Package ‘epigraHMM’

January 30, 2026

Title Epigenomic R-based analysis with hidden Markov models

Version 1.18.0

Date 2025-09-16

biocViews ChIPSeq, ATACSeq, DNaseSeq, HiddenMarkovModel, Epigenetics

Description epigraHMM provides a set of tools for the analysis of epigenomic data
based on hidden Markov Models. It contains two separate peak callers, one for consensus peaks
from biological or technical replicates, and one for differential peaks from multi-replicate
multi-condition experiments. In differential peak calling, epigraHMM provides window-specific
posterior probabilities associated with every possible combinatorial pattern of read enrichment
across conditions.

License MIT + file LICENSE

Imports Rcpp, magrittr, data.table, SummarizedExperiment, methods,
Seqinfo, GenomicRanges, rtracklayer, [IRanges, Rsamtools,
bamsignals, csaw, S4Vectors, limma, stats, Rhdf5lib, rhdfs,
Matrix, MASS, scales, ggpubr, ggplot2, GreyListChIP, pheatmap,
grDevices

LinkingTo Rcpp, ReppArmadillo, Rhdf5lib
RoxygenNote 7.3.2

Encoding UTF-8

SystemRequirements GNU make

Suggests GenomelnfoDb, testthat, knitr, rmarkdown, BiocStyle,
BSgenome.Rnorvegicus.UCSC.rn4, gcapc, chromstaRData

VignetteBuilder knitr

LazyData true

git_url https://git.bioconductor.org/packages/epigraHMM
git_branch RELEASE_3_22

git_last_commit d390572

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Pedro Baldoni [aut, cre]

Maintainer Pedro Baldoni <pedrobaldoni@gmail.com>

1

2 addOffsets

Contents
addOffsets e e e e 2
callPatterns e e e e e e e 3
callPeaks e e e 5
cleanCounts e e e e e e e 6
controlEM e e e e 7
epigraHMM e e 9
epigraHMMDataSetFromBam 10
epigraHMMDataSetFromMatrix oo 12
estimateTransitionProb 13
EXPSIED .« ¢ o e e e e e e e e e e e e 14
helas3 e e e e 15
INfOo . . L e e e e 16
nitializer e e e e e e e e e e 17
maxStepProb 18
normalizeCounts e e e e e e e e 19
plotCounts L. e e e e e 20
plotPatterns L e e e e e 21
segmentGenome e e e e e e e e e 22
simulateMarkovChain 23

Index 24

addOoffsets Add offsets to epigraHMMDataSet
Description

This function adds model offsets to epigraHMMDataSet

Usage
addOffsets(object, offsets)

Arguments

object an epigraHMMDataSet

offsets a matrix with model offsets

Details
To be added

Value

An epigraHMMDataSet with an ’offsets’ assay filled in.

References

https://github.com/plbaldoni/epigraHMM

https://github.com/plbaldoni/epigraHMM

callPatterns 3

Examples

Creating dummy object

countData <- list('counts' = matrix(rpois(4e5,10),ncol = 4),

'controls' = matrix(rpois(4e5,5),ncol = 4))

colData <- data.frame(condition = c('A','A','B','B'), replicate = c(1,2,1,2))
object <- epigraHMMDataSetFromMatrix(countData,colData)

Adding pre-computed offsets
object <- addOffsets(object = object,
offsets = matrix(rnorm(4e5),ncol = 4))

callPatterns Extract posterior probabilities (or combinatorial patterns) associated
with differential regions

Description

Given results from epigraHMM’s differential peak caller, this function will output either posterior
probabilities or combinatorial patterns associated with the mixture components of the embedded
mixture model.

Usage
callPatterns(
object,
peaks,
hdf5 = metadata(object)$output,
type = "all”,
fdr = NULL,

pattern = NULL,
ranges = NULL

)
Arguments
object an epigraHMMDataSet
peaks a GRanges object with differential peaks from ‘callPeaks*
hdf5 a character with the location of the epigraHMM HDFS5 output file
type a character string that defines which output will be givem (see details; default is
“all’)
fdr the desired fdr thresholding level to define combinatorial patterns
pattern a string that explicitly specifies the combinatorial pattern to be output

ranges a GRanges object with the genomic ranges to subset the output

4 callPatterns

Details

The output of ‘callPatterns* is always restricted to genomic windows intersecting peaks.

