Package ‘doubletrouble’

January 30, 2026
Title Identification and classification of duplicated genes
Version 1.10.0
Date 2024-03-19

Description doubletrouble aims to identify duplicated genes from
whole-genome protein sequences and classify them based on their modes
of duplication. The duplication modes are i. segmental duplication (SD);
ii. tandem duplication (TD);

iii. proximal duplication (PD);

iv. transposed duplication (TRD) and;

v. dispersed duplication (DD).

Transposon-derived duplicates (TRD) can be further subdivided into
rTRD (retrotransposon-derived duplication) and

dTRD (DNA transposon-derived duplication).

If users want a simpler classification scheme, duplicates can also be
classified into SD- and SSD-derived (small-scale duplication) gene pairs.
Besides classifying gene pairs, users can also classify genes, so that

each gene is assigned a unique mode of duplication.

Users can also calculate substitution rates per substitution site (i.e., Ka
and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian
Mixture Models (GMMs), and classify gene pairs into age groups based on Ks
peaks.

License GPL-3
URL https://github.com/almeidasilvaf/doubletrouble

BugReports https://support.bioconductor.org/t/doubletrouble

biocViews Software, WholeGenome, ComparativeGenomics,
FunctionalGenomics, Phylogenetics, Network, Classification

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Imports syntenet, GenomicRanges, Biostrings, mclust, MSA2dist (>=
1.1.5), ggplot2, rlang, stats, utils, AnnotationDbi,
GenomicFeatures

Depends R (>=4.2.0)

Suggests txdbmaker, testthat (>= 3.0.0), knitr, feature, patchwork,
BiocStyle, rmarkdown, covr, sessioninfo

https://github.com/almeidasilvaf/doubletrouble
https://support.bioconductor.org/t/doubletrouble

Config/testthat/edition 3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/doubletrouble
git_branch RELEASE_3_22

git_last commit 555edc5

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Fabricio Almeida-Silva [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5314-2964>),
Yves Van de Peer [aut] (ORCID: <https://orcid.org/0000-0003-4327-3730>)

Maintainer Fabricio Almeida-Silva <fabricio_almeidasilva@hotmail.com>

Contents

Ccds_SCEerevisiae e
classify_genes e
classify_gene_pairs
diamond_inter
diamond_intra
duplicates2counts e e e e
find_ks_peaks
fungi_kaks. e
get_anchors_list
Et_INtron_Counts e e
get_segmental L
get_tandem_proximal oL o
get_transposed e e e e e

plot_duplicate_freqs
plot_ks_distro e
plot_ks_peaks
plot_rates_by_species L
split_pairs_by_peak
yeast_annoto L e e e e e
YEASt_SEQ e e e e e e e e e e

Index

Contents

https://orcid.org/0000-0002-5314-2964
https://orcid.org/0000-0003-4327-3730

cds_scerevisiae

cds_scerevisiae Coding sequences (CDS) of S. cerevisiae

Description

Data were obtained from Ensembl Fungi, and only CDS of primary transcripts were included.

Usage

data(cds_scerevisiae)

Format

A DNAStringSet object with CDS of S. cerevisiae.

Examples

data(cds_scerevisiae)

classify_genes Classify genes into unique modes of duplication

Description

Classify genes into unique modes of duplication

Usage

classify_genes(gene_pairs_list = NULL)
Arguments

gene_pairs_list

List of classified gene pairs as returned by classify_gene_pairs().

Details

If a gene is present in pairs with different duplication modes, the gene is classified into a unique

mode of duplication following the order of priority indicated in the levels of the factor type.

For scheme "binary", the order is SD > SSD. For scheme "standard", the order is SD > TD > PD >
DD. For scheme "extended", the order is SD > TD > PD > TRD > DD. For scheme "full", the order

is SD > TD > PD > rTRD > dTRD > DD.

Value

A list of 2-column data frames with variables gene and type representing gene ID and duplication

type, respectively.

