Package ‘flowSpecs’

January 30, 2026
Version 1.24.0
Date 2023-04-05
Type Package
Title Tools for processing of high-dimensional cytometry data

biocViews Software,CellBasedAssays,DataRepresentation,ImmunoOncology,
FlowCytometry,SingleCell, Visualization,Normalization,Datalmport

Description This package is intended to fill the role of conventional cytometry
pre-processing software, for spectral decomposition, transformation,
visualization and cleanup, and to aid further downstream analyses, such
as with DepecheR, by enabling transformation of flowFrames and flowSets
to dataframes. Functions for flowCore-compliant automatic
1D-gating/filtering are in the pipe line.

The package name has been chosen both as it will deal with spectral
cytometry and as it will hopefully give the user a nice pair of
spectacles through which to view their data.

BugReports https://github.com/jtheorell/flowSpecs/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData false

RoxygenNote 7.2.3

Depends R (>=4.0)

Imports ggplot2 (>=3.1.0), BiocGenerics (>= 0.30.0), BiocParallel (>=
1.18.1), Biobase (>= 2.48.0), reshape2 (>= 1.4.3), flowCore (>=
1.50.0), zoo (>= 1.8.6), stats (>= 3.6.0), methods (>= 3.6.0)

Suggests testthat, knitr, rmarkdown, BiocStyle, DepecheR
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/flowSpecs
git_branch RELEASE_3_22

git_last_commit 2da6fa3

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Jakob Theorell [aut, cre]

Maintainer Jakob Theorell <jakob.theorell@ki.se>

1

https://github.com/jtheorell/flowSpecs/issues

2 flowSpecs-package
Contents
flowSpecs-package 2
arcTrans e 3
correctUNmiX e 4
corrtMatCreate e e 5
flowSet2LongDf. L 6
fullPanel e 7
NewEXpPIS<- 8
oneVSAIIPIot e 8
peakldenti L 10
peakNorm L L e e 11
specMat . . . L L e e e e 12
specMatCalc L e e e 12
specUnmixX L 13
unmixCtrls . . . L e 14
Index 15
flowSpecs-package Tools for processing high-dimensional cytometry files
Description
This package is intended to fill the role of conventional cytometry pre-processing software, for spec-

tral decomposition, transformation, visualization and cleanup, and to aid further downstream analy-
ses, such as with DepecheR, by enabling transformation of flowFrames and flowSets to dataframes.
Functions for flowCore-compliant automatic 1D-gating/filtering are in the pipe line. It is worth not-
ing here that even if there are dedicated spectral cytometers, it is possible to increase the separation
of the fluorochromes in a conventional flow cytometer too, by just keeping all non-used channels
open. That will however also require the use of spectral unmixing, rather than compensation, as the
compensation functions generally require the compensation matrix to be symmetrical. So please
open all channels, and use this software!

Author(s)

Maintainer: Jakob Theorell <jakob.theorell@ndcn.ox.ac.uk>

See Also

flowCore

arcTrans 3

arcTrans Efficient inverse hyperbolic cosine transformation

Description

This is a simple wrapper function for the base asinh function, that is useful for flowFrames and
flowSets. It also allows for reversing the transformation with the argument "unTrans".

Usage
arcTrans(flowObj, transNames, transCoFacs = "default”, unTrans = FALSE)
Arguments
flowObj The fcs object to be transformed. Both flowFrames and flowSets are accepted.
transNames The variables that should be normalized.
transCoFacs This value or vector of values define the values for the transformation during the
normalization. In the "default" case, the function defines the object as a CyTOF
object if >5 percent of the values are 0, and applies the transformation value 5.
Otherwise, the value 400 is applied.
unTrans If the reverse action should be taken, i.e. if an already transformed dataset should
be un-transformed. NB! It is of great importance that the same transformation
factors are used!
Value

A flow object containing the transformed data, and with all metadata left untouched.

Examples

Import some data and the spectral matrix. The latter can be generated using
specMatCalc

data(fullPanel)

data(specMat)

fullPanelUnmixed <- specUnmix(fullPanel, specMat)

Identify the columns that should be transformed

colnames(fullPanelUnmixed)

The time and scatter parameters should not, but apart from that, all should
be included.

transNames <- colnames(fullPanelUnmixed)[seq(6,18)]

ow, transform this file, with the default transformation factor of 400.