If ‘type = ’all’*, all windows’ posterior probabilities associated with all differential combinatorial
patterns are returned. If ‘type = ’fdr’‘, users must also specify the input argument ‘pattern‘ and this
function will output windows wich are associated with the given ‘pattern‘ that pass a particular fdr
threshold level. If ‘type = “'max’*, this function will output the combinatorial pattern which has the
maximal posterior probability for each window. If ‘type = 'ranges’*, the windows that are output
are restricted to those that intersect the ‘ranges‘ input argument.

Value

A GRanges object with metadata

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

Creating dummy object
countData <- cbind(rbind(matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1)),
rbind(matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1)))

colData <- data.frame(condition = c('A','B'), replicate = c(1,1))
rowRanges <- GenomicRanges: :GRanges('chrA',
IRanges: :IRanges(start = seq(1,by = 500,
length.out = nrow(countData)),width = 500))

object <- epigraHMMDataSetFromMatrix(countData,colData,rowRanges = rowRanges)

Initializing
object <- initializer(object,controlEM())

Running epigraHMM
object <- epigraHMM(object,controlEM(),type = 'differential',dist = 'nb')

Calling peaks
peaks <- callPeaks(object = object,
hdf5 = S4Vectors::metadata(object)$output,

https://github.com/plbaldoni/epigraHMM

callPeaks

method = 'viterbi')

Extracting posterior probabilities
patterns <- callPatterns(object = object,peaks = peaks,type = 'max')

callPeaks

Summarize peak calls and optionally create a BED 6+3 file in broad-
Peak format for visualization

Description

This function imports the output from ‘epigraHMM* and outputs a set of peaks (consensus or dif-
ferential) for a given FDR control threshold or Viterbi sequence.

Usage

callPeaks(
object,

hdf5 = metadata(object)$output,
method = "viterbi”,

saveToFile = FALSE,

control = NULL

Arguments

object
hdf5
method

saveToFile

control

Value

an epigraHMMDataSet
a character with the location of the epigraHMM HDF5 output file

either ’viterbi’ or a numeric FDR control threshold (e.g. 0.05). Default is
‘viterbi’.

a logical indicating whether or not to save the results to file. Output files are al-
ways saved with peaks of interest defined on the region level. Default is FALSE.

list of control arguments from controlEM(). This is an optional parameter and it
is only required when ‘saveToFile = TRUE® so that the output directory can be
obtained. Default is NULL.

A GRanges object with differential peak calls in BED 6+3 format

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

https://github.com/plbaldoni/epigraHMM

6 cleanCounts

Examples

Creating dummy object

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)

rowRanges <- GenomicRanges: :GRanges('chrA',
IRanges: :IRanges(start = seq(from = 1, length.out = 4e3,by = 250),width = 250))

object <- epigraHMMDataSetFromMatrix(countData,colData,rowRanges)

Initializing
object <- initializer(object,controlEM())

Running epigraHMM
object <- epigraHMM(object,controlEM(),type = 'consensus',dist = 'nb')

Calling peaks

peaks <- callPeaks(object = object,
hdf5 = S4Vectors::metadata(object)$output,
method = 'viterbi')

cleanCounts Remove effects from covariates of interest

Description

This function removes the effect from covariates of interest (such as GC content) from experimental
counts

Usage
cleanCounts(object, effectNames, byNames = NULL, log = TRUE)

Arguments

object an epigraHMMDataSet

effectNames a character vector with the names of assays for which the effect will be removed
from the experimental counts. Names in ‘effectNames* must be assays stored in
the epigraHMMDataSet ‘object’.

byNames a character vector with the name of an assay containing stratification variables
which will be used to define stratum-specific effects. Examples of byNames
assays include the ’peaks’ assay from ‘initializer()‘. In this case, models will
be fit separately for peaks and non-peaks regions. This can be useful for effects
such as GC content, which are known to have a differential effect between peaks
and non-peak regions. Default is NULL, i.e., effects will be removed without
stratification.

log a logical indicating if the effect from ‘effectNames‘ should be log-transformed
in the regression model (default is TRUE)

controlEM 7

Value

An epigraHMMDataSet with an ’offset’ assay filled in.

