Package ‘clusterExperiment’

January 29, 2026

Title Compare Clusterings for Single-Cell Sequencing
Version 2.30.0

Description Provides functionality for running and comparing many
different clusterings of single-cell sequencing data or other large mRNA Expression data sets.

BugReports https://github.com/epurdom/clusterExperiment/issues
License Artistic-2.0
Encoding UTF-8

Depends R (>= 3.6.0), SingleCellExperiment, SummarizedExperiment (>=
1.15.4), BiocGenerics

Imports methods, NMF, RColorBrewer, ape (>= 5.0), cluster, stats,
limma, locfdr, matrixStats, graphics, parallel, BiocSingular,
kernlab, stringr, S4Vectors, grDevices, DelayedArray (>=
0.7.48), HDF5Array (>= 1.7.10), Matrix, Rcpp, edgeR, scales,
zinbwave, phylobase, pracma, mbkmeans

Suggests BiocStyle, knitr, testthat, MAST, Rtsne, scran, igraph,
rmarkdown

VignetteBuilder knitr

LazyData false

LazyLoad false

RoxygenNote 7.3.1

biocViews Clustering, RNASeq, Sequencing, Software, SingleCell

Collate 'AllChecks.R' 'AllClassesCE.R' 'AllClassesCE.R'
'AllGenerics.R' 'AllHelper.R' 'AllHelperClusterFunction.R'
'AllHelperDendro.R' 'AllHelperFilter.R' 'JiashinJiCode.R'
'‘ReppExports.R' 'addClusterings.R' 'assignUnassigned.R'
'subsampleClustering.R' 'internalDendroFunctions.R'
'internalClusterFunctions.R' 'internalFunctions.R'
'builtInClusterFunctions.R' 'clusterContrasts.R'
'clusterMany.R' 'clusterSingle.R' 'dataCreation.R’
'deprecateFunctions.R' 'getClusterIndex.R' 'getFeatures.R'
'getParams.R' 'getReducedData.R' 'mainClustering.R’
'makeBlankData.R' 'makeConsensus.R' 'makeDendrogram.R’
'makeFilterStats.R' 'makeReducedDims.R' 'mergeClusters.R’
‘plotBarplot.R' 'plotClusters.R' 'plotClustersTable.R'
"plotClustersWorkflow.R' 'plotContrastHeatmap.R'

1

https://github.com/epurdom/clusterExperiment/issues

2 Contents

'plotDendrogram.R' ‘plotFeatureBoxplot.R'
'‘plotFeatureScatter.R' 'plotHeatmap.R' 'plotReduceDim.R’
"‘plottingHelpers.R' rsec.R' 'seqCluster.R' 'subsampleLoop.R’
'subset.R" 'transformFunction.R' 'updateObject.R’
'workflowClusters.R'

LinkingTo Rcpp

git_url https://git.bioconductor.org/packages/clusterExperiment
git_branch RELEASE_3_22

git_last_commit 86a6cae

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Elizabeth Purdom [aut, cre, cph],
Davide Risso [aut]

Maintainer Elizabeth Purdom <epurdom@stat.berkeley.edu>

Contents
addClusterings e 3
assignUnassigned 4
clusterContrasts e e e 6
clusterDendrogram 8
ClusterExperiment-class e 11
clusterExperiment-deprecatedo oo 15
ClusterExperiment-methods o 15
ClusterFunction-methods 19
clusterMany e e 20
clusterSingle L 25
fluidigmData 30
getBestFeatures 30
getClusterIndex L 34
getClusterManyParams,ClusterExperiment-method 36
getReducedData,ClusterExperiment-method 37
internalFunctionCheck 42
listBuiltInFunctions L 45
mainClustering e e e e e e e e 47
makeConsensus e e e e e 49
makeDendrogram L e 52
mergeClUSters e e e e e e e e 54
numericalAsCharacter L 60
plotBarplot,ClusterExperiment-method 61
PIOtCIUSters e e e e e e e 63
plotClustersTable e 67
plotClustersWorkflow,ClusterExperiment-method 71
plotContrastHeatmap,ClusterExperiment-method 73
plotDendrogram,ClusterExperiment-method 74
plotFeatureBoxplot L. 76
plotFeatureScatter L. e e 77

plotHeatmap e e e 79

addClusterings 3

plotReducedDims 85
plottingFunctions oL 87
renameCluSters e 91
RSEC . . . e 92
rsecFluidigm oL e 96
search_pairs 97
seqCluster e e e e e e 97
simData e 100
subsampleClustering 101
SUDSEL 103
transformData oL 105
updateObject e e e e 106
workflowClusters 107

Index 109

addClusterings Add clusterings to ClusterExperiment object
Description

Function for adding new clusterings in form of vector (single cluster) or matrix (multiple cluster-
ings) to an existing ClusterExperiment object

Usage

S4 method for signature 'ClusterExperiment,matrix’
addClusterings(

)

clusterTypes = "User"”,
clusterLabels = NULL,
clusterLegend = NULL

S4 method for signature 'ClusterExperiment,ClusterExperiment'’
addClusterings(x, y, transferFrom = c("x", "y"), mergeCEObjects = FALSE)

S4 method for signature 'ClusterExperiment,vector'
addClusterings(x, y, makePrimary = FALSE, ...)

Arguments
X a ClusterExperiment object
y additional clusters to add to x. Can be a ClusterExperiment object or a ma-

trix/vector of clusters.

clusterTypes a string describing the nature of the clustering. The values ‘clusterSingle®,

‘clusterMany‘, ‘mergeClusters‘, ‘makeConsensus‘ are reserved for the cluster-
ing coming from the package workflow and should not be used when creating a
new object with the constructor.

clusterLabels

clusterLegend

transferFrom

mergeCEObjects

makePrimary

Details

assignUnassigned

label(s) for the clusters being added. If y a matrix, the column names of that
matrix will be used by default, if clusterLabels is not given.

a list giving the cluster legend for the clusters added.

If x and y are both ClusterExperiment objects indicates from which object
the clustering info should be taken (regarding merging, dendrogram, etc). Does
not affect the order of the clusterings, which will always be the clusterings of
x, followed by those of y (along with slots ‘clusterType‘, ‘clusterInfo®, ‘cluster-
Legend®)

logical If x and y are both ClusterExperiment objects indicates as to whether
should try to grab in the information missing from x from y (or vice versa if
transferFrom=y).

whether to make the added cluster the primary cluster (only relevant if y is a
vector)

For addClusterings, passed to signature ClusterExperiment,matrix. For [
(subsetting), passed to SingleCellExperiment subsetting function.

addClusterings adds y to x, and is thus not symmetric in the two arguments. In particular, the
primaryCluster, all of the dendrogram information, the merge information, coClustering, and
orderSamples are all kept from the x object, even if y is a ClusterExperiment.

