models, 'lnorm' for

mixture of AFT regression models with Log-Normal sub-distributions,'weibull'
for mixture of AFT regression models with Weibull sub-distributions

initCoeff Vector of initial values for regression coefficients including intercepts
initDispersion Vector of initial values for standard deviations
initmixProp Vector of initial values for proportion of components
lambRidge A positive value for tuning parameter in Ridge Regression or Elastic Net
nIterEM Maximum number of iterations for EM algorithm
nIterNR Maximum number of iterations for Newton-Raphson algorithm
conveps A positive value for avoiding NaN in computing divisions
convepsEM A positive value for threshold of convergence in EM algorithm
convepsNR A positive value for threshold of convergence in Newton-Raphson algorithm
NRpor A positive integer for maximum number of searches in NR algorithm
activeset A matrix of zero-one that shows which intercepts and covariates are active in

the fitted fmrs model

Details

Finite mixture of AFT regression models are represented as follows. Let X be the survival time
with non-negative values, and z = (z1, . . . , zd)

⊤ be a d-dimensional vector of covariates that may
have an effect on X . If the survival time is subject to right censoring, then the observed response
time is T = min{Y,C}, where Y = logX , C is logarithm of the censoring time and δ = I{y<c}
is the censoring indicator. We say that V = (T, δ, z) follows a finite mixture of AFT regression
models of order K if the conditional density of (T, δ) given z has the form

f(t, δ; z,Ψ) =

K∑
k=1

πk[fY (t; θk(z), σk)]
δ[SY (t; θk(z), σk)]

1−δ[fC(t)]
1−δ[SC(t)]

δ

where fY (.) and SY (.) are respectively the density and survival functions of Y , fC(.) and SC(.)
are respectively the density and survival functions of C; and θk(z) = h(β0k + z⊤βk) for a
known link function h(.), Ψ = (π1, . . . , πK , β01, . . . , β0K ,β1, . . . ,βK , σ1, . . . , σK)⊤ with βk =

(βk1, βk2, . . . , βkd)
⊤ and 0 < πk < 1 with

∑K
k=1 πk = 1. The log-likelihood of a sample of size

n is formed as

ℓn(Ψ) =

n∑
i=1

log

K∑
k=1

πk [fY (ti, θk(zi), σk)]
δi [SY (ti, θk(zi), σk)]

1−δi .

Note that we assume the censoring distribution is non-informative and hence won’t play any role
in the estimation process. We use EM and Newton-Raphson algorithms in our method to find the
maximizer of above Log-Likelihood.

10 fmrs.tunsel

Value

An fmrsfit-class that includes parameter estimates of the specified FMRs model

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

References

Shokoohi, F., Khalili, A., Asgharian, M. and Lin, S. (2016 submitted) Variable Selection in Mixture
of Survival Models for Biomedical Genomic Studies

See Also

Other lnorm, norm, weibull: fmrs.gendata(), fmrs.tunsel(), fmrs.varsel()

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

summary(res.mle)

fmrs.tunsel fmrs.tunsel method

Description

Provides component-wise tuning parameters using BIC for Finite Mixture of Accelerated Failure
Time Regression Models and Finite Mixture of Regression Models.

Usage

fmrs.tunsel(y, delta, x, nComp, ...)

S4 method for signature 'ANY'
fmrs.tunsel(
y,

fmrs.tunsel 11

delta,
x,
nComp,
disFamily = "lnorm",
initCoeff,
initDispersion,
initmixProp,
penFamily = "lasso",
lambRidge = 0,
nIterEM = 400,
nIterNR = 2,
conveps = 1e-08,
convepsEM = 1e-08,
convepsNR = 1e-08,
NRpor = 2,
gamMixPor = 1,
activeset,
lambMCP,
lambSICA,
cutpoint = 0.05,
LambMin = 0.01,
LambMax = 1,
nLamb = 100

)