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

Creating dummy object
gc <- rbeta(3e3,50,50)

countData <- list('counts' = rbind(matrix(rnbinom(2e3,mu = 7.5,size = 10),ncol = 1),
matrix(rnbinom(3e3,mu = exp(0.5 + 8xgc),size = 5),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 10),ncol = 1)),
'gc' = matrix(c(rbeta(2e3,50,50),gc,rbeta(2e3,50,50)),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)
object <- epigraHMMDataSetFromMatrix(countData,colData)

Initializing
object <- initializer(object = object,controlEM())

Cleaning counts
object <- cleanCounts(object = object,effectNames = 'gc',byNames = 'peaks')

Plotting the cleaned data

#par(mfrow = c(2,1))

#smoothScatter(logip(assay(object))~assay(object, 'gc'),xlab = 'gc',ylab = 'log counts')
#smoothScatter(as.numeric(log(assay(object)+1) - assay(object, 'offsets'))~assay(object, 'gc'),

xlab = 'gc',ylab = 'log cleaned counts')
controlEM Control parameters for the EM algorithm from epigraHMM
Description

This function passes controlling parameters for the EM algorithm implemented in the epigraHMM
package.

Usage
controlEM(
epsilonEM = c(MRCPE = 0.001, MACPE = 0.001, ARCEL = 0.001),
maxIterEM = 500,
minIterEM = 3,
gaplterEM = 3

maxCountEM = 3,

https://github.com/plbaldoni/epigraHMM

controlEM

maxDisp = 1000,

criterion = "all",

minZero = .Machine$double.xmin,
probCut = 0.05,

quiet = TRUE,

maxIterInnerEM = 5,

epsilonInnerkM

0.001,

trimOffset = 3,

pattern = NULL,

tempDir = tempdir(),
fileName = "epigraHMM",
pruningThreshold = NULL,
quietPruning = TRUE

Arguments

epsilonEM

maxIterEM

minIterEM

gapIlterEM

maxCountEM

maxDisp

criterion

minZero

probCut

quiet

maxIterInnerktM

epsilonInnergM

trimOffset

pattern

tempDir

a named vector of positive values specifying up to four possible convergence
criterion tolerances for the EM algorithm (see ’criterion’ below). Default is
cCMRCPE’ = 1le-3, "MACPE’ = le-3ARCEL’ = le-3).

a positive integer giving the maximum number of EM iterations. Default is 500.

a positive integer giving the minimum number of EM iterations to start evaluat-
ing the convergence. Default is 3.

a positive integer giving the number of EM iterations apart to compute the con-
vergence criterion. Default is 3.

a positive integer giving the number of consecutive EM iterations satisfying the
convergence criterion in order to stop the algorithm. Default is 3.

a positive value for the upper limit constraint of the dispersion parameters. De-
fault is 1000.

a character specifying the convergence criterion. Either "MRCPE" (maximum
absolute relative change in parameter estimates), "MACPE" (maximum absolute
change of parameter estimates), "ARCEL" (absolute relative change of the Q-
function), or "all" (simultaneously check for MRCPE, MACPE, and ARCEL).
Default is "all".

a positive value for the minimum positive value allowed in computations to
avoid having zeros. Default is .Machine$double.xmin.

a number between 0 and 1 for the cutoff of the rejection controlled EM algo-
rithm. Default 0.05.

a logical indicating whether to print messages. Default is TRUE.

a positive integer giving the maximum number of inner EM iterations. Default
is 5.

a positive value with the convergence tolerance value for the inner EM algo-
rithm. The criterion for the inner EM is "MRCPE". Default is le-3.

either NULL or a positive integer indicating the number of decimal places to be
used in the offset. Default is 3.

either NULL (the default) or a list with length equal to the number of differential
patterns to be modeled by the differential HMM state. See Details section below.

a string where results will be saved. Default is ‘tempdir()‘.

epigraHMM 9

fileName a string with the name of the result files. Default is ‘epigraHMM*.
pruningThreshold
a numeric value between 0 and 1 to consider when pruning rare combinatorial
patterns. Default is NULL (see Details).

quietPruning alogical indicating whether to print messages during the pruning step. Default
is TRUE.
Details

If pattern is NULL, every possible combinatorial pattern will be considered. If pattern is a list,
elements of it should specify the differential patterns to be modeled by each mixture component. For
instance, if pattern = list(2,c(1,3)) the mixture model will have two components that will represent
the enrichment of condition 2 alone and the enrichment of conditions 1 and 3 together.