NB! It is alway advisable to visually (or computationally) check the data
for the most optimal transformation factors. These often vary from marker
to marker.

fullPanelTrans <- arcTrans(fullPanelUnmixed, transNames)

4 correctUnmix

correctUnmix Correct defects in spectral unmixing by compensation

Description

This function provides a way to reduce the defects in the spectral unmixing, by creating a secondary
correction matrix, which is symmetrical.

Usage

correctUnmix(unmixFlowObj, corrMat, transCoFacs = 400)

Arguments

unmixFlowObj A flowframe or flowset post unmixing.

corrMat A correction matrix. If this is the first round, the executionof this function
needs to be preceeded by the generation of this matrix, for example by using
the corrMatCreate function.

transCoFacs If transformation should be performed, the transformation cofactors can be added
here. Three possible inputs: a vector with specific cofactors for each variable,
a set value that will be used for all variables, and FALSE. Note: It might be
good to set this to FALSE in the final round, to optimize the transoformations
externally.

Value

The unmixed flow object, now corrected with the values from the corrMat.

See Also

specUnmix, arcTrans, corrMatCreate

Examples

Load uncompensated data
data(fullPanel)

Load the spectral unmixing matrix generated with controls from the same
experiment. These can be generated using the specMatCalc function.
data(specMat)

And now unmix
fullPanelUnmix <- specUnmix(fullPanel, specMat)

Create an empty unmixinng matrix
corrMat <- corrMatCreate(specMat)

Now correct the data with this. In the first instance, this will of course
not have any effect, more than transformation, as the corrMat is empty.
fullPanelCorr <- correctUnmix(fullPanelUnmix, corrMat)

corrMatCreate 5

This now needs to be investigated, to identify any possible compensation
defects. This is most easily done with the oneVsAllPlot executed in the
following way:

Not run:

oneVsAllPlot(fullPanelCorr)

End(Not run)
One obvoius defect that shows when doing this is between CD56 and IgM:
oneVsAllPlot(fullPanelCorr, "BV650_CD56", saveResult = FALSE)

This is corrcted the following way:

corrMat["BV650_CD56", "AF647_IgM"] <- -0.03

fullPanelCorr <- correctUnmix(fullPanelUnmix, corrMat)
oneVsAllPlot (fullPanelCorr, "BV650_CD56", saveResult = FALSE)

This process is iterated until there are no remaining artifacts. Good help
to do this is a set of fluorescence-minus-one controls. If that is not
available, a rule of thumb is that if the signal in marker x is

strongly negatively correlated to marker y, so that highly
single-x-posisive values are below zero, then this is with all likelihood
an artifact. The situation becomes more complicated with strong positive
correlations, as they can occur in biology, so there one has to take more
care and keep the marker biology in mind.

e RN

corrMatCreate Generate a correction matrix for cytometry data analysis

Description

This function aids the correctUnmix function, to create a symmetrical correction matrix that should
be used together with a flowframe to correct the errors of unmixing.

Usage

corrMatCreate(specMat)

Arguments

specMat The spectral matrix used to unmix the dataset of interest.

Value

A symmetrical matrix of zeros with the right row- and column names.

See Also

correctUnmix

6 flowSet2LongDf

Examples

Load uncompensated data
data(fullPanel)

Load the spectral unmixing matrix generated with controls from the same
experiment. These can be generated using the specMatCalc function.
data(specMat)

And now unmix

fullPanelUnmix <- specUnmix(fullPanel, specMat)

Create an empty unmixinng matrix
corrMat <- corrMatCreate(specMat)

flowSet2LongDf Convert a flowSet to one long dataframe with all identifiers as separate
#columns.

Description

This function is mainly used for compatibility with matrix-based clustering algorithms, such as
depeche in the DepecheR package.