Value

A ClusterExperiment object.

Examples

data(simData)

cll <- clusterSingle(simData, subsample=FALSE,

sequential=FALSE,
clusterFunction='

mainClusterArgs=list(clusterArgs=list(k=3),

"pam”))

cl2 <- clusterSingle(simData, subsample=FALSE,

sequential=FALSE,
clusterFunction='

mainClusterArgs=list(clusterArgs=list(k=3),

"‘pam”))

addClusterings(cll, cl2)

assignUnassigned

Assign unassigned samples to nearest cluster

Description

Assigns the unassigned samples in a cluster to the nearest cluster based on distance to the medians

of the clusters.

assignUnassigned 5

Usage
S4 method for signature 'ClusterExperiment'
assignUnassigned(
object,
whichCluster = "primary”,
clusterLabel,
makePrimary = TRUE,
whichAssay = 1,
reduceMethod = "none”,
)
S4 method for signature 'ClusterExperiment'
removeUnassigned(object, whichCluster = "primary")
Arguments
object A Cluster Experiment object

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

clusterLabel if missing, the current cluster label of the cluster will be appended with the string

"_AllAssigned".

makePrimary whether to make the added cluster the primary cluster (only relevant if y is a
vector)

whichAssay which assay to use to calculate the median per cluster and take dimensionality

reduction (if requested)

reduceMethod character. A method (or methods) for reducing the size of the data, either
by filtering the rows (genes) or by a dimensionality reduction method. Must
either be 1) must match the name of a built-in method, in which case if it
is not already existing in the object will be passed to makeFilterStats or
link{makeReducedDims}, or 2) must match a stored filtering statistic or di-
mensionality reduction in the object

arguments passed to getReducedData specifying the dimensionality reduction
(if any) to be taken of the data for calculating the medians of the clusters

Details

The function assignUnassigned calculates the median values of each variable for each cluster,
and then calculates the euclidean distance of each unassigned sample to the median of each cluster.
Each unassigned sample is assigned to the cluster for which it closest to the median.

All unassigned samples in the cluster are given a clustering, regardless of whether they are classified
as -1 or -2.

removeUnclustered removes all samples that are unclustered (i.e. -1 or -2 assignment) in the desig-
nated cluster of object (so they may be unclustered in other clusters found in clusterMatrix(object)).
Value

The function assignUnassigned returns a ClusterExperiment object with the unassigned sam-
ples assigned to one of the existing clusters.

6 clusterContrasts
The function removeUnassigned returns a ClusterExperiment object with the unassigned sam-
ples removed.

See Also
getReducedData

Examples
#load CE object
Not run:
data(rsecFluidigm)
smallCE<-rsecFluidigm[,1:50]

#assign the unassigned samples
assignUnassigned(smallCE, makePrimary=TRUE)
#note how samples are REMOVED:
removeUnassigned(smallCE)
End(Not run)
clusterContrasts Create contrasts for testing DE of a cluster

Description
Uses clustering to create different types of contrasts to be tested that can then be fed into DE testing
programs.

Usage
S4 method for signature 'ClusterExperiment'’
clusterContrasts(cluster, contrastType, ...)

S4 method for signature 'vector'
clusterContrasts(
cluster,
contrastType = c("Dendro”, "Pairs", "OneAgainstAll"),
dendro = NULL,
pairMat = NULL,
outputType = c("limma”, "MAST"),
removeUnassigned = TRUE
)

Arguments

cluster Either a vector giving contrasts assignments or a ClusterExperiment object

contrastType What type of contrast to create. ‘Dendro’ traverses the given dendrogram and
does contrasts of the samples in each side, ‘Pairs’ does pair-wise contrasts based
on the pairs given in pairMat (if pairMat=NULL, does all pairwise), and ‘OneA-

gainstAll’ compares each cluster to the average of all others.

clusterContrasts 7

arguments that are passed to from the ClusterExperiment version to the most
basic numeric version.

dendro The dendrogram to traverse if contrastType="Dendro". Note that this should
be the dendrogram of the clusters, not of the individual samples, either of class
"dendrogram" or "phylo4"

pairMat matrix giving the pairs of clusters for which to do pair-wise contrasts (must
match to elements of cl). If NULL, will do all pairwise of the clusters in cluster
(excluding "-1" categories). Each row is a pair to be compared and must match
the names of the clusters in the vector cluster.

outputType character string. Gives format for the resulting contrast matrix. Currently the
two options are the format appropriate for 1imma and MAST package.
removeUnassigned

logical, whether to remove negative valued clusters from the design matrix. Ap-
propriate to pick TRUE (default) if design will be input into linear model on
samples that excludes -1.

Details

The input vector must be numeric clusters, but the external commands that make the contrast ma-
trix (e.g. makeContrasts) require syntatically valid R names. For this reason, the names of the
levels will be "X1" instead of "1". And negative values (if removeUnassigned=FALSE) will be
"X.1","X.2", etc.

Value
List with components:

* contrastMatrix Contrast matrix, the form of which depends on outputType. If outputType=="1imma",
the result of running makeContrasts: a matrix with number of columns equal to the number
of contrasts, and rows equal to the number of levels of the factor that will be fit in a linear
model.

e contrastNamesA vector of names for each of the contrasts. NULL if no such additional
names.

Author(s)
Elizabeth Purdom

References

Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015). limma pow-
ers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research 43, e47. http://nar.oxfordjournals.org/content/43/7/e47

Finak, et al. MAST: a flexible statistical framework for assessing transcriptional changes and char-
acterizing heterogeneity in single-cell RNA sequencing data. Genome Biology (2015).

Examples

Not run:

data(simData)

cl <- clusterMany(simData,nReducedDims=c(5,10,50),
reduceMethod="PCA", makeMissingDiss=TRUE,

clusterFunction="pam", ks=2:4, findBestK=c(FALSE), removeSil=TRUE,

8 clusterDendrogram

subsample=FALSE)

#Pairs:
clusterContrasts(cl,contrastType="Pairs")
#Dendrogram

cl<-makeDendrogram(cl)
clusterContrasts(cl,contrastType="Pairs")

End(Not run)

clusterDendrogram Accessing and manipulating the dendrograms

Description

These functions are for accessing and manipulating the dendrograms stored in a ClusterExperiment
object. We also document the required format of these dendrograms here.