If pruningThreshold is a value between 0 and 1, say 0.05, epigraHMM will sequentially remove
differential combinatorial patterns of enrichment from any mixture model component with associ-
ated posterior mixture proportion less than 0.05.

Value

A list with components equal to the arguments

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

No more than 100 EM iterations
control <- controlEM(maxIterEM = 100)

epigraHMM Perform peak calling of epigenomic data sets

Description
This function runs either consensus (one condition, multiple samples) or differential (multiple con-
ditions and samples) peak callers for epigenomic data.

Usage

epigraHMM(object, control, type, dist = "nb")

Arguments
object an epigraHMMDataSet
control list of control arguments from controlEM
type character, either "consensus” or "differential”

dist character, either "zinb" or "nb" (default)

https://github.com/plbaldoni/epigraHMM

10 epigraHMMDataSetFromBam

Value

An epigraHMMDataSet object with the results from epigraHMM

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

Creating dummy object

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)
object <- epigraHMMDataSetFromMatrix(countData,colData)

Initializing
object <- initializer(object,controlEM())

Running epigraHMM
object <- epigraHMM(object,controlEM(),type = 'consensus',dist = 'nb')

epigraHMMDataSetFromBam
Create a epigraHMMDataSet from a set of BAM files

Description

This function creates a RangedSummarizedExperiment object from of a set of BAM files. It is used
to store the input data, the model offsets, and the results from the peak calling algorithms.

Usage

epigraHMMDataSetFromBam(
bamFiles,
colData,
genome,
windowSize,
gapTrack = TRUE,
blackList = TRUE

https://github.com/plbaldoni/epigraHMM

epigraHMMDataSetFromBam 11

Arguments

bamFiles a string vector (or a list of string vectors) with the path for BAM files. If bam-
Files is a list of string vectors, vectors must be named, have the same dimension,
and, at least, a vector with name ’counts’ must exist (see details).

colData adata. frame with the experimental data. It must contain the columns condition
and replicate. condition refers to the experimental condition identifier (e.g.
cell line name). replicate refers to the replicate identification number (unique
for each condition).

genome either a single string with the name of the reference genome (e.g. ’hgl9’) or a
GRanges object with ranges to be tilled into a set of non-overlapping windows.

windowSize an integer specifying the size of genomic windows where read counts will be
computed.

gapTrack either a logical (TRUE, the default, or FALSE) or a GRanges object with gap re-
gions of the genome to be excluded. If TRUE, the function will discard genomic
coordinates overlapping regions present in the UCSC gap table of the respective
reference genome (if available). See Details section below.

blackList either a logical (TRUE, the default, or FALSE) or a GRanges object with black-
listed regions of the genome to be excluded. If TRUE, the function will discard
ENCODE blacklisted regions from selected reference genomes (if available).
See Details section below.

Details

The index ".bai" files must be stored in the same directory of their respective BAM files. The index
files must be named after their respective BAM files with the additional ".bai" suffix.

‘epigraHMMDataSetFromBam* will store experimental data (e.g. ChIP-seq counts) from bamFiles
(or bamFiles[[’counts’]], if a list is provided). Additional data (e.g. input control counts) will be
stored similarly with their respective list names.

By default, the function computes read counts using csaw’s estimated fragment length via cross
correlation analysis. For experimental counts (e.g. ChIP-seq), sequencing reads are shifted down-
stream half of the estimated fragment length. For additional counts (e.g. input control), sequencing
reads are not shifted prior to counting.

Additional columns included in the colData input will be passed to the resulting epigraHMM-
DataSet assay and can be acessed via colData() function.

The genome argument will call Seqinfo::Seqinfo() to fetch the chromosome lengths of the specified
genome. See ?Seqinfo::Seqinfo for the list of UCSC genomes that are currently supported.