4 classify_gene_pairs

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

cols <- c("dup1”, "dup2", "type")
gene_pairs_list <- list(Scerevisiae = scerevisiae_kaks[, cols])

class_genes <- classify_genes(gene_pairs_list)

classify_gene_pairs Classify duplicate gene pairs based on their modes of duplication

Description

Classify duplicate gene pairs based on their modes of duplication

Usage

classify_gene_pairs(
annotation = NULL,
blast_list = NULL,
scheme = "standard”,
blast_inter = NULL,
intron_counts,
evalue = le-10,
anchors = 5,
max_gaps = 25,
proximal_max = 10,
collinearity_dir = NULL,
outgroup_coverage = 70

)
Arguments

annotation A processed GRangesList or CompressedGRangesList object as returned by
syntenet: :process_input().

blast_list A list of data frames containing BLAST tabular output for intraspecies compar-
isons. Each list element corresponds to the BLAST output for a given species,
and names of list elements must match the names of list elements in annotation.
BLASTp, DIAMOND or simular programs must be run on processed sequence
data as returned by process_input().

scheme Character indicating which classification scheme to use. One of "binary", "stan-
dard", "extended", or "full". See details below for information on what each
scheme means. Default: "standard".

blast_inter (Only valid if scheme == "extended” or "full"”). A list of data frames con-

taining BLAST tabular output for the comparison between target species and
outgroups. Names of list elements must match the names of list elements in
annotation. BLASTp, DIAMOND or simular programs must be run on pro-
cessed sequence data as returned by process_input().

classify_gene_pairs 5

intron_counts (Only valid if scheme == "full"). A list of 2-column data frames with the num-
ber of introns per gene as returned by get_intron_counts(). Names of list
elements must match names of annotation.

evalue Numeric scalar indicating the E-value threshold. Default: le-10.

anchors Numeric indicating the minimum required number of genes to call a syntenic
block, as in syntenet::infer_syntenet. Default: 5.

max_gaps Numeric indicating the number of upstream and downstream genes to search for
anchors, as in syntenet: :infer_syntenet. Default: 25.

proximal_max Numeric scalar with the maximum distance (in number of genes) between two
genes to consider them as proximal duplicates. Default: 10.

collinearity_dir
Character indicating the path to the directory where .collinearity files will be
stored. If NULL, files will be stored in a subdirectory of tempdir (). Default:
NULL.

outgroup_coverage
Numeric indicating the minimum percentage of outgroup species to use to con-
sider genes as transposed duplicates. Only valid if multiple outgroup species are
present (see details below). Values should range from 0 to 100. Default: 70.

Details

The classification schemes increase in complexity (number of classes) in the order ’binary’, ’stan-
dard’, ’extended’, and *full’.

For classification scheme "binary", duplicates are classified into one of ’SD’ (segmental duplica-
tions) or ’SSD’ (small-scale duplications).

For classification scheme "standard" (default), duplicates are classified into *SD’ (segmental dupli-
cation), "TD’ (tandem duplication), "PD’ (proximal duplication), and 'DD’ (dispersed duplication).

For classification scheme "extended", duplicates are classified into ’SD’ (segmental duplication),
"TD’ (tandem duplication), ’PD’ (proximal duplication), "TRD’ (transposon-derived duplication),
and 'DD’ (dispersed duplication).

Finally, for classification scheme "full", duplicates are classified into ’SD’ (segmental duplication),
"TD’ (tandem duplication), ’PD’ (proximal duplication), 'r'TRD’ (retrotransposon-derived duplica-
tion), 'dTRD’ (DNA transposon-derived duplication), and DD’ (dispersed duplication).

Value

A list of 3-column data frames of duplicated gene pairs (columns 1 and 2), and their modes of
duplication (column 3).

Examples

Load example data
data(diamond_intra)
data(diamond_inter)
data(yeast_annot)
data(yeast_seq)

Get processed annotation data
annotation <- syntenet::process_input(yeast_seq, yeast_annot)$annotation

Get collapsed DIAMOND inter

blast_inter <- syntenet::collapse_bidirectional_hits(
diamond_inter,
data.frame(”Scerevisiae”, "Cglabrata”)

)

Get list of intron counts

library(txdbmaker)

txdb_list <- lapply(yeast_annot, txdbmaker::makeTxDbFromGRanges)
intron_counts <- lapply(txdb_list, get_intron_counts)

Classify duplicates - full scheme
dup_class <- classify_gene_pairs(
annotation = annotation,
blast_list = diamond_intra,
scheme = "full"”,
blast_inter = blast_inter,
intron_counts = intron_counts

)

Check number of gene pairs per class
table(dup_class$Scerevisiae$type)

diamond_inter

diamond_inter

Interspecies DIAMOND output for yeast species

Description

This list contains a similarity search of S. cerevisiae against C. glabrata, and it was obtained with

run_diamond().