Arguments

y Responses (observations)

delta Censoring indicator vector

x Design matrix (covariates)

nComp Order (Number of components) of mixture model

... Other possible options

disFamily A sub-distribution family. The options are 'norm' for FMR models, 'lnorm' for
mixture of AFT regression models with Log-Normal sub-distributions, 'weibull'
for mixture of AFT regression models with Weibull sub-distributions,

initCoeff Vector of initial values for regression coefficients including intercepts

initDispersion Vector of initial values for standard deviations

initmixProp Vector of initial values for proportion of components

penFamily Penalty name that is used in variable selection method. The available options
are 'lasso', 'adplasso', 'mcp', 'scad', 'sica' and 'hard'.

lambRidge A positive value for tuning parameter in Ridge Regression or Elastic Net

nIterEM Maximum number of iterations for EM algorithm

nIterNR Maximum number of iterations for Newton-Raphson algorithm

conveps A positive value for avoiding NaN in computing divisions

convepsEM A positive value for threshold of convergence in EM algorithm

convepsNR A positive value for threshold of convergence in NR algorithm

NRpor A positive interger for maximum number of searches in NR algorithm

12 fmrs.tunsel

gamMixPor Proportion of mixing parameters in the penalty. The value must be in the interval
[0,1]. If gamMixPor = 0, the penalty structure is no longer mixture.

activeset A matrix of zero-one that shows which intercepts and covariates are active in
the fitted fmrs model

lambMCP A positive numbers for mcp’s extra tuning parameter

lambSICA A positive numbers for sica’s extra tuning parameter

cutpoint A positive value for shrinking small values of parameter estimations in the EM
algorithm toward zero

LambMin A positive value for minimum value of tuning parameter

LambMax A positive value for maximum value of tuning parameter

nLamb A positive value for number of tuning parameter

Details

The maximizer of penalized Log-Likelihood depends on selecting a set of good tuning parameters
which is a rather thorny issue. We choose a value in an equally spaced set of values in (0, λmax)
for a pre-specified λmax that maximize the component-wise BIC,

λ̂k = argmaxλk
BICk(λk) = argmaxλk

{
ℓck,n(Ψ̂λk,k)− |dλk,k| log(n)

}
,

where dλk,k = {j : β̂λk,kj ̸= 0, j = 1, . . . , d} is the active set excluding the intercept and |dλk,k|
is its size. This approach is much faster than using an nComp by nComp grid to select the set λ to
maximize the penallized Log-Likelihood.

Value

An fmrstunpar-class that includes component-wise tuning parameter estimates that can be used
in variable selection procedure.

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

References

Shokoohi, F., Khalili, A., Asgharian, M. and Lin, S. (2016 submitted) Variable Selection in Mixture
of Survival Models for Biomedical Genomic Studies

See Also

Other lnorm, norm, weibull: fmrs.gendata(), fmrs.mle(), fmrs.varsel()

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)

fmrs.varsel 13

coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

res.lam <- fmrs.tunsel(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = c(coefficients(res.mle)),
initDispersion = dispersion(res.mle), initmixProp = mixProp(res.mle),
penFamily = 'adplasso')

show(res.lam)

fmrs.varsel fmrs.varsel method

Description

Provides variable selection and penalized MLE for Finite Mixture of Accelerated Failure Time
Regression (FMAFTR) Models and Finite Mixture of Regression (FMR) Models. It also provide
Ridge Regression and Elastic Net.

Usage

fmrs.varsel(y, delta, x, nComp, ...)