Usage

flowSet2LongDf (flowObj, idInfo)

Arguments
flowObj The flowSet or flowFrame to be converted to a dataframe.
idInfo A list of any number of characteristics that can be derived from the file names.
For each entry, a gsub specification of where to find the information in the file
name should be added, such as id=""..._|..."".
Value

A long data frame with one column per PMT/APD (or fluorochrome, depending on the state of
the imported files), one for the acquisition date (for fcs files) and one colum for each specified slot
above. If no gsub-pattern is provided, only a single column with the full file name will be used to
separate the observations from each file.

See Also

depeche

fullPanel 7

Examples

#' # Load uncompensated data
data(fullPanel)

Load the spectral unmixing matrix generated with controls from the same
experiment. These can be generated using the specMatCalc function.
data(specMat)

Now unmix
fullPanelUnmix <- specUnmix(fullPanel, specMat)

Transform all fluorescent channels
fullPanelTrans <- arcTrans(fullPanelUnmix,
transNames = colnames(fullPanelUnmix)[6:18])

This function is primarily meant to be used with flowSets.

If we had only one flowFrame, we could just extract the data by

the use of the flowCore function exprs(), so we will convert the data to a
flowSet now.

library(flowCore)

fullPanelFs <- flowSet(fullPanelTrans)

Before converting to a dataframe it is important to get an idea of the
structure of the names, to be able to extract meaningful parts of the name.
Here, we have an exceptional case again, as the flowSet has just been
created, so there is actually no meaningful name of the flowFrame inside
it. So for example reasons, we will give it one now:
sampleNames(fullPanelFs) <- "PBMC_full_panel_d1.fcs”

N

And now, we generate the dataframe:
fullPanelDf <- flowSet2LongDf (fullPanelFs, idInfo =
list("Tissue” = "|_full_panel_..\\.fcs",

"Donor” = "...._full_panel_|\\.fcs"))
This is the result
str(fullPanelDf)
fullPanel A fully stained spectral cytometry sample
Description

This is a flowFrame with a PBMC sample stained with 12 fluorochromes. Data acquired on a 44
detector, 3 laser Cytek Aurora® instrument by J Theorell. Date: 2018-10-25.

Usage
data(fullPanel)

Format

An object of class "flowFrame”

8 oneVsAllPlot

newExprs<- This function lets us exchange a flowframes exprs portion to an un-
related one It is solely meant to be used internally, as it is a strange
practice.
Description

This function lets us exchange a flowframes exprs portion to an unrelated one It is solely meant to
be used internally, as it is a strange practice.

Usage

newExprs(x) <- value

Arguments

X A flowFrame

value A matrix suitable to be an exprs object.
Value

A new flowFrame with "value" as the exprs portion.

oneVsAllPlot Plotting all variables against a single variable

Description

This function is useful both when setting appropriate gates and when the adjustments of the com-
pensation are done

Usage

oneVsAllPlot(
flowObj,
yCol = "all"”,
nRows = 10000,
plotName = "default”,
dirName = "All_vs_all_plots”,
zeroTrim = TRUE,
hexBins = 30,
saveResult = TRUE

one VsAlIPlot

Arguments

flowObj

yCol

nRows

plotName
dirName

zeroTrim

hexBins

saveResult

Value

This is the full dataset, either a flowFrame or a flowSet, that should be plotted.
If it has more rows than "nRows", a subsample (with equal contributions from
each sample if a flowSet) will be plotted.

Here, the variable to be plotted against all the others is selected. It can be either
a number, the column name of interest or "all".

The number of rows that will be used to construct the plot. The fewer, the faster,
but the resolution also decreases, naturally. Default is 100000.

If a name different from yCol should be used, it can be added here.
Add a custom directory name.

In the case of CyTOF data, the events at zero can often be so dominant, that all
other density variation is dwarfed, and thus invisible. With this command, the
events that are zero in both y and x are trimmed for each x separately.

How many bins should the hexagonal plots be divided in?

Should the result be saved as a file?

A plot with one 2D-graph for each variable that the y-variable should be plotted against.

See Also

correctUnmix

Examples

#' # Load uncompensated data

data(fullPanel)

Load the spectral unmixing matrix generated with controls from the same
experiment. These can be generated using the specMatCalc function.

data(specMat)

Now unmix

fullPanelUnmix <- specUnmix(fullPanel, specMat)

Transform all fluorescent channels
fullPanelTrans <- arcTrans(fullPanelUnmix,

transNames

colnames(fullPanelUnmix)[6:18])

And now run the function. If no specific marker is selected, as in this
case, then all markers will be plotted in a new sub-directory.