Usage

S4 method for signature 'ClusterExperiment'
clusterDendrogram(x)

S4 method for signature 'ClusterExperiment'
sampleDendrogram(x)

S4 method for signature 'ClusterExperiment'
nInternalNodes(x)

S4 method for signature 'ClusterExperiment'
nTips(x)

S4 method for signature 'ClusterExperiment'
nNodes (x)

S4 replacement method for signature 'ClusterExperiment'’
nodeLabels(x, ...) <- value

S4 method for signature 'ClusterExperiment,phylo4d,phylo4d’
checkDendrogram(x, dendroCluster, dendroSample, whichCluster = "dendro")

S4 method for signature 'ClusterExperiment'’
nodelLabels(x)

S4 method for signature 'ClusterExperiment'
nodeIds(x, type = c("all”, "internal”, "tip"))

S4 method for signature 'ClusterExperiment'
convertToDendrogram(x)

clusterDendrogram 9

Arguments
X a ClusterExperiment object
additional options passed to nodeLabels<- (ignored)
value replacement value for nodelLabels. See details.

dendroCluster aphylo4d to be check as for being cluster hierarchy
dendroSample a phylo4d to be check as for being cluster hierarchy

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

type the type of node to return results from. One of "all", "internal", and "tip".

Details

Two dendrograms are stored in a ClusterExperiment object. One is a dendrogram that describes
the hierarchy between the clusters (@dendro_clusters), and the other is a dendrogram that extends
that hierarchy to include the clusters (@dendro_samples). The clustering that is used to make these
hierarchies is saved in as well (@dendro_index)

The dendrograms stored in a ClusterExperiment object are required to be a phylo4d-class from
the package phylobase (which uses the basic format of the S3 class phylo in the ape package to
store the edges; phylobase makes it a S4 class with some useful helpers). This class allows storage
of a data.frame of information corresponding to information on each node (see tdata).

Additional requirements are made of these dendrograms to be a valid for the slots of the ClusterExperiment

class, described below, regarding the data that must be stored with it and the labels which can be
assigned. Possible dendrograms can be checked for validity with the function checkDendrogram.
The reason for the restrictions on the labels is so as to not duplicate storage of the names, see below
descriptions for where to save user-defined names.

* LabelsThe cluster dendrogram can only have labels on the internal nodes. Labels on the
internal nodes of the cluster dendrogram can be set by the user (the function nodelLabels<-
is defined to work on a ClusterExperiment object to make this easy). The tips of the cluster
dendrogram, corresponding to the clusters, cannot have labels; users can set the labels (e.g.
for plotting, etc) in the clusterLegend slot using the function renameClusters.

» Data The cluster hierarchy must have data stored with it that has the following columns (ad-
ditional ones are allowed):

— NodeldThe permanent node id for the node. Must be of the format "NodeldX" where "X"
is a integer.

— PositionThe type of node, in terms of its position. The internal nodes should have the
values "cluster hierarchy node" while the tips should have "cluster hierarchy tip".

— ClusterIdDendroOnly for tips of dendrogram, should have the id that corresponds to its
cluster in the clustering of the @dendro_index. Of the form "ClusterIdX", where "X" is
the internal cluster id (see clusterLegend). Internal nodes should have NA values.

— ClusterIdMergeThe id that corresponds to the cluster in the clustering of the @merge_index,

if it exists. Of the form "ClusterldX", where "X" is the internal cluster id (see clusterLegend

 LabelsThe sample dendrogram is not allowed to have ANY labels. The names for those nodes
that correspond to the cluster hierarchy will be pulled from the names in the cluster hierarchy
for plotting, etc. and should be set there (see above). Sample names for the tips of the tree
will be pulled from colnames of the object and should be set there.

10 clusterDendrogram

» Data The cluster hierarchy must have data stored with it that has the following columns (ad-
ditional ones are allowed):

— NodeldFor those nodes that correspond to a node in the cluster hierarchy, should have its
permanent node id in this column. Other nodes should be NA.

— PositionThe type of node, in terms of its position. The internal nodes should have the
values "cluster hierarchy node" while the tips should have "cluster hierarchy tip".

— SamplelndexOnly for tips of dendrogram, the index of the sample at that tip to the sam-
ples in the object.

For setting the node labels of the cluster dendrogram via nodeLabels<-, the replacement value has
to have names that match the internal ids of the cluster dendrogram (the NodeId column).

Value

clusterDendrogram returns the dendrogram describing the clustering hierarchy.
sampleDendrogram returns the dendrogram that expands the cluster hierarchy to the samples.
nInternalNodes returns the number of internal nodes of the cluster hierarchy.

nTips returns the number of tips of the cluster hierarchy (same as number of non-negative clusters
in the dendrogram clustering)

nNodes returns the number of total nodes of the cluster hierarchy
nodelLabels<- sets the node labels of the cluster dendrogram

checkClusterDendrogram checks if a phylo4d objects are valid for the cluster and sample den-
drogram slots of the given ClusterExperiment object. Returns TRUE if there are no problems.
Otherwise creates error.

nodelLabels returns the node labels of the cluster dendrogram
nodelds returns the internal (permanent) node ids of the cluster dendrogram

convertToDendrogram returns the sample dendrogram converted to a dendrogram class.

The Stored Dendrograms
NA

Cluster Hierarchy
NA

Sample Hierarchy
NA

Helper Functions

NA

See Also

makeDendrogram, phylo4d-class, phylo

dendrogram

ClusterExperiment-class 11

Examples

data(rsecFluidigm)

retrieve the dendrogram of the clusters:
head(clusterDendrogram(rsecFluidigm),5)

retrieve the dendrogram of the samples:
head(sampleDendrogram(rsecFluidigm),5)

Return # internal nodes from cluster hierarchy
nInternalNodes(rsecFluidigm)

Return # tips from cluster hierarchy (i.e. # clusters)
nTips(rsecFluidigm)

Return internal node ids
nodeIds(rsecFluidigm,type="internal”)

Labels assigned to internal nodes
nodelLabels(rsecFluidigm)

Assign new labels to the internal nodes of the cluster hierarchy
l1<-paste("A", 1:nInternalNodes(rsecFluidigm),sep=":")
names(11)<-nodelds(rsecFluidigm,type="internal")
nodelLabels(rsecFluidigm)<-11

nodelLabels(rsecFluidigm)

ClusterExperiment-class
Class ClusterExperiment

Description
ClusterExperiment is a class that extends SingleCellExperiment and is used to store the data
and clustering information.

In addition to the slots of the SingleCellExperiment class, the ClusterExperiment object has
the additional slots described in the Slots section.