If gapTrack = TRUE and the name of a reference genome is passed as input through genome (e.g.
’hgl9’), the function will discard any genomic coordinate overlapping regions specified by the
respective UCSC gap table. If gapTrack is a GRanges object, the function will discard any genomic
coordinate overlaping regions from gapTrack.

If blackList = TRUE and the name of a reference genome is passed as input through genome (e.g.
’hg19’), The function will fetch the manually curated blacklist tracks (Version 2) from https://
github.com/Boyle-Lab/Blacklist/tree/master/lists. Current available genomes are cel0,
dm3, hgl9, hg38, and mm10. If blackList is a GRanges object, the function will discard any
genomic coordinate overlaping regions from blackList.

https://github.com/Boyle-Lab/Blacklist/tree/master/lists
https://github.com/Boyle-Lab/Blacklist/tree/master/lists

12 epigraHMMDataSetFromMatrix

Value

An epigraHMMDataSet object with sorted colData regarding conditions and replicates. Experimen-
tal counts will be stored in the *counts’ assay in the resulting epigraHMMDataSet object. Additional
experimental data will be stored with their respective names from the list bamFiles.

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraiMM DOI: 10.1093/nar/gkv1191 DOI: 10.1038/s41598-
019-45839-z DOI: 10.1038/nature11247

Examples

bamFiles <- system.file("extdata"”,"euratrans”,
"1v-H3K27me3-SHR-male-bio2-techl.bam”,
package="chromstaRData")

colData <- data.frame(condition = 'SHR', replicate = 1)

object <- epigraHMMDataSetFromBam(bamFiles = bamFiles,
colData = colData,
genome = 'rn4',
windowSize = 25000,
gapTrack = TRUE,
blackList = TRUE)

epigraHMMDataSetFromMatrix
Create a epigraHMMDataSet from matrices of counts

Description

This function creates a RangedSummarizedExperiment object from matrices of counts. It is used
to store the input data, the model offsets, and the results from the peak calling algorithms.

Usage

epigraHMMDataSetFromMatrix (countData, colData, rowRanges = NULL)

Arguments
countData a matrix (or a list of matrices). If countData is a list of matrices, matrices must
be named, have the same dimensions, and, at least, a matrix with name ’counts’
must exist (see details).
colData a data.frame with columns condition and replicate. condition refers to

the experimental condition identifier (e.g. cell line name). replicate refers to
the replicate identification number (unique for each condition).

rowRanges an optional GRanges object with the genomic coordinates of the countData

https://github.com/plbaldoni/epigraHMM

estimateTransitionProb 13

Details

Additional columns included in the colData input will be passed to the resulting epigraHMM-
DataSet assay and can be acessed via colData() function.

Value

An epigraHMMDataSet object with sorted colData regarding conditions and replicates. Exper-
imental counts will be stored in the ’counts’ assay in the resulting epigraHMMDataSet object. If
‘countData‘ is a list of matrices, the resulting ’counts’ assay will be equal to ‘countData[[’counts’]]*.

Additional matrices can be included in the epigraHMMDataSet. For example, if one wants to
include counts from an input control experiment from ‘countData[[’controls’]]*, an assay ’control’
will be added to the resulting epigraHMMDataSet..

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples
countData <- list('counts' = matrix(rpois(4e5,10),ncol = 4),
'controls' = matrix(rpois(4e5,5),ncol = 4))

colData <- data.frame(condition = c('A','A','B','B'), replicate = c(1,2,1,2))
object <- epigraHMMDataSetFromMatrix(countData,colData)

estimateTransitionProb
Estimate transition probability from a sequence of integers

Description

This function estimates the transition probabilities for a k-state Markov chain based on a sequence
of integers that represent states of the chain

Usage

estimateTransitionProb(chain, numStates)

Arguments

chain a vector of integers

numStates an integer, the number of states in the Markov chain
Value

A k-by-k matrix of transition probabilities, such that k is the number of states of the chain

https://github.com/plbaldoni/epigraHMM

14 expStep

References

https://github.com/plbaldoni/epigraHMM

Examples

trueMat <- matrix(c(0.9,0.1,0.1,0.9),2,2)
simChain <- simulateMarkovChain(trueMat,1e3)
estMat <- estimateTransitionProb(simChain,?2)

estMat should be close to trueMat

estMat
expStep E-step of HMM (forward-backward probability + posterior probabil-
ity calculation)
Description