Further, if you leave the saveResult to TRUE, a pdf will be created.
oneVsAllPlot(fullPanelTrans, yCol = "BV650_CD56", saveResult = FALSE)

This shows that there is a compensation artifact between AF647_IgM and

BV650_CD56, which is an expected combination to cause problems, due to the
similar emission characteristics. It is therefore recommended to go on to
correctUnmix function.

10 peakldenti

peakIdenti Peak identification for higher-level functions.

Description

This function is primarily thought to be used internally to define peaks in data. One function is
borrowed from package vulcan, namely the vulcan::densityauc, which is neat, but the package is
large and significantly increases the installation time, and the importing is thus discarded.

Usage

peakIdenti(
markerData,
volThresh = 0.05,
distThresh = 0.1,

adjust = 2,
nPeaks = 2,
returnStats = FALSE
)
Arguments
markerData The data that the peaks should be identified for
volThresh The cutoff ratio of the volume for each secondary peak, under which it is not
considered to be a peak
distThresh The cutoff under which two peaks are considered one, as they are too close to
each other. This value between 0 and 1 corresponds to a fraction from the 10th
to the 90th percentile of the data range that the peaks must be separated by to
count. Defaults to 0.1 or 10 percent of the distance.
adjust The value deciding the accuracy of the density calculation. The higher the value,
the lower the sensitivity for small aberrations in the density.
nPeaks The number of peaks that should be exported. If n+1 fulfilling the volRatio

criterion are found, the peaks most separated in space are chosen.

returnStats Should the deflection points defining the peaks, the peak hight and the lowest
deflection point between the two most extreme peaks be included in the export?
Value
The information about the peaks in question. Depending on if returnStats is TRUE or not and the
number of peaks, it will change in complexity.
See Also

densityauc

peakNorm

11

peakNorm

Normalize batch differences in intensities by aligning peaks

Description

This function is intended to be used on standardized controls, preferrably one standard that has
been acquired with every batch. This function needs to be applied separately for each batch, with

the same standard.

Usage

peakNorm(
fs,
ctrlPos,
standFF,

transNames =

transCoFacs,

FALSE,

volThresh = 0.005,
normOrNot = rep(TRUE, ncol(standFF))

Arguments

fs
ctrlPos
standFF

transNames

transCoFacs

volThresh

normOrNot

Value

The flowSet to be normalized
The position in the flowSet that contains the internal control
The external standard to which all batches should be normalized

If parameters are not transformed prior to running this, internal transformation is
necessary to identify peaks, so specify which variables that need transformation
here. The data for these variables are untransformed at the end, so the data will
have the same scale in and out.

Also inherited from arcTrans. Low values (2-10) for CyTOF data, high values
(200-2000) for flow data, all depending on the number of input channels.

The threshold for how small the area of a peak can be compared to the largest
peak, and still count.

This needs to be a logical vector with the same length as the number of columns
in the fs and standFF. If it is known that a certain variable should not be normal-
ized, that information can be specified here.

A normalized flowSet. In addition, output to console, to clarify #for which markers the same
number of peaks was detected in the control and the standard, as normalization will only be applied

for these.

Examples

#Load uncompensated data and spectral matrix.

data(fullPanel)
data(specMat)

12 specMatCalc

And now unmix
fullPanelUnmix <- specUnmix(fullPanel, specMat)

#Create a new file with the value 1000 added to all values
library(flowCore)
fullPanelPlus1000 <- flowFrame(exprs(fullPanelUnmix)+1000)
Check how they differ.
range (exprs(fullPanelUnmix)[,1])
143 1187733
range (exprs(fullPanelPlus1000)[,1])
1143 1188733

#Now normalize the new one to the old. NB! Here we will only
normPanel1000 <- peakNorm(flowSet(fullPanelPlus1000), 1, fullPanelUnmix,
transNames = colnames(fullPanelUnmix)[6:18], transCoFacs = 500)

#And now check the new result
range (exprs(normPanel1000[[11]1)[,11)
143 1187733

specMat Spectral unmixing matrix

Description

This matrix is generated using the specMatCalc function and the unmixCtrls example file.