There are several methods implemented for this class. The most important methods (e.g., clusterMany,
makeConsensus, ...) have their own help page. Simple helper methods are described in the Methods
section. For a comprehensive list of methods specific to this class see the Reference Manual.

The constructor ClusterExperiment creates an object of the class ClusterExperiment. However,
the typical way of creating these objects is the result of a call to clusterMany or clusterSingle.

Note that when subsetting the data, the co-clustering and dendrogram information are lost.

Usage

ClusterExperiment(object, clusters, ...)

S4 method for signature 'matrixOrHDF5,ANY'
ClusterExperiment(object, clusters, ...)

S4 method for signature 'SummarizedExperiment,ANY'
ClusterExperiment(object, clusters, ...)

S4 method for signature 'SingleCellExperiment,numeric'
ClusterExperiment(object, clusters, ...)

12

ClusterExperiment-class

S4 method for signature 'SingleCellExperiment,character’
ClusterExperiment(object, clusters, ...)

S4 method for signature 'SingleCellExperiment,factor
ClusterExperiment(object, clusters, ...)

S4 method for signature 'SingleCellExperiment,matrix’

ClusterExperiment(

object,
clusters,

transformation = function(x) {

X

b

primaryIndex = 1,

clusterTypes
clusterInfo
orderSamples

= "User”,

NULL,

= seq_len(ncol(object)),

dendro_samples = NULL,

dendro_index

= NA_real_,

dendro_clusters = NULL,
coClustering = NULL,

merge_index

NA_real_,

merge_cutoff = NA_real_,
merge_dendrocluster_index = NA_real_,
merge_nodeProp = NULL,
merge_nodeMerge = NULL,

merge_method

= NA_character_,

merge_demethod = NA_character_,
clusterLegend = NULL,
checkTransformAndAssay = TRUE

Arguments

object

clusters

transformation

primaryIndex

clusterTypes

clusterInfo
orderSamples

dendro_samples

a matrix or SummarizedExperiment or SingleCellExperiment containing the
data that was clustered.

can be either a numeric or character vector, a factor, or a numeric matrix, con-
taining the cluster labels.

The arguments transformation, clusterTypes and clusterInfo to be passed
to the constructor for signature SingleCellExperiment,matrix.

function. A function to transform the data before performing steps that assume
normal-like data (i.e. constant variance), such as the log.

integer. Sets the ‘primarylndex‘ slot (see Slots).

a string describing the nature of the clustering. The values ‘clusterSingle‘,
‘clusterMany*, ‘mergeClusters‘, ‘makeConsensus‘ are reserved for the cluster-
ing coming from the package workflow and should not be used when creating a
new object with the constructor.

a list with information on the clustering (see Slots).
a vector of integers. Sets the ‘orderSamples* slot (see Slots).

phylo4 object. Sets the ‘dendro_samples® slot (see Slots).

ClusterExperiment-class 13

dendro_index numeric. Sets the dendro_index slot (see Slots).
dendro_clusters

phylo4 object. Sets the ‘dendro_clusters® slot (see Slots).
coClustering matrix. Sets the coClustering slot (see Slots).

merge_index integer. Sets the merge_index slot (see Slots)

merge_cutoff numeric. Sets the merge_cutoff slot (see Slots)
merge_dendrocluster_index

integer. Sets the merge_dendrocluster_index slot (see Slots)
merge_nodeProp data.frame. Sets the merge_nodeProp slot (see Slots)
merge_nodeMerge

data.frame. Sets the merge_nodeMerge slot (see Slots)
merge_method character, Sets the merge_method slot (see Slots)
merge_demethod character, Sets the merge_demethod slot (see Slots)

clusterLegend list, Sets the clusterLegend slot (see details).

checkTransformAndAssay
logical. Whether to check the content of the assay and given transformation
function for whether they are valid.

Details

The clusterLegend argument to ClusterExperiment must be a valid clusterLegend format and
match the values in clusters, in that the "clusterIlds" column must matches the value in the
clustering matrix clusters. If names(clusterLegend)==NULL, it is assumed that the entries of
clusterLegend are in the same order as the columns of clusters. Generally, this is not a good
way for users to set the clusterLegend slot.

The ClusterExperiment constructor function gives clusterLabels based on the column names of
the input matrix/SingleCellExperiment. If missing, will assign labels "cluster1","cluster2", etc.

Note that the validity check when creating a new ClusterExperiment object with new is less ex-
tensive than when using ClusterExperiment function with checkTransformAndAssay=TRUE (the
default). Users are advised to use ClusterExperiment to create new ClusterExperiment objects.

Value

A ClusterExperiment object.

Slots

transformation function. Function to transform the data by when methods that assume normal-
like data (e.g. log)

clusterMatrix matrix. A matrix giving the integer-valued cluster ids for each sample. The rows
of the matrix correspond to clusterings and columns to samples. The integer values are as-
signed in the order that the clusters were found, if found by setting sequential=TRUE in clus-
terSingle. "-1" indicates the sample was not clustered.

primaryIndex numeric. An index that specifies the primary set of labels.

clusterInfo list. Alist with info about the clustering. If created from clusterSingle, clusterInfo
will include the parameter used for the call, and the call itself. If sequential = TRUE it will
also include the following components.

14

ClusterExperiment-class

* clusterInfoif sequential=TRUE and clusters were successfully found, a matrix of in-
formation regarding the algorithm behavior for each cluster (the starting and stopping K
for each cluster, and the number of iterations for each cluster).

» whyStopif sequential=TRUE and clusters were successfully found, a character string ex-
plaining what triggered the algorithm to stop.

merge_index index of the current merged cluster
merge_cutoff value for the cutoff used to determine whether to merge clusters

merge_dendrocluster_index index of the cluster merged with the current merge

merge_nodeMerge data.frame of information about nodes merged in the current merge. See mergeClusters

merge_nodeProp data.frame of information of proportion estimated non-null at each node of den-
drogram. See mergeClusters

merge_method character indicating method used for merging. See mergeClusters
merge_demethod character indicating the DE method used for merging. See mergeClusters
clusterTypes character vector with the origin of each column of clusterMatrix.

dendro_samples phylo4d object. A dendrogram containing the cluster relationship (leaves are
samples; see clusterDendrogram for details).

dendro_clusters phylo4d object. A dendrogram containing the cluster relationship (leaves are
clusters; see see sampleDendrogram for details).

dendro_index numeric. An integer giving the cluster that was used to make the dendrograms.
NA_real_ value if no dendrograms are saved.
coClustering One of

* NULL, i.e. empty

* a numeric vector, signifying the indices of the clusterings in the clusterMatrix that were
used for makeConsensus. This allows for the recreation of the distance matrix (using
hamming distance) if needed for function plotClusters but doesn’t require storage of
full NxN matrix.