S4 method for signature 'ANY'
fmrs.varsel(
y,
delta,
x,
nComp,
disFamily = "lnorm",
initCoeff,
initDispersion,
initmixProp,
penFamily = "lasso",
lambPen,
lambRidge = 0,
nIterEM = 2000,
nIterNR = 2,
conveps = 1e-08,
convepsEM = 1e-08,
convepsNR = 1e-08,
NRpor = 2,
gamMixPor = 1,
activeset,
lambMCP,

14 fmrs.varsel

lambSICA,
cutpoint = 0.05

)

Arguments

y Responses (observations)

delta Censoring indicators

x Design matrix (covariates)

nComp Order (Number of components) of mixture model

... Other possible options

disFamily A sub-distribution family. The options are 'norm' for FMR models, 'lnorm' for
mixture of AFT regression models with Log-Normal sub-distributions, 'weibull'
for mixture of AFT regression models with Weibull sub-distributions

initCoeff Vector of initial values for regression coefficients including intercepts

initDispersion Vector of initial values for standard deviations

initmixProp Vector of initial values for proportion of components

penFamily Penalty name that is used in variable selection method The available options are
'lasso', 'adplasso', 'mcp', 'scad', 'sica' and 'hard'.

lambPen A vector of positive numbers for tuning parameters

lambRidge A positive value for tuning parameter in Ridge Regression or Elastic Net

nIterEM Maximum number of iterations for EM algorithm

nIterNR Maximum number of iterations for Newton-Raphson algorithm

conveps A positive value for avoiding NaN in computing divisions

convepsEM A positive value for threshold of convergence in EM algorithm

convepsNR A positive value for threshold of convergence in NR algorithm

NRpor A positive interger for maximum number of searches in NR algorithm

gamMixPor Proportion of mixing parameters in the penalty. The value must be in the interval
[0,1]. If gamMixPor = 0, the penalty structure is no longer mixture.

activeset A matrix of zero-one that shows which intercepts and covariates are active in
the fitted fmrs model

lambMCP A positive numbers for mcp’s extra tuning parameter

lambSICA A positive numbers for sica’s extra tuning parameter

cutpoint A positive value for shrinking small values of parameter estimations in the EM
algorithm tward zero

Details

The penalized likelihood of a finite mixture of AFT regression models is written as

ℓ̃n(Ψ) = ℓn(Ψ)− pλn(Ψ)

where

pλn
(Ψ) =

K∑
k=1

πα
k


d∑

j=1

pλn,k
(βkj)

 .

fmrs.varsel 15

In the M step of EM algorithm the function

Q̃(Ψ,Ψ(m)) =

K∑
k=1

Q̃k(Ψk,Ψ
(m)
k) =

K∑
k=1

Qk(Ψk,Ψ
(m)
k)− πα

k


d∑

j=1

pλn,k
(βkj)




is maximized. Since the penalty function is singular at origin, we use a local quadratic approxima-
tion (LQA) for the penalty as follows,

p∗
k,λn

(β,β(m)) = (π
(m)
k)α

d∑
j=1

pλn,k
(β

(m)
kj) +

p′λn,k
(β

(m)
kj)

2β
(m)
kj

(β2
kj − β

(m)
kj

2
)

 .

Therefore maximizing Q is equivalent to maximizing the function

Q∗(Ψ,Ψ(m)) =

K∑
k=1

Q∗
k(Ψk,Ψ

(m)
k) =

K∑
k=1

[
Qk(Ψk,Ψ

(m)
k)− p∗

k,λn
(β,β(m))

]
.

In case of Log-Normal sub-distributions, the maximizers of Qk functions are as follows. Given the
data and current estimates of parameters, the maximizers are

β
(m+1)
k = (z′τ

(m)
k z +ϖk(β

(m)
kj))−1z′τ

(m)
k T

(m)
k ,

where ϖk(β
(m)
kj) = diag

((
π
(m+1)
k

)α p′
λn,k(β

(m)
kj)

β
(m)
kj

)
and σ

(m+1)
k is equal to

σ
(m+1)
k =

√√√√√√√
n∑

i=1

τ
(m)
ik (t

(m)
ik − ziβ

(m)
k)2

n∑
i=1

τ
(m)
ik

[
δi + (1− δi){A(w

(m)
ik)[A(w

(m)
ik)− w

(m)
ik]}

] .