Usage

data(specMat)

Format

An object of class "matrix”;

specMatCalc Calculating the matrix used for spectral unmixing

Description
This algoritm takes a flowSet containing single-stained controls and negative controls, including an
autofluorescence control and estimates the unmixing for all fluorescent variables.

Usage

specMatCalc(unmixCtrls, groupNames, autoFluoName)

specUnmix 13

Arguments
unmixCtrls A flowSet containing all the single stained and unstained files necessary to cre-
ate an spectral unmixing matrix. These can but do not have to, contain a nega-
tive control. Such a negative control will not be used, and instead an universal
negative control needs to be included for each sample type present among the
single-stained controls.
groupNames A character vector containing strings common to the groups of non-autofluoresence

unmixCtrls that could be present. If for example all antibodies single stains are
anti-mouse bead-based the dead cell marker is stained PBMC, and the files con-
gruently either have a prefix containing "Bead" or "PBMC", then the vector
should be c¢("Bead", "PBMC"). The system is not case specific.

autoFluoName The sample name of the autofluorescence control.

Value

A data frame with each row representing a fluorochrome or or autofluorescence and each column
representing a detector.

Examples

Load suitable unmixing controls. NB! If these originate from different

sample types, such as beads and PBMC, there should be a negative control
for each group and the names should reflect this, so that all PBMC samples
would be called PBMC_unstained, PBMC_DCM, etc.

data(unmixCtrls)

If the dataset contains cell controls, make sure that the cell population
interest dominates FSC-A, as the data highest peak in this channel will be

used.

And run the function

specMat <- specMatCalc(unmixCtrls, groupNames = c("Beads_", "Dead_"),
autoFluoName = "PBMC_unstained.fcs")
specUnmix Spectral unmixing of cytometry files
Description

This function performs the central task of spectral unmixing, to convert the raw photon detector
input to "biological" proxy-signals.

Usage

specUnmix(flowObj, specMat)

Arguments
flowObj The fcs object to be filtered. Both flowFrames and flowSets are accepted.
specMat This is a matrix generated by the secMatCalc function, possibly with edited row

names.

14 unmixCtrls

Value

The unmixed data. It will be returned in the format it was imported as.

Examples

Load uncompensated data
data(fullPanel)

Load the spectral unmixing matrix generated with controls from the same
experiment. These can be generated using the specMatCalc function.
data(specMat)

And now, just run the function
fullPanelUnmix <- specUnmix(fullPanel, specMat)

unmixCtrls Unmixing controls

Description

This is a flowSet with 14 spectral unmixing controls: 11 single-stained bead populations, 1 un-
stained bead, one dead-cell-marker- stained PBMC sample, one unstained PBMC sample, working
as a control for the dead cell marker, and one autofluorescence control, which is also unstained
PBMC (in fact the same sample as the negative control for the dead cell marker). Data acquired on
a 44 detector, 3 laser Cytek Aurora® instrument by J Theorell. Date: 2018-10-25.

Usage

data(unmixCtrls)

Format

An object of class "flowSet”

Index

+ datasets
fullPanel, 7
specMat, 12
unmixCtrls, 14

* internal
newExprs<-, 8
peakIdenti, 10

+ package
flowSpecs-package, 2

arcTrans, 3, 4

correctUnmix, 4, 5, 9
corrMatCreate, 4, 5

densityauc, 10
depeche, 6

flowCore, 2

flowSet2LongDf, 6

flowSpecs (flowSpecs-package), 2
flowSpecs-package, 2
fullPanel, 7

newkExprs<-, 8
oneVsAllPlot, 8

peakIdenti, 10
peakNorm, 11

specMat, 12
specMatCalc, 12
specUnmix, 4, 13

unmixCtrls, 14

15

	flowSpecs-package
	arcTrans
	correctUnmix
	corrMatCreate
	flowSet2LongDf
	fullPanel
	newExprs<-
	oneVsAllPlot
	peakIdenti
	peakNorm
	specMat
	specMatCalc
	specUnmix
	unmixCtrls
	Index