E-step of HMM (forward-backward probability + posterior probability calculation)

Usage
expStep(pi, gamma, logf, hdf5)

Arguments
pi a vector of probabilities (sum of probabilities should sum to one)
gamma a matrix of transition probabilities (row sums should be one)
logf a matrix of observed log-likelihood values. Columns represent hidden states,
rows represent genomic regions
hdf5 path to where the hdf5 is saved
Examples

#Creating dummy object

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)
object <- epigraHMMDataSetFromMatrix(countData,colData)

#Initializing
object <- initializer(object,controlEM())

#Running epigraHMM
object <- epigraHMM(object,controlEM(),type = 'consensus',dist = 'nb')

#Example

https://github.com/plbaldoni/epigraHMM

helas3 15

expStep(pi = ¢(0.99,0.02),
gamma = matrix(c(0.99,0.01,0.01,0.99),nrow = 2),
logf = cbind(dnbinom(rnbinom(10@,mu = 2,size = 10),mu = 2,size = 10,log = TRUE),
dnbinom(rnbinom(100,mu = 7.5,size = 5),mu = 7.5,size = 5,log = TRUE)),
hdf5 = file.path(tempdir(), 'tmp.h5"'))

helas3 ENCODE ChIP-seq broad data from Helas3 cell line

Description

Data from EZH2, H3K27me3, and H3K36me3 ChIP-seq data from Helas3 cell line. For illustrative
purposes, the data has been subset to chromosome 19. The dataset contains two replicates from
each mark.

Usage
data(helas3)

Format

An object of class "epigraHMMDataSet"”.

Source

ENCODE Broad Histone

References

Davis et al. (2018) NAR 46(D1):D794-D801. (PubMed)

Examples

The data 'helas3' was created as follows.

options(timeout=9999999)

#

url <- "http://hgdownload. soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/"'
samples <- c('wgEncodeBroadHistoneHelas3H3k36me3StdAlnRep1l.bam',
'wgEncodeBroadHistoneHelas3H3k36me3StdAlnRep2.bam',
'wgEncodeBroadHistoneHelas3H3k27me3StdAlnRepl.bam',
'wgEncodeBroadHistoneHelas3H3k27me3StdAlnRep2.bam',
'wgEncodeBroadHistoneHelas3Ezh239875A1nRep1.bam',
'wgEncodeBroadHistoneHelas3Ezh239875A1nRep2.bam')

input <- paste@(url,samples)
output <- paste@(tempdir(),samples)

for(idx in seq_len(length(input))){
download.file(url = input[idx],destfile = output[idx])
download.file(url = paste@(input[idx],'.bai'),
destfile = paste@(output[idx],'.bai'))
}

T R E E E E E E E E T

gr <- segmentGenome(genome = 'hgl9',

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
https://pubmed.ncbi.nlm.nih.gov/29126249/

16 info

window = 1000,rm.gap = TRUE,rm.blacklist = TRUE)
#
cData <- data.frame(condition = rep(c('H3K36me3', 'H3K27me3"','EZH2'),each = 2),
replicate = rep(c(1,2),times = 3))
#
subGr <- grlsegnames(gr) == 'chr19' & start(gr) >= 40e6 & end(gr) <= 50e6]
#
helas3 <-
epigraHMMDataSetFromBam(bamFiles = output,colData = cData,
genome = subGr,windowSize = 1000)
data(helas3)
helas3
info Get information about peak calling results
Description

This function returns the BIC and expected log-likelihood function of the model, with respect to the
last conditional distribution of unknown enrichment peaks given the data. The latter is also known
as ’Q-function’ in the EM context.

Usage
info(object)

Arguments

object an epigraHMMDataSet

Value

A list with BIC, and expected log-likelihood function of the model. If the input object contains
results from a differential analysis, ‘info‘ will also output the enrichment patterns associated with
each mixture component used in the mixture model.