Usage

data(diamond_inter)

Format

A list of data frames (length 1) containing the output of a DIAMOND search of S. cerevisiae against

C. glabrata (outgroup).

Examples

data(diamond_inter)

diamond_intra 7

diamond_intra Intraspecies DIAMOND output for S. cerevisiae

Description

List obtained with run_diamond().

Usage

data(diamond_intra)

Format

A list of data frames (length 1) containing the whole paranome of S. cerevisiae resulting from
intragenome similarity searches.

Examples

data(diamond_intra)

duplicates2counts Get a duplicate count matrix for each genome

Description

Get a duplicate count matrix for each genome

Usage

duplicates2counts(duplicate_list, shape = "long")

Arguments

duplicate_list A list of data frames with the duplicated genes or gene pairs and their modes of
duplication as returned by classify_gene_pairs() or classify_genes().

shape Character specifying the shape of the output data frame. One of "long" (data
frame in the long shape, in the tidyverse sense), or "wide" (data frame in the
wide shape, in the tidyverse sense). Default: "long".

Value

If shape = ""wide'', a count matrix containing the frequency of duplicated genes (or gene pairs) by
mode for each species, with species in rows and duplication modes in columns. If shape = "'long',
a data frame in long format with the following variables:

type Factor, type of duplication.

n Numeric, number of duplicates.

species Character, species name

8 find_ks_peaks
Examples
data(fungi_kaks)
Get unique duplicates
duplicate_list <- classify_genes(fungi_kaks)
Get count table
counts <- duplicates2counts(duplicate_list)
find_ks_peaks Find peaks in a Ks distribution with Gaussian Mixture Models
Description
Find peaks in a Ks distribution with Gaussian Mixture Models
Usage
find_ks_peaks(ks, npeaks = 2, min_ks = 0.01, max_ks = 4, verbose = FALSE)
Arguments
ks A numeric vector of Ks values.
npeaks Numeric scalar indicating the number of peaks in the Ks distribution. If you
don’t know how many peaks there are, you can include a range of values, and the
number of peaks that produces the lowest BIC (Bayesian Information Criterion)
will be selected as the optimal. Default: 2.
min_ks Numeric scalar with the minimum Ks value. Removing very small Ks values is
generally used to avoid the incorporation of allelic and/or splice variants and to
prevent the fitting of a component to infinity. Default: 0.01.
max_ks Numeric scalar indicating the maximum Ks value. Removing very large Ks
values is usually performed to account for Ks saturation. Default: 4.
verbose Logical indicating if messages should be printed on screen. Default: FALSE.
Value

A list with the following elements:

mean Numeric with the estimated means.

sd Numeric with the estimated standard deviations.

lambda Numeric with the estimated mixture weights.

ks Numeric vector of filtered Ks distribution based on arguments passed to min_ks and max_ks.

fungi_kaks 9

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae
ks <- scerevisiae_kaks$Ks

Find 2 peaks in Ks distribution
peaks <- find_ks_peaks(ks, npeaks = 2)

From 2 to 4 peaks, verbose = TRUE to show BIC values
peaks <- find_ks_peaks(ks, npeaks = c(2, 3, 4), verbose = TRUE)

fungi_kaks Duplicate pairs and Ka, Ks, and Ka/Ks values for fungi species

Description

This data set was obtained with classify_gene_pairs() followed by pairs2kaks().

Usage

data(fungi_kaks)

Format

A list of data frame with elements named saccharomyces_cerevisiae, candida_glabrata, and
schizosaccharomyces_pombe. Each data frame contains the following variables:

dupl Character, duplicated gene 1.

dup2 Character, duplicated gene 2.

Ka Numeric, Ka values.

Ks Numeric, Ks values.