* a sparseMatrix object — a sparse representation of the NxN matrix with the cluster
co-occurrence information; this can either be based on subsampling or on co-clustering
across parameter sets (see clusterMany). The matrix is a square matrix with number of
rows/columns equal to the number of samples.

clusterLegend alist, one per cluster in clusterMatrix. Each element of the list is a matrix with
nrows equal to the number of different clusters in the clustering, and consisting of at least two
columns with the following column names: "clusterId" and "color".

orderSamples a numeric vector (of integers) defining the order of samples to be used for plotting
of samples. Usually set internally by other functions.

See Also

sparseMatrix phylo4d

Examples

sce <- matrix(data=rnorm(200), ncol=10)
labels <- gl(5, 2)

cc <- ClusterExperiment(sce, as.numeric(labels), transformation =
function(x){x3})

clusterExperiment-deprecated 15

clusterExperiment-deprecated
Deprecated functions in package ‘clusterExperiment’

Description

These functions are provided for compatibility with older versions of ‘clusterExperiment’ only, and
will be defunct at the next release.

Usage
S4 method for signature 'ANY'
combineMany(x, ...)

Arguments
X any object

additional arguments

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

e combineMany: makeConsensus

* removeUnclustered: removeUnassigned

ClusterExperiment-methods
Helper methods for the ClusterExperiment class

Description

This is a collection of helper methods for the ClusterExperiment class.

Usage

S4 method for signature 'ClusterExperiment'
show(object)

S4 method for signature 'ClusterExperiment'’
transformation(x)

S4 replacement method for signature 'ClusterExperiment,function’
transformation(object) <- value

S4 method for signature 'ClusterExperiment'’
nClusterings(x)

16

ClusterExperiment-methods

S4 method for signature 'ClusterExperiment'’
nClusters(x, ignoreUnassigned = TRUE)

S4 method for signature 'ClusterExperiment'
nFeatures(x)

S4 method for signature 'ClusterExperiment'’
nSamples(x)

S4 method for signature 'ClusterExperiment'
clusterMatrixNamed(x, whichClusters = "all")

S4 method for signature 'ClusterExperiment'
clusterMatrixColors(x, whichClusters = "all")

S4 method for signature 'ClusterExperiment'’
clusterMatrix(x, whichClusters)

S4 method for signature 'ClusterExperiment'
primaryCluster(x)

S4 method for signature 'ClusterExperiment'’
primaryClusterIndex(x)

S4 method for signature 'ClusterExperiment'
primaryClusterLabel (x)

S4 method for signature 'ClusterExperiment'’
primaryClusterNamed(x)

S4 method for signature 'ClusterExperiment'
primaryClusterType(x)

S4 replacement method for signature 'ClusterExperiment,numeric'’
primaryClusterIndex(object) <- value

S4 method for signature 'ClusterExperiment'
dendroClusterIndex(x)

S4 method for signature 'ClusterExperiment'
coClustering(x)

S4 replacement method for signature 'ClusterExperiment,matrix’
coClustering(object) <- value

S4 replacement method for signature 'ClusterExperiment,dsCMatrix
coClustering(object) <- value

S4 replacement method for signature 'ClusterExperiment,numeric’
coClustering(object) <- value

S4 method for signature 'ClusterExperiment'

ClusterExperiment-methods 17

clusterTypes(x)

S4 method for signature 'ClusterExperiment'
clusteringInfo(x)

S4 method for signature 'ClusterExperiment’

clusterLabels(x)

S4 replacement method for signature 'ClusterExperiment,character'’
clusterLabels(object) <- value

S4 method for signature 'ClusterExperiment'’
clusterLegend(x)

S4 replacement method for signature 'ClusterExperiment,list'’
clusterLegend(object) <- value

S4 method for signature 'ClusterExperiment'’
orderSamples(x)

S4 replacement method for signature 'ClusterExperiment,numeric'
orderSamples(object) <- value

S4 replacement method for signature 'ClusterExperiment,character'’
clusterTypes(object) <- value

S4 method for signature 'ClusterExperiment'
addToColData(object, ...)

S4 method for signature 'ClusterExperiment'
colDataClusters(

object,

whichClusters = "primary",

useNames = TRUE,

makeFactor = TRUE,

)
Arguments
X, object a ClusterExperiment object.
value The value to be substituted in the corresponding slot. See the slot descriptions
in ClusterExperiment for details on what objects may be passed to these func-
tions.
ignoreUnassigned

logical. If true, ignore the clusters with -1 or -2 assignments in calculating the
number of clusters per clustering.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

For addToColData, arguments passed to colDataClusters.

useNames for tableClusters, whether the output should be tabled with names (useNames=TRUE)

or ids (useNames=FALSE)

18 ClusterExperiment-methods

makeFactor logical for colDataClusters. If TRUE the clustering will be added to the
colData slot as a factor. If FALSE, the clustering will be added to the colData
slot as a character vector if useNames=TRUE and as a numeric vector if useNames=FALSE.

Details

Note that redefining the transformation function via transformation(x)<- will check the validity
of the transformation on the data assay. If the assay is large, this may be time consuming. Consider
using a call to ClusterExperiment, which has the option as to whether to check the validity of the
transformation.

Value

transformation prints the function used to transform the data prior to clustering.
nClusterings returns the number of clusterings (i.e., ncol of clusterMatrix).
nClusters returns the number of clusters per clustering

nFeatures returns the number of features (same as ‘nrow ‘).

nSamples returns the number of samples (same as ‘ncol).

clusterMatrixNamed returns a matrix with cluster labels.

clusterMatrixColors returns the matrix with all the clusterings, using the internally stored colors
for each cluster

clusterMatrix returns the matrix with all the clusterings.
primaryCluster returns the primary clustering (as numeric).

primaryClusterIndex returns/sets the primary clustering index (i.e., which column of clusterMa-
trix corresponds to the primary clustering).

primaryClusterIndex returns/sets the primary clustering index (i.e., which column of clusterMa-
trix corresponds to the primary clustering).

primaryClusterNamed returns the primary cluster (using cluster labels).

primaryClusterIndex returns/sets the primary clustering index (i.e., which column of clusterMa-
trix corresponds to the primary clustering).

dendroClusterIndex returns/sets the clustering index of the clusters used to create dendrogram
(i.e., which column of clusterMatrix corresponds to the clustering).