For the Weibull distribution, on the other hand, we have Ψ̃
(m+1)

k = Ψ̃
(m)

k −0.5κ
[
H

p,(m)
k

]−1

I
p,(m)
k ,

where Hp
k = Hk + h(Ψk) is the penalized version of hessian matrix and Ipk = Ik + h(Ψk)Ψk is

the penalized version of vector of first derivatives evaluated at Ψ̃
(m)

k .

Value

fmrsfit-class

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

References

Shokoohi, F., Khalili, A., Asgharian, M. and Lin, S. (2016 submitted) Variable Selection in Mixture
of Survival Models for Biomedical Genomic Studies

See Also

Other lnorm, norm, weibull: fmrs.gendata(), fmrs.mle(), fmrs.tunsel()

16 fmrsfit-class

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

res.lam <- fmrs.tunsel(y = dat$y, x = dat$x, delta = dat$delta,
nComp = ncomp(res.mle), disFamily = 'lnorm',
initCoeff = c(coefficients(res.mle)), initDispersion = dispersion(res.mle),
initmixProp = mixProp(res.mle), penFamily = 'adplasso')

res.var <- fmrs.varsel(y = dat$y, x = dat$x, delta = dat$delta,
nComp = ncomp(res.mle), disFamily = 'lnorm',
initCoeff = c(coefficients(res.mle)), initDispersion = dispersion(res.mle),
initmixProp = mixProp(res.mle), penFamily = 'adplasso',
lambPen = slot(res.lam, 'lambPen'))

summary(res.var)

fmrsfit-class An S4 class to represent a fitted FMRs model

Description

is an S4 class represents a fitted of FMRs model resulted from running fmrs.mle or fmrs.varsel

Slots

y A length-nobs numeric vector

delta A length-nobs numeric vector

x A dimension-nobs-ncov numeric matrix

nobs A length-one numeric vector

ncov A length-one numeric vector

ncomp A length-one numeric vector

coefficients A length-(ncov+1)-ncomp numeric matrix

dispersion A length-ncomp numeric vector

mixProp A length-ncomp numeric vector

fmrstunpar-class 17

logLik A length-one numeric vector

BIC A length-one numeric vector

nIterEMconv A length-one numeric vector

disFamily A length-one character vector

penFamily A length-one character vector

lambPen A length-ncomp numeric vector

lambRidge A length-one numeric vector

MCPGam A length-one numeric vector

SICAGam A length-one numeric vector

model A length-one character vector

fitted A dimension-nobs-ncomp numeric matrix

residuals A dimension-nobs-ncomp numeric matrix

weights A dimension-nobs-ncomp numeric matrix

activeset A dimension-ncov+1-ncomp 0-1 matrix

selectedset A dimension-ncov-ncomp 0-1 matrix

fmrstunpar-class An S4 class to represent estimated optimal lambdas

Description

An S4 class to represent estimated optimal lambdas resulted from running fmrs.tunsel

Slots

ncov A length-one numeric vector

ncomp A length-one numeric vector

lambPen A dimension-one-ncomp numeric array

MCPGam A length-one numeric vector

SICAGam A length-one numeric vector

disFamily A length-one character vector

penFamily A length-one character vector

lambRidge A length-one numeric vector

model A length-one character vector

activeset A dimension-nobs-ncomp 0-1 matrix

18 logLik

logLik logLik method

Description

Provides the estimated logLikelihood of an FMRs model from an fmrsfit-class

Usage

logLik(object, ...)

S4 method for signature 'fmrsfit'
logLik(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric value

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

logLik(res.mle)

mixProp 19

mixProp mixProp method

Description

Provides the estimated mixing proportions of an FMRs model form an fmrsfit-class

Usage

mixProp(object, ...)

S4 method for signature 'fmrsfit'
mixProp(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric vector of length-nComp

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

mixProp(res.mle)

20 ncomp

ncomp ncomp method

Description

Provides the order of an FMRs model from an fmrsfit-class

Usage

ncomp(object, ...)