Ka_Ks Numeric, Ka/Ks values.

type Character, mode of duplication

Examples

data(fungi_kaks)

10

get_anchors_list

get_anchors_list Get a list of anchor pairs for each species

Description

Get a list of anchor pairs for each species

Usage

get_anchors_list(
blast_list = NULL,
annotation = NULL,
evalue = 1e-10,
anchors = 5,
max_gaps = 25,
collinearity_dir = NULL

)
Arguments

blast_list A list of data frames containing BLAST tabular output for intraspecies compar-
isons. Each list element corresponds to the BLAST output for a given species,
and names of list elements must match the names of list elements in annotation.
BLASTp, DIAMOND or simular programs must be run on processed sequence
data as returned by process_input().

annotation A processed GRangesList or CompressedGRangesList object as returned by
syntenet: :process_input().

evalue Numeric scalar indicating the E-value threshold. Default: 1e-10.

anchors Numeric indicating the minimum required number of genes to call a syntenic
block, as in syntenet: :infer_syntenet. Default: 5.

max_gaps Numeric indicating the number of upstream and downstream genes to search for

anchors, as in syntenet: : infer_syntenet. Default: 25.

collinearity_dir

Character indicating the path to the directory where .collinearity files will be
stored. If NULL, files will be stored in a subdirectory of tempdir (). Default:

NULL.

Value

A list of data frames representing intraspecies anchor pairs.

Examples

data(diamond_intra)
data(yeast_annot)
data(yeast_seq)

blast_list <- diamond_intra

Get processed annotation for S. cerevisiae

annotation <- syntenet::process_input(yeast_seq, yeast_annot)$annotation

get_intron_counts 11

Get list of intraspecies anchor pairs
anchorpairs <- get_anchors_list(blast_list, annotation)

get_intron_counts Get a data frame of intron counts per gene

Description

Get a data frame of intron counts per gene

Usage

get_intron_counts(txdb)

Arguments
txdb A TxDb object with transcript annotations. See details below for examples on
how to create TxDb objects from different kinds of input.
Details

The family of functions makeTxDbFrom* from the txdbmaker package can be used to create TxDb

objects from a variety of input data types. You can create TxDb objects from e.g., GRanges objects
(makeTxDbFromGRanges ()), GFF files (makeTxDbFromGFF ()), an Ensembl database (makeTxDbFromEnsembl),
and a Biomart database (makeTxDbFromBiomart).

Value
A data frame with intron counts per gene, with variables:

gene Character with gene IDs.

introns Numeric with number of introns per gene.

Examples

data(yeast_annot)

Create TxDb object from GRanges
library(txdbmaker)
txdb <- txdbmaker: :makeTxDbFromGRanges(yeast_annot[[1]1])

Get intron counts
intron_counts <- get_intron_counts(txdb)

12

get_segmental

get_segmental Classify gene pairs derived from segmental duplications

Description

Classify gene pairs derived from segmental duplications

Usage

get_segmental (anchor_pairs = NULL, pairs = NULL)

Arguments

anchor_pairs A 2-column data frame with anchor pairs in columns 1 and 2.

pairs A 2-column data frame with all duplicate pairs. This is equivalent to the first 2

columns of the tabular output of BLAST-like programs.

Value

A 3-column data frame with the variables:

dupl Character, duplicated gene 1
dup2 Character, duplicated gene 2

type Factor indicating duplication types, with levels "SD" (segmental duplication)
persed duplication).

Examples

data(diamond_intra)
data(yeast_annot)
data(yeast_seq)

blast_list <- diamond_intra

Get processed annotation for S. cerevisiae
annotation <- syntenet::process_input(yeast_seq, yeast_annot)$annotation[1]

Get list of intraspecies anchor pairs
anchor_pairs <- get_anchors_list(blast_list, annotation)
anchor_pairs <- anchor_pairs[[1]]1[, <(1, 2)]

Get duplicate pairs from DIAMOND output
duplicates <- diamond_intral[[1]1]1[, c(1, 2)]
dups <- get_segmental(anchor_pairs, duplicates)

or "DD" (dis-

get_tandem_proximal 13

get_tandem_proximal Classify gene pairs derived from tandem and proximal duplications

Description

Classify gene pairs derived from tandem and proximal duplications

Usage

get_tandem_proximal(pairs = NULL, annotation_granges = NULL, proximal_max = 10)

Arguments

pairs A 3-column data frame with columns dupl, dup2, and type indicating dupli-
cated gene 1, duplicated gene 2, and the mode of duplication associated with the
pair. This data frame is returned by get_segmental().
annotation_granges
A processed GRanges object as in each element of the list returned by syntenet: :process_input().

proximal_max Numeric scalar with the maximum distance (in number of genes) between two
genes to consider them as proximal duplicates. Default: 10.