coClustering returns/sets the co-clustering matrix.

clusterTypes returns/sets the clusterTypes slot.

clusteringInfo returns the clusterInfo slot.

clusterLabels returns/sets the column names of the clusterMatrix slot.
clusterLegend returns/sets the clusterLegend slot.

orderSamples returns/sets the orderSamples slot.

addToColData returns a ClusterExperiment object with the clusterings in clusterMatrix slot added
to the colData slot

colDataClusters returns a DataFrame object that has the clusterings in clusterMatrix slot added
to the DataFrame in the colData slot

ClusterFunction-methods

Examples

load data:

data(rsecFluidigm)

show(rsecFluidigm)

#Number of clusterings

nClusterings(rsecFluidigm)

Number of clusters per clustering
nClusters(rsecFluidigm)

Number of features/samples

nSamples(rsecFluidigm)

nFeatures(rsecFluidigm)

retrieve all clustering assignments

(either as cluster ids, cluster names or cluster colors)
head(clusterMatrix(rsecFluidigm)[,1:5])
head(clusterMatrixNamed(rsecFluidigm)[,1:5])
head(clusterMatrixColors(rsecFluidigm)[,1:5])

clustering Types/Labels

clusterTypes(rsecFluidigm)

clusterLabels(rsecFluidigm)

Add a clustering assignment to the colData of the object
(useful if working with function that relies on colData)
colData(rsecFluidigm)
test<-addToColData(rsecFluidigm,whichCluster="primary")
colData(test)

ClusterFunction-methods
Helper methods for the ClusterFunction class

Description

This is a collection of helper methods for the ClusterExperiment class.

Usage
S4 method for signature 'character'

requiredArgs(object)

S4 method for signature 'ClusterFunction'
requiredArgs(object, genericOnly = FALSE)

S4 method for signature 'list'
requiredArgs(object)

S4 method for signature 'character'
requiredArgs(object)

S4 method for signature 'character'
requiredArgs(object)

S4 method for signature 'factor'
requiredArgs(object)

20 clusterMany
S4 method for signature 'ClusterFunction'
algorithmType(object)
S4 method for signature 'character'
algorithmType(object)
S4 method for signature 'factor'
algorithmType(object)
S4 method for signature 'list'
algorithmType(object)
S4 method for signature 'ClusterFunction'
inputType(object)
S4 method for signature 'list'
inputType(object)
S4 method for signature 'character'
inputType(object)
S4 method for signature 'factor'
inputType(object)
Arguments
object input to the method, either a ClusterFunction class or a character describing

a built-in ClusterFunction object. Can also be a 1ist of ClusterFunction
objects, in which case the list must have names for each function.

genericOnly logical If TRUE, return only the generic required arguments (i.e. those required
by the algorithm type) and not the arguments specific to that clustering found in
the slot requiredArgs. If FALSE both sets of arguments are returned.

Details

Note that when subsetting the data, the dendrogram information and the co-clustering matrix are

lost.

Value

requiredArgs returns a list of the required args of a function (via a call to requiredArgs)

algorithmType returns a character value giving the type of clustering function ("01" or "K")

inputType returns a character value giving the input type of the object

clusterMany

Create a matrix of clustering across values of parameters

Description

Given a range of parameters, this function will return a matrix with the clustering of the samples
across the range, which can be passed to plotClusters for visualization.

clusterMany

Usage
S4 method for signature 'matrixOrHDF5'
clusterMany(
X’
reduceMethod = "none”,

nReducedDims = NA,
transFun = NULL,
isCount = FALSE,

)
S4 method for signature 'SingleCellExperiment'’
clusterMany(

X,

ks = NA,

clusterFunction,

reduceMethod = "none”,

nFilterDims = defaultNDims(x, reduceMethod, type = "filterStats"),
nReducedDims = defaultNDims(x, reduceMethod, type = "reducedDims"),
alphas = 0.1,

findBestK = FALSE,

sequential = FALSE,

removeSil = FALSE,

subsample = FALSE,
silCutoff = 0,
distFunction = NA,
betas = 0.9,
minSizes = 1,
transFun = NULL,

isCount = FALSE,

verbose = TRUE,

parameterWarnings = FALSE,

mainClusterArgs = NULL,

subsampleArgs = NULL,

segArgs = NULL,

whichAssay = 1,

makeMissingDiss = if (ncol(x) < 1000) TRUE else FALSE,

ncores = 1,

random.seed = NULL,

run = TRUE,
)
S4 method for signature 'ClusterExperiment'’
clusterMany(

X’

reduceMethod = "none”,

nFilterDims = defaultNDims(x, reduceMethod, type = "filterStats"),
nReducedDims = defaultNDims(x, reduceMethod, type = "reducedDims"),
eraseOld = FALSE,

22 clusterMany

S4 method for signature 'SummarizedExperiment'
clusterMany(x, ...)

S4 method for signature 'data.frame'

clusterMany(x, ...)
Arguments
X the data matrix on which to run the clustering. Can be object of the following

classes: matrix (with genes in rows), SummarizedExperiment, SingleCellExperiment
or ClusterExperiment.

reduceMethod character A character identifying what type of dimensionality reduction to per-
form before clustering. Options are 1) "none", 2) one of listBuiltiInReduced-
Dims() or listBuiltInFitlerStats OR 3) stored filtering or reducedDim values in
the object.

nReducedDims vector of the number of dimensions to use (when reduceMethod gives a dimen-
sionality reduction method).

transFun a transformation function to be applied to the data. If the transformation applied
to the data creates an error or NA values, then the function will throw an error.
If object is of class ClusterExperiment, the stored transformation will be used
and giving this parameter will result in an error.

isCount if transFun=NULL, then isCount=TRUE will determine the transformation as de-
fined by function(x){log2(x+1)3}, and isCount=FALSE will give a transfor-
mation function function(x){x}. Ignored if transFun=NULL. If object is of
class ClusterExperiment, the stored transformation will be used and giving
this parameter will result in an error.

For signature matrix, arguments to be passed on to mclapply (if ncores>1).
For all the other signatures, arguments to be passed to the method for signature
matrix.

ks the range of k values (see details for the meaning of k for different choices of
other parameters).

clusterFunction
function used for the clustering. This must be either 1) a character vector of
built-in clustering techniques, or 2) a named list of ClusterFunction objects.
Current functions can be found by typing listBuiltInFunctions() into the
command-line.