S4 method for signature 'fmrsfit'
ncomp(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

An integer value

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

ncomp(res.mle)

ncov 21

ncov ncov method

Description

Provides the number of covariates of an FMRs model from an fmrsfit-class

Usage

ncov(object, ...)

S4 method for signature 'fmrsfit'
ncov(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

An integer value

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

ncov(res.mle)

22 nobs

nobs nobs method

Description

Provides the number of observations in an FMRs model from an fmrsfit-class

Usage

nobs(object, ...)

S4 method for signature 'fmrsfit'
nobs(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

An integer value

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

nobs(res.mle)

residuals 23

residuals residuals method

Description

Provides the residuals of the fitted FMRs model from an fmrsfit-class

Usage

residuals(object, ...)

S4 method for signature 'fmrsfit'
residuals(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric array of dimension-nObs-nComp

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

head(residuals(res.mle))

24 summary

summary summary method

Description

Displays the fitted FMRs model by showing the estimated coefficients, dispersions and mixing pro-
portions

Display the selected component-wise tuning parameters

Usage

summary(object, ...)

summary(object, ...)

S4 method for signature 'fmrsfit'
summary(object, ...)

S4 method for signature 'fmrstunpar'
summary(object, ...)

Arguments

object An fmrsfit-class or fmrstunpar-class

... Other possible arguments

Value

Summary of the fitted FMRs model

Summary of the selected component-wise tuning parameters

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),
dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,

weights 25

disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

summary(res.mle)
res.lam <- fmrs.tunsel(y = dat$y, x = dat$x, delta = dat$delta,
nComp = K, disFamily = 'lnorm', initCoeff = c(coefficients(res.mle)),
initDispersion = dispersion(res.mle), initmixProp = mixProp(res.mle),
penFamily = 'adplasso')

summary(res.lam)

weights weights method

Description

Provides the weights of fitted observations for each observation under all components of an FMRs
model

Usage

weights(object, ...)

S4 method for signature 'fmrsfit'
weights(object, ...)

Arguments

object An fmrsfit-class

... Other possible arguments

Value

A numeric array of dimension-nObs-nComp

Author(s)

Farhad Shokoohi <shokoohi@icloud.com>

Examples

set.seed(1980)
K = 2
D = 10
n = 500
sig = c(1, 1)
piM = c(0.4, 0.6)
r1 = 0.5
coeff1 = c(2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
Um = 40

dat <- fmrs.gendata(nObs = n, nComp = K, nCov = D, coeff = c(coeff1, coeff2),

26 weights

dispersion = sig, mixProp = piM, rho = r1, umax = Um, disFamily = 'lnorm')

res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta, nComp = K,
disFamily = 'lnorm', initCoeff = rnorm(K*D+K), initDispersion = rep(1, K),
initmixProp = rep(1/K, K))

head(weights(res.mle))