Value

A 3-column data frame with the variables:

dupl Character, duplicated gene 1.
dup2 Character, duplicated gene 2.

type Factor of duplication types, with levels "SD" (segmental duplication), "TD" (tandem duplica-
tion), "PD" (proximal duplication), and "DD" (dispersed duplication).

Examples

data(yeast_annot)

data(yeast_seq)

data(fungi_kaks)

scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

Get processed annotation for S. cerevisiae
pdata <- annotation <- syntenet::process_input(yeast_seq, yeast_annot)
annot <- pdata$annotation[[1]]

Get duplicated pairs
pairs <- scerevisiae_kaks[, c("dup1”, "dup2", "type")]
pairs$dupl <- paste@("Sce_", pairs$dupil)

-

pairs$dup2 <- paste@(”Sce_", pairs$dup2)

Get tandem and proximal duplicates
td_pd_pairs <- get_tandem_proximal(pairs, annot)

14 get_transposed

get_transposed Classify gene pairs originating from transposon-derived duplications

Description

Classify gene pairs originating from transposon-derived duplications

Usage

get_transposed(
pairs,
blast_inter,
annotation,
evalue = 1e-10,
anchors = 5,
max_gaps = 25,
collinearity_dir = NULL,
outgroup_coverage = 70

Arguments

pairs A 3-column data frame with columns dupl, dup2, and type indicating dupli-
cated gene 1, duplicated gene 2, and the mode of duplication associated with the
pair. This data frame is returned by get_tandem_proximal().

blast_inter A list of data frames of length 1 containing BLAST tabular output for the com-
parison between the target species and an outgroup. Names of list elements
must match the names of list elements in annotation. BLASTp, DIAMOND
or simular programs must be run on processed sequence data as returned by
syntenet: :process_input().

annotation A processed GRangesList or CompressedGRangesList object as returned by
syntenet: :process_input().

evalue Numeric scalar indicating the E-value threshold. Default: 1e-10.

anchors Numeric indicating the minimum required number of genes to call a syntenic
block, as in syntenet::infer_syntenet. Default: 5.

max_gaps Numeric indicating the number of upstream and downstream genes to search for
anchors, as in syntenet::infer_syntenet. Default: 25.

collinearity_dir
Character indicating the path to the directory where .collinearity files will be
stored. If NULL, files will be stored in a subdirectory of tempdir (). Default:
NULL.

outgroup_coverage
Numeric indicating the minimum percentage of outgroup species to use to con-
sider genes as transposed duplicates. Only valid if multiple outgroup species are
present (see details below). Values should range from 0 to 100. Default: 70.

get_transposed_classes 15

Details

If the list of interspecies DIAMOND tables contain comparisons of the same species to multiple out-
groups (e.g., speciesA_speciesB’, ’speciesA_speciesC’), this function will check if gene pairs are
classified as transposed (i.e., only one gene is an ancestral locus) in each of the outgroup species, and
then calculate the percentage of outgroup species in which each pair is considered "transposed’. For
instance, gene pair 1 is transposed based on 30\ on 100\ based on O\ Parameter outgroup_coverage
lets you choose a minimum percentage cut-off to classify pairs as transposed.

Value
A 3-column data frame with the following variables:

dupl Character, duplicated gene 1.
dup2 Character, duplicated gene 2.

type Factor of duplication types, with levels "SD" (segmental duplication), "TD" (tandem duplica-
tion), "PD" (proximal duplication), "TRD" (transposon-derived duplication), and "DD" (dis-
persed duplication).