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

Creating dummy object

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)
object <- epigraHMMDataSetFromMatrix(countData,colData)

https://github.com/plbaldoni/epigraHMM

initializer 17

Initializing
object <- initializer(object,controlEM())

Running epigraHMM
object <- epigraHMM(object,controlEM(),type = 'consensus',dist = 'nb')

Get info
info(object)

initializer Initializer of epigraHMM

Description

This function call enriched windows individually for each sample in an epigraHMMDataSet. These
are then used for initializing purposes in epigraHMM. By default, the Viterbi algorithm is used
to determine enriched windows. Input controls and normalizing offsets are not utilized in this
initialization step.

Usage

initializer(object, control)

Arguments

object an epigraHMMDataSet

control list of control arguments from controlEM()

Details

To be added

Value

An epigraHMMDataSet with a ’peaks’ assay filled in.

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

https://github.com/plbaldoni/epigraHMM

18

Examples

Creating dummy object

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)
object <- epigraHMMDataSetFromMatrix(countData,colData)

Initializing
object <- initializer(object,controlEM())

Visualizing initialization peaks
#plot(assay(object),type = '1")
#lines(7.5*assay(object, 'peaks'),col = 'red')

maxStepProb

maxStepProb

M-step (maximization w.r.t. initial and transition probabilities)

Description

M-step (maximization w.r.t. initial and transition probabilities)

Usage

maxStepProb (hdf5)
Arguments

hdf5 path to where the hdf5 is saved
Examples

#Creating dummy object

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(2e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)
object <- epigraHMMDataSetFromMatrix(countData,colData)

#Initializing
object <- initializer(object,controlEM())

#Running epigraHMM

object <- epigraHMM(object,controlEM(),type = 'consensus',dist = 'nb')

#Example
maxStepProb(hdf5 = S4Vectors::metadata(object)$output)

normalizeCounts 19

normalizeCounts Normalize counts

Description

This function performs a non-linear normalization of counts with respect to a reference sample
(geometric mean)

Usage

normalizeCounts(object, control, span =1, ...)
Arguments

object an epigraHMMDataSet

control list of control arguments from controlEM()

span the span parameter of loessFit (defaultis 1)

arguments to be passed to loessFit for loess calculation

Details

This function ‘limma::loessFit‘, which simply a wrapper for the ‘stats::lowess‘ smoother.

Value

An epigraHMMDataSet with an ’offsets’ assay filled in.

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

Creating dummy object

countData <- list('counts' = matrix(rpois(1e5,10),ncol = 2),
‘controls' = matrix(rpois(1e5,5),ncol = 2))

colData <- data.frame(condition = c('A','A'), replicate = c(1,2))
object <- epigraHMMDataSetFromMatrix(countData,colData)

Normalizing counts
object <- normalizeCounts(object = object,control = controlEM(), span = 1)

https://github.com/plbaldoni/epigraHMM

20 plotCounts

plotCounts Create a plot with the results from epigraHMM

Description

‘plotCounts() plots read counts and peak regions from ‘epigraHMM()*

Usage
plotCounts(
object,
ranges,
hdf5 = metadata(object)$output,
peaks = NULL,
annotation = NULL
)
Arguments
object an epigraHMMDataSet
ranges a GRanges object or a pair of integers with the genomic corrdinates/windows to
be plotted
hdf5 an optional character string with the hdf5 file path from ‘epigraHMM*
peaks an optional parameter with a GRanges object or a vector of logicals (with length
equal to the number of rows in ‘object®) specifying the genomic corrdinates/windows
with peaks
annotation an optional parameter with a GRanges object or a vector of logicals (with length
equal to the number of rows in ‘object‘) specifying the genomic corrdinates/windows
of an annotation track
Details

If the input object contains the assay ’offset’, reads will be normalized prior to plotting (e.g.
counts/exp(offset)). Reads from replicates pertaining to the same condition are aggregated prior
to plotting.