"non

nFilterDims vector of the number of the most variable features to keep (when "var", "abscv",
or "mad" is identified in reduceMethod).

alphas values of alpha to be tried. Only used for clusterFunctions of type *01°. Deter-
mines tightness required in creating clusters from the dissimilarity matrix. Takes
on values in [0,1]. See documentation of ClusterFunction.

findBestK logical, whether should find best K based on average silhouette width (only used
when clusterFunction of type "K").

sequential logical whether to use the sequential strategy (see details of seqCluster). Can
be used in combination with subsample=TRUE or FALSE.

removeSil logical as to whether remove when silhouette < silCutoff (only used if cluster-
Function of type "K")

clusterMany 23

subsample logical as to whether to subsample via subsampleClustering. If TRUE, clus-
tering in mainClustering step is done on the co-occurance between clusterings
in the subsampled clustering results. If FALSE, the mainClustering step will be
run directly on x/diss

silCutoff Requirement on minimum silhouette width to be included in cluster (only for
combinations where removeSil=TRUE).

distFunction a vector of character strings that are the names of distance functions found in
the global environment. See the help pages of clusterSingle for details about
the required format of distance functions. Currently, this distance function must
be applicable for all clusterFunction types tried. Therefore, it is not possible in
clusterMany to intermix type "K" and type "01" algorithms if you also give
distances to evaluate via distFunction unless all distances give 0-1 values for
the distance (and hence are possible for both type "01" and "K" algorithms).

betas values of beta to be tried in sequential steps. Only used for sequential=TRUE.
Determines the similarity between two clusters required in order to deem the
cluster stable. Takes on values in [0,1]. See documentation of seqCluster.

minSizes the minimimum size required for a cluster (in the mainClustering step). Clus-
ters smaller than this are not kept and samples are left unassigned.

verbose logical. If TRUE it will print informative messages.

parameterWarnings
logical, as to whether warnings and comments from checking the validity of the
parameter combinations should be printed.

mainClusterArgs
list of arguments to be passed for the mainClustering step, see help pages of
mainClustering.

subsampleArgs list of arguments to be passed to the subsampling step (if subsample=TRUE), see
help pages of subsampleClustering.

segArgs list of arguments to be passed to seqCluster.
whichAssay numeric or character specifying which assay to use. See assay for details.
makeMissingDiss

logical. Whether to calculate necessary distance matrices needed when input
is not "diss". If TRUE, then when a clustering function calls for a inputType
"diss", but the given matrix is of type "X", the function will calculate a distance
function. A dissimilarity matrix will also be calculated if a post-processing ar-
gument like findBestK or removeSil is chosen, since these rely on calcualting
silhouette widths from distances.

ncores the number of threads

random. seed a value to set seed before each run of clusterSingle (so that all of the runs are
run on the same subsample of the data). Note, if ‘random.seed’ is set, argument
'ncores’ should NOT be passed via subsampleArgs; instead set the argument
‘ncores’ of clusterMany directly (which is preferred for improving speed any-
way).

run logical. If FALSE, doesn’t run clustering, but just returns matrix of parameters
that will be run, for the purpose of inspection by user (with rownames equal
to the names of the resulting column names of clMat object that would be re-
turned if run=TRUE). Even if run=FALSE, however, the function will create the
dimensionality reductions of the data indicated by the user input.

24 clusterMany

erase0ld logical. Only relevant if input x is of class ClusterExperiment. If TRUE,
will erase existing workflow results (clusterMany as well as mergeClusters and
makeConsensus). If FALSE, existing workflow results will have "_i" added
to the clusterTypes value, where i is one more than the largest such existing
workflow clusterTypes.

Details

Some combinations of these parameters are not feasible. See the documentation of clusterSingle
for important information on how these parameter choices interact.

While the function allows for multiple values of clusterFunction, the code does not reuse the same
subsampling matrix and try different clusterFunctions on it. This is because if sequential=TRUE,
different subsample clusterFunctions will create different sets of data to subsample so it is not
possible; if sequential=FALSE, we have not implemented functionality for this reuse. Setting the
random. seed value, however, should mean that the subsampled matrix is the same for each, but
there is no gain in computational complexity (i.e. each subsampled co-occurence matrix is recalcu-
lated for each set of parameters).

The argument ks is interpreted differently for different choices of the other parameters. When/if
sequential=TRUE, ks defines the argument k@ of seqCluster. Otherwise, ks values are the k
values for both the mainClustering and subsampling step (i.e. assigned to the subsampleArgs
and mainClusterArgs that are passed to mainClustering and subsampleClustering unless k
is set appropriately in subsampleArgs. The passing of these arguments via subsampleArgs will
only have an effect if ‘subsample=TRUE®. Similarly, the passing of mainClusterArgs[["k"]]
will only have an effect when the clusterFunction argument includes a clustering algorithm of type
"K". When/if "findBestK=TRUE", ks also defines the kRange argument of mainClustering unless
kRange is specified by the user via the mainClusterArgs; note this means that the default option of
setting kRange that depends on the input k (see mainClustering) is not available in clusterMany,
only in clusterSingle.

If the input is a ClusterExperiment object, current implementation is that existing orderSamples,coClustering
or the many dendrogram slots will be retained.

If run=FALSE, the function will still calculate reduced dimensions or filter statistics if not already
calculated and saved in the object. Moreover the results of these calculations will not be save.
Therefore, if these steps are lengthy for large datasets it is recommended to do them before calling
the function.

The given reduceMethod values must either be all precalculated filtering/dimensionality reduc-
tion stored in the appropriate location, or must all be character values giving a built-in filter-
ing/dimensionality reduction methods to be calculated. If some of the filtering/dimensionality meth-
ods are already calculated and stored, but not all, then they will all be recalculated (and if they are
not all built-in methods, this will give an error). So to save computational time with pre-calculated
dimensionality reduction, the user must make sure they are all precalculated. Also, user-defined
values (i.e. not built-in functions) cannot be mixed with built-in functions unless they have already
been precalculated (see makeFilterStats or makeReducedDims).

Value

If run=TRUE will return a ClusterExperiment object, where the results are stored as clusterings
with clusterTypes clusterMany. Depending on erase0ld argument above, this will either delete
existing such objects, or change the clusterTypes of existing objects. See argument erase0ld above.
Arbitrarily the first clustering is set as the primaryClusteringIndex.