Examples

Load example data

data(diamond_inter)

data(yeast_seq)

data(yeast_annot)

data(fungi_kaks)

scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

Get processed annotation
pdata <- syntenet::process_input(yeast_seq, yeast_annot)
annotation <- pdata$annotation

Get duplicated pairs

pairs <- scerevisiae_kaks[, c("dup1”, "dup2", "type")]
pairs$dupl <- paste@("Sce_", pairs$dup1l)

pairs$dup2 <- paste@("”Sce_", pairs$dup2)

Collapse bidirectional hits
compare <- data.frame(target = "Scerevisiae"”, outgroup = "Cglabrata”)
blast_inter <- syntenet::collapse_bidirectional_hits(diamond_inter, compare)

Classify pairs
trd <- get_transposed(pairs, blast_inter, annotation)

get_transposed_classes

Classify TRD genes as derived from either DNA transposons or retro-
transposons

Description

Classify TRD genes as derived from either DNA transposons or retrotransposons

16 get_transposed_classes

Usage

get_transposed_classes(pairs, intron_counts)

Arguments

pairs A 3-column data frame with columns dupl, dup2, and type indicating dupli-
cated gene 1, duplicated gene 2, and the mode of duplication associated with the
pair. This data frame is returned by get_transposed().

intron_counts A 2-column data frame with columns gene and introns indicating the number
of introns for each gene, as returned by get_intron_counts.

Value

A 3-column data frame with the following variables:

dupl Character, duplicated gene 1.
dup2 Character, duplicated gene 2.

type Factor of duplication types, with levels "SD" (segmental duplication), "TD" (tandem duplica-
tion), "PD" (proximal duplication), "dTRD" (DNA transposon-derived duplication), "rTRD"
(retrotransposon-derived duplication), and "DD" (dispersed duplication).

Examples

data(diamond_inter)

data(diamond_intra)

data(yeast_seq)

data(yeast_annot)

data(fungi_kaks)

scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

Get processed annotation
pdata <- syntenet::process_input(yeast_seq, yeast_annot)
annotation <- pdata$annotation

Get duplicated pairs
pairs <- scerevisiae_kaks[, c("dup1”, "dup2", "type")]
pairs$dupl <- paste@("Sce_", pairs$dupil)

-

pairs$dup2 <- paste@(”Sce_", pairs$dup2)

Classify pairs
trd <- get_transposed(pairs, diamond_inter, annotation)

Create TxDb object from GRanges
library(txdbmaker)
txdb <- txdbmaker::makeTxDbFromGRanges(yeast_annot[[1]1])

Get intron counts
intron_counts <- get_intron_counts(txdb)

Get TRD classes
trd_classes <- get_transposed_classes(trd, intron_counts)

gmax_ks 17

gmax_ks Duplicate pairs and Ks values for Glycine max

Description

This data set was obtained with classify_gene_pairs() followed by pairs2kaks().

Usage

data(gmax_ks)

Format
A data frame with the following variables:
dupl Character, duplicated gene 1.
dup2 Character, duplicated gene 2.

Ks Numeric, Ks values.

type Factor, duplication mode.

Examples

data(gmax_ks)

pairs2kaks Calculate Ka, Ks, and Ka/Ks from duplicate gene pairs

Description

Calculate Ka, Ks, and Ka/Ks from duplicate gene pairs

Usage

pairs2kaks(gene_pairs_list, cds, model = "MYN", threads = 1, verbose = FALSE)

Arguments

gene_pairs_list
List of data frames containing duplicated gene pairs as returned by classify_gene_pairs().

cds List of DNAStringSet objects containing the coding sequences of each gene.

model Character scalar indicating which codon model to use. Possible values are "Li",
IING86H, HNGII’ ||LWL”’ ||LPB”’ "MLWL”’ "MLPBH’ HGY"’ ”YN", HMYNII’
"MS", "MA", "GNG", "GLWL", "GLPB", "GMLWL", "GMLPB", "GYN", and
"GMYN". Default: "MYN".

threads Numeric indicating the number of threads to use. Default: 1.

verbose Logical indicating whether progress messages should be printed on screen. De-
fault: FALSE.

18 plot_duplicate_freqs

Value

A list of data frames containing gene pairs and their Ka, Ks, and Ka/Ks values.