Value

A ggplot

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

https://github.com/plbaldoni/epigraHMM

plotPatterns 21

Examples

countData <- rbind(matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1),
matrix(rnbinom(1e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 7.5,size = 5),ncol = 1),
matrix(rnbinom(1e3,mu = 2,size = 10),ncol = 1))

colData <- data.frame(condition = 'A', replicate = 1)

object <- epigraHMMDataSetFromMatrix(countData,colData)

plotCounts(object,ranges = c(500,3500))

plotPatterns Create a plot of differerential patterns posterior probabilities from epi-
graHMM

Description

‘plotPatterns()‘ plots the posterior probabilities associated with differential patterns from a differ-
ential analysis of ‘epigraHMM()

Usage

plotPatterns(
object,
ranges,
peaks,
hdf5 = metadata(object)$output,
colors = NULL

)
Arguments
object an epigraHMMDataSet
ranges a GRanges object or a pair of integers with the genomic corrdinates/windows to
be plotted
peaks either a GRanges object or a vector of logicals (with length equal to the number
of rows in ‘object‘) specifying the genomic corrdinates/windows with peaks
hdf5 a character string with the hdf5 file path from ‘epigraHMM*
colors an optional argument that specifies the colors for each differential combinatorial
pattern
Value
A pheatmat
Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

22 segmentGenome

References

https://github.com/plbaldoni/epigraHMM

Examples

Creating dummy object
countData <- cbind(rbind(matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1)),
rbind(matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1),
matrix(rnbinom(1e2, mu = 10, size = 5), ncol = 1),
matrix(rnbinom(1e2, mu = 1, size = 10), ncol = 1)))

colData <- data.frame(condition = c('A','B'), replicate = c(1,1))
rowRanges <- GenomicRanges: :GRanges('chrA',
IRanges: :IRanges(start = seq(1,by = 500,
length.out = nrow(countData)),width = 500))

object <- epigraHMMDataSetFromMatrix(countData,colData,rowRanges = rowRanges)

Initializing
object <- initializer(object,controlEM())

Running epigraHMM
object <- epigraHMM(object,controlEM(),type = 'differential',dist = 'nb")

Calling peaks

peaks <- callPeaks(object = object,
hdf5 = S4Vectors::metadata(object)$output,
method = 'viterbi')

Plotting patterns
plotPatterns(object,
ranges = peaks[1],
peaks = peaks)

segmentGenome Segmentation of a genome in non-overlapping windows

Description

This function segments a genome into non-overlapping windows.

Usage

segmentGenome (genome, window, rm.gap = TRUE, rm.blacklist = TRUE)

https://github.com/plbaldoni/epigraHMM

simulateMarkovChain

Arguments
genome a string with the name of the genome (e.g. ’hg19’)
window an integer with the window size
rm.gap a logical indicating gap regions should be removed

rm.blacklist alogical indicating blacklisted regions should be removed

Value

a GRanges object with the binned genome

Author(s)

Pedro L. Baldoni, <pedrobaldoni@gmail.com>

References

https://github.com/plbaldoni/epigraHMM

Examples

gr <- segmentGenome(genome = 'mm1Q@', window = 500)

23

simulateMarkovChain Simulates a Markov Chain of length 'n’ given a matrix of transition
probabilities P

Description

Simulates a Markov Chain of length 'n’ given a matrix of transition probabilities P

Usage

simulateMarkovChain(P, n)

Arguments
P a matrix of transition probabilities (row sums should be 1)
n an integer specifying thhe length of the simulated sequence
Examples
#Example

simulateMarkovChain(matrix(c(0.99,0.01,0.01,0.99),2,2),100)

https://github.com/plbaldoni/epigraHMM

Index

x datasets
helas3, 15

addOffsets, 2

callPatterns, 3
callPeaks, 5

cleanCounts, 6
controlEM, 7, 9

epigraHMM, 9
epigraHMMDataSetFromBam, 10
epigraHMMDataSetFromMatrix, 12

estimateTransitionProb, 13
expStep, 14

helas3, 15

info, 16
initializer, 17

loessFit, 19
maxStepProb, 18
normalizeCounts, 19

plotCounts, 20
plotPatterns, 21

RangedSummarizedExperiment, 10, 12

segmentGenome, 22
simulateMarkovChain, 23

24

	addOffsets
	callPatterns
	callPeaks
	cleanCounts
	controlEM
	epigraHMM
	epigraHMMDataSetFromBam
	epigraHMMDataSetFromMatrix
	estimateTransitionProb
	expStep
	helas3
	info
	initializer
	maxStepProb
	normalizeCounts
	plotCounts
	plotPatterns
	segmentGenome
	simulateMarkovChain
	Index