Index

∗ AFT
fmrs.gendata, 7
fmrs.mle, 8
fmrs.tunsel, 10
fmrs.varsel, 13

∗ Adaptive
fmrs.tunsel, 10
fmrs.varsel, 13

∗ Algorithm
fmrs.varsel, 13

∗ Censored
fmrs.gendata, 7
fmrs.mle, 8
fmrs.tunsel, 10
fmrs.varsel, 13

∗ Data
fmrs.gendata, 7

∗ EM
fmrs.mle, 8
fmrs.varsel, 13

∗ ElasticNet
fmrs.varsel, 13

∗ FMRs
fmrs.gendata, 7
fmrs.mle, 8
fmrs.tunsel, 10

∗ FMR
fmrs.varsel, 13

∗ Generation
fmrs.gendata, 7

∗ LASSO
fmrs.tunsel, 10
fmrs.varsel, 13

∗ MCP
fmrs.tunsel, 10
fmrs.varsel, 13

∗ NR
fmrs.mle, 8

∗ Regression
fmrs.tunsel, 10
fmrs.varsel, 13

∗ Ridge
fmrs.mle, 8

fmrs.tunsel, 10
fmrs.varsel, 13

∗ SCAD
fmrs.tunsel, 10
fmrs.varsel, 13

∗ SICA
fmrs.tunsel, 10
fmrs.varsel, 13

∗ Selection
fmrs.varsel, 13

∗ Tuning
fmrs.tunsel, 10

∗ fmr, aft, censoring, data generation
fmrs.gendata, 7

∗ fmr, aft, lasso, adplasso, mcp, scad, sica,
ridge, elastic net

fmrs.varsel, 13
∗ fmr, aft, lasso, adplasso, mcp, scad, sica,

ridge
fmrs.tunsel, 10

∗ fmr, aft, mle, ridge, fmrs
fmrs.mle, 8

∗ lnorm, norm, weibull
fmrs.gendata, 7
fmrs.mle, 8
fmrs.tunsel, 10
fmrs.varsel, 13

∗ object
fmrsfit-class, 16
fmrstunpar-class, 17

BIC, 3
BIC,BIC-method (BIC), 3
BIC,fmrsfit-method (BIC), 3

coefficients, 4
coefficients,coefficients-method

(coefficients), 4
coefficients,fmrsfit-method

(coefficients), 4

dispersion, 5
dispersion,dispersion-method

(dispersion), 5

27

28 INDEX

dispersion,fmrsfit-method (dispersion),
5

fitted, 6
fitted,fitted-method (fitted), 6
fitted,fmrsfit-method (fitted), 6
fmrs (fmrs-package), 2
fmrs-package, 2
fmrs.gendata, 2, 7, 10, 12, 15
fmrs.gendata,ANY-method (fmrs.gendata),

7
fmrs.gendata-method (fmrs.gendata), 7
fmrs.mle, 2, 8, 8, 12, 15, 16
fmrs.mle,ANY-method (fmrs.mle), 8
fmrs.mle-method (fmrs.mle), 8
fmrs.tunsel, 2, 8, 10, 10, 15, 17
fmrs.tunsel,ANY-method (fmrs.tunsel), 10
fmrs.tunsel-method (fmrs.tunsel), 10
fmrs.varsel, 2, 8, 10, 12, 13, 16
fmrs.varsel,ANY-method (fmrs.varsel), 13
fmrs.varsel-method (fmrs.varsel), 13
fmrsfit-class, 16
fmrstunpar (fmrstunpar-class), 17
fmrstunpar-class, 17
frmsfit (fmrsfit-class), 16

logLik, 18
logLik,fmrsfit-method (logLik), 18
logLik,logLik-method (logLik), 18

mixProp, 19
mixProp,fmrsfit-method (mixProp), 19
mixProp,mixProp-method (mixProp), 19

ncomp, 20
ncomp,fmrsfit-method (ncomp), 20
ncomp,ncomp-method (ncomp), 20
ncov, 21
ncov,fmrsfit-method (ncov), 21
ncov,ncov-method (ncov), 21
nobs, 22
nobs,fmrsfit-method (nobs), 22
nobs,nobs-method (nobs), 22

residuals, 23
residuals,fmrsfit-method (residuals), 23
residuals,residuals-method (residuals),

23

summary, 24
summary,fmrsfit-method (summary), 24
summary,fmrstunpar-method (summary), 24
summary,summary-method (summary), 24

weights, 25
weights,fmrsfit-method (weights), 25
weights,weights-method (weights), 25

	fmrs-package
	BIC
	coefficients
	dispersion
	fitted
	fmrs.gendata
	fmrs.mle
	fmrs.tunsel
	fmrs.varsel
	fmrsfit-class
	fmrstunpar-class
	logLik
	mixProp
	ncomp
	ncov
	nobs
	residuals
	summary
	weights
	Index