Examples

data(diamond_intra)
data(diamond_inter)
data(yeast_annot)
data(yeast_seq)
data(cds_scerevisiae)
blast_list <- diamond_intra
blast_inter <- diamond_inter

pdata <- syntenet::process_input(yeast_seq, yeast_annot)
annot <- pdata$annotation["”Scerevisiae"]

Binary classification scheme
pairs <- classify_gene_pairs(annot, blast_list)
td_pairs <- pairs[[1]][pairs[[1]]1$type == "TD", 1]
gene_pairs_list <- list(

Scerevisiae = td_pairs[seq(1, 3, by = 1), 1]
)

cds <- list(Scerevisiae = cds_scerevisiae)

kaks <- pairs2kaks(gene_pairs_list, cds)

plot_duplicate_freqs Plot frequency of duplicates per mode for each species

Description

Plot frequency of duplicates per mode for each species

Usage

plot_duplicate_fregs(dup_counts, plot_type = "facet”, remove_zero = TRUE)

Arguments
dup_counts A data frame in long format with the number of duplicates per mode for each
species, as returned by the function duplicates2counts.
plot_type Character indicating how to plot frequencies. One of ’facet’ (facets for each
level of the variable type), ’stack’ (levels of the variable type as stacked bars),
or ’stack_percent’ (levels of the variable type as stacked bars, with x-axis repre-
senting relative frequencies). Default: *facet’.
remove_zero Logical indicating whether or not to remove rows with zero values. Default:
TRUE.
Value

A ggplot object.

plot_ks_distro

Examples

data(fungi_kaks)

19

Get unique duplicates
duplicate_list <- classify_genes(fungi_kaks)

Get count table

dup_counts <- duplicates2counts(duplicate_list)

Plot counts

plot_duplicate_fregs(dup_counts, plot_type = "stack_percent”)

plot_ks_distro

Plot distribution of synonymous substitution rates (Ks)

Description

Plot distribution of synonymous substitution rates (Ks)

Usage

plot_ks_distro(

ks_df,

min_ks = 0.01,

max_ks = 2,

bytype = FALSE,

type_levels

NULL,

plot_type = "histogram”,
binwidth = 0.03

Arguments

ks_df
min_ks
max_ks

bytype

type_levels

plot_type

binwidth

Value

A ggplot object.

A data frame with Ks values for each gene pair as returned by pairs2kaks().
Numeric indicating the minimum Ks value to keep. Default: 0.01.
Numeric indicating the maximum Ks value to keep. Default: 2.

Logical indicating whether or not to plot the distribution by type of duplication
(requires a column named type).

(Only valid if bytype is not NULL) Character indicating which levels of the
variable specified in parameter group_by should be kept. By default, all levels
are kept.

Character indicating the type of plot to create. If bytype = TRUE, possible types
are "histogram" or "violin". If bytype = FALSE, possible types are "histogram",
"density", or "density_histogram". Default: "histogram".

(Only valid if plot_type = "histogram'') Numeric indicating the bin width.
Default: 0.03.

20 plot_ks_peaks

Examples

data(fungi_kaks)
ks_df <- fungi_kaks$saccharomyces_cerevisiae

Plot distro
plot_ks_distro(ks_df, bytype = TRUE)

plot_ks_peaks Plot histogram of Ks distribution with peaks

Description

Plot histogram of Ks distribution with peaks

Usage

plot_ks_peaks(peaks = NULL, binwidth = 0.05)

Arguments
peaks A list with elements mean, sd, lambda, and ks, as returned by the function
fins_ks_peaks().
binwidth Numeric scalar with binwidth for the histogram. Default: 0.05.
Value

A ggplot object with a histogram and lines for each Ks peak.

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae
ks <- scerevisiae_kaks$Ks

Find 2 peaks in Ks distribution
peaks <- find_ks_peaks(ks, npeaks = 2)

Plot
plot_ks_peaks(peaks, binwidth = 0.05)

plot_rates_by_species

21

plot_rates_by_species Plot distributions of substitution rates (Ka, Ks, or Ka/Ks) per species

Description

Plot distributions of substitution rates (Ka, Ks, or Ka/Ks) per species

Usage
plot_rates_by_species(
kaks_list,
rate_column = "Ks",

bytype = FALSE,
range = c(0, 2),
fill = "deepskyblue3”,
color = "deepskyblue4”

Arguments

kaks_list

rate_column

bytype

range

fill

color

Details

A list of data frames with substitution rates per gene pair in each species as
returned by pairs2kaks().

Character indicating the name of the column to plot. Default: "Ks".

Logical indicating whether or not to show distributions by type of duplication.
Default: FALSE.

Numeric vector of length 2 indicating the minimum and maximum values to
plot. Default: c(0, 2).

Character with color to use for the fill aesthetic. Ignored if bytype = TRUE.
Default: "deepskyblue3".

Character with color to use for the color aesthetic. Ignored if bytype = FALSE.
Default: "deepskyblue4".

Data will be plotted using the species order of the list. To change the order of the species to plot,
reorder the list elements in kaks_list.

Value

A ggplot object.

Examples

data(fungi_kaks)

Plot rates

plot_rates_by_species(fungi_kaks, rate_column = "Ka_Ks")

22 split_pairs_by_peak

split_pairs_by_peak Split gene pairs based on their Ks peaks

Description
The purpose of this function is to classify gene pairs by age when there are 2+ Ks peaks. This way,
newer gene pairs are found within a certain number of standard deviations from the highest peak,
and older genes are found close within smaller peaks.

Usage

split_pairs_by_peak(ks_df, peaks, nsd = 2, binwidth = 0.05)

Arguments
ks_df A 3-column data frame with gene pairs in columns 1 and 2, and Ks values for
the gene pair in column 3.
peaks A list with mean, standard deviation, and amplitude of Ks peaks as generated by
find_ks_peaks.
nsd Numeric with the number of standard deviations to consider for each peak.
binwidth Numeric scalar with binwidth for the histogram. Default: 0.05.
Value

A list with the following elements:
pairs A 4-column data frame with the variables dup1 (character), dup2 (character), ks (numeric),
and peak (numeric), representing duplicate gene pair, Ks values, and peak ID, respectively.

plot A ggplot object with Ks peaks as returned by plot_ks_peaks, but with dashed red lines
indicating boundaries for each peak.

Examples

data(fungi_kaks)
scerevisiae_kaks <- fungi_kaks$saccharomyces_cerevisiae

Create a data frame of duplicate pairs and Ks values
ks_df <- scerevisiae_kaks[, c("dup1”, "dup2”, "Ks")]

Create list of peaks
peaks <- find_ks_peaks(ks_df$Ks, npeaks = 2)

Split pairs
spairs <- split_pairs_by_peak(ks_df, peaks)

yeast_annot 23

yeast_annot Genome annotation of the yeast species S. cerevisiae and C. glabrata

Description
Data obtained from Ensembl Fungi. Only annotation data protein-coding genes (with associated
mRNA, exons, CDS, etc) are included.

Usage

data(yeast_annot)

Format

A CompressedGRangesList containing the elements Scerevisiae and Cglabrata.

Examples

data(yeast_annot)

yeast_seq Protein sequences of the yeast species S. cerevisiae and C. glabrata

Description

Data obtained from Ensembl Fungi. Only translated sequences of primary transcripts were included.

Usage

data(yeast_seq)

Format

A list of AAStringSet objects with the elements Scerevisiae and Cglabrata.

Examples

data(yeast_seq)

Index

+ datasets
cds_scerevisiae, 3
diamond_inter, 6
diamond_intra, 7
fungi_kaks, 9
gmax_ks, 17
yeast_annot, 23
yeast_seq, 23

cds_scerevisiae, 3
classify_gene_pairs, 4
classify_genes, 3

diamond_inter, 6
diamond_intra, 7
duplicates2counts, 7

find_ks_peaks, 8
fungi_kaks, 9

get_anchors_list, 10
get_intron_counts, 11
get_segmental, 12
get_tandem_proximal, 13
get_transposed, 14
get_transposed_classes, 15
gmax_ks, 17

pairs2kaks, 17
plot_duplicate_fregs, 18
plot_ks_distro, 19
plot_ks_peaks, 20
plot_rates_by_species, 21

split_pairs_by_peak, 22

yeast_annot, 23
yeast_seq, 23

24

	cds_scerevisiae
	classify_genes
	classify_gene_pairs
	diamond_inter
	diamond_intra
	duplicates2counts
	find_ks_peaks
	fungi_kaks
	get_anchors_list
	get_intron_counts
	get_segmental
	get_tandem_proximal
	get_transposed
	get_transposed_classes
	gmax_ks
	pairs2kaks
	plot_duplicate_freqs
	plot_ks_distro
	plot_ks_peaks
	plot_rates_by_species
	split_pairs_by_peak
	yeast_annot
	yeast_seq
	Index