If run=FALSE a list with elements:

clusterSingle 25

* paramMatrix a matrix giving the parameters of each clustering, where each column is a pos-
sible parameter set by the user and passed to clusterSingle and each row of paramMatrix
corresponds to a clustering in cIMat

* mainClusterArgs a list of (possibly modified) arguments to mainClusterArgs
* segArgs=seqArgsa list of (possibly modified) arguments to seqArgs

* subsampleArgsa list of (possibly modified) arguments to subsampleArgs

Examples

Not run:
data(simData)

#Example: clustering using pam with different dimensions of pca and different

#k and whether remove negative silhouette values

#check how many and what runs user choices will imply:

checkParams <- clusterMany(simData, reduceMethod="PCA", makeMissingDiss=TRUE,
nReducedDims=c(5,10,50), clusterFunction="pam", isCount=FALSE,
ks=2:4,findBestK=c(TRUE,FALSE), removeSil=c(TRUE,FALSE), run=FALSE)

print(head(checkParams$paramMatrix))

#Now actually run it

cl <- clusterMany(simData,reduceMethod="PCA", nReducedDims=c(5,10,50), isCount=FALSE,
clusterFunction="pam" ks=2:4,findBestK=c(TRUE, FALSE) ,makeMissingDiss=TRUE,
removeSil=c(TRUE,FALSE))

print(cl)

head(colnames(clusterMatrix(cl)))

#make names shorter for plotting
clNames <- clusterLabels(cl)

clNames <- gsub("TRUE", "T", clNames)
clNames <- gsub("FALSE", "F", clNames)
clNames <- gsub("k=NA,", "", clNames)

par(mar=c(2, 10, 1, 1))
plotClusters(cl, axisLine=-2,clusterLabels=clNames)

#following code takes around 1+ minutes to run because of the subsampling

#that is redone each time:

system.time(clusterTrack <- clusterMany(simData, ks=2:15,
alphas=c(0.1,0.2,0.3), findBestK=c(TRUE,FALSE), sequential=c(FALSE),
subsample=c(FALSE), removeSil=c(TRUE), clusterFunction="pam",
makeMissingDiss=TRUE,
mainClusterArgs=list(minSize=5, kRange=2:15), ncores=1, random.seed=48120))

End(Not run)

clusterSingle General wrapper method to cluster the data

Description

Given input data, this function will find clusters, based on a single specification of parameters.

26 clusterSingle

Usage

S4 method for signature 'SummarizedExperiment’
clusterSingle(inputMatrix, ...)

S4 method for signature 'ClusterExperiment'
clusterSingle(inputMatrix, ...)

S4 method for signature 'SingleCellExperiment'’
clusterSingle(
inputMatrix,
reduceMethod = "none”,
nDims = defaultNDims(inputMatrix, reduceMethod),
whichAssay = 1,

)

S4 method for signature 'matrixOrHDF50rNULL'
clusterSingle(

inputMatrix,

inputType = "X",

subsample = FALSE,

sequential = FALSE,

distFunction = NA,

mainClusterArgs = NULL,

subsampleArgs = NULL,

segArgs = NULL,

isCount = FALSE,

transFun = NULL,

reduceMethod = "none”,

nDims = defaultNDims(inputMatrix, reduceMethod),

makeMissingDiss = if (ncol(inputMatrix) < 1000) TRUE else FALSE,

clusterLabel = "clusterSingle”,

saveSubsamplingMatrix = FALSE,

checkDiss = FALSE,

warnings = TRUE

Arguments
inputMatrix numerical matrix on which to run the clustering or a SummarizedExperiment,
SingleCellExperiment, or ClusterExperiment object.
arguments to be passed on to the method for signature matrix.

reduceMethod character A character identifying what type of dimensionality reduction to per-
form before clustering. Options are 1) "none", 2) one of listBuiltiInReduced-
Dims() or listBuiltInFitlerStats OR 3) stored filtering or reducedDim values in

the object.
nDims integer An integer identifying how many dimensions to reduce to in the reduc-
tion specified by reduceMethod. Defaults to output of defaultNDims
whichAssay numeric or character specifying which assay to use. See assay for details.
inputType a character vector defining what type of input is given in the inputMatrix ar-

gument. Must consist of values "diss","X", or "cat" (see details). "X" and "cat"

clusterSingle 27

should be indicate matrices with features in the row and samples in the col-
umn; "cat" corresponds to the features being numerical integers corresponding
to categories, while "X" are continuous valued features. "diss" corresponds to an
inputMatrix that is a NxN dissimilarity matrix. "cat" is largely used internally
for clustering of sets of clusterings.

subsample logical as to whether to subsample via subsampleClustering. If TRUE, clus-
tering in mainClustering step is done on the co-occurance between clusterings
in the subsampled clustering results. If FALSE, the mainClustering step will be
run directly on x/diss

sequential logical whether to use the sequential strategy (see details of seqCluster). Can
be used in combination with subsample=TRUE or FALSE.

distFunction a distance function to be applied to inputMatrix. Only relevantif inputType="X".
See details of clusterSingle for the required format of the distance function.
mainClusterArgs
list of arguments to be passed for the mainClustering step, see help pages of
mainClustering.

subsampleArgs list of arguments to be passed to the subsampling step (if subsample=TRUE), see
help pages of subsampleClustering.

segArgs list of arguments to be passed to seqCluster.

isCount if transFun=NULL, then isCount=TRUE will determine the transformation as de-
fined by function(x){log2(x+1)}, and isCount=FALSE will give a transfor-
mation function function(x){x}. Ignored if transFun=NULL. If object is of
class ClusterExperiment, the stored transformation will be used and giving
this parameter will result in an error.

transFun a transformation function to be applied to the data. If the transformation applied
to the data creates an error or NA values, then the function will throw an error.
If object is of class ClusterExperiment, the stored transformation will be used
and giving this parameter will result in an error.

makeMissingDiss
logical. Whether to calculate necessary distance matrices needed when input
is not "diss". If TRUE, then when a clustering function calls for a inputType
"diss", but the given matrix is of type "X", the function will calculate a distance
function. A dissimilarity matrix will also be calculated if a post-processing ar-
gument like findBestK or removeSil is chosen, since these rely on calcualting
silhouette widths from distances.

clusterLabel a string used to describe the clustering. By default it is equal to "clusterSingle",
to indicate that this clustering is the result of a call to clusterSingle.

saveSubsamplingMatrix
logical. If TRUE, the co-clustering matrix resulting from subsampling is re-
turned in the coClustering slot (and replaces any existing coClustering object in
the slot coClustering if input object is a ClusterExperiment object.)

checkDiss logical. Whether to check whether the dissimilarities matrices are valid (whether
given by the user or calculated because makeMissingDiss=TRUE).

warnings logical. Whether to print out the many possible warnings and messages regard-
ing checking the internal consistency of the parameters.

Details

clusterSingle is an ’expert-oriented’ function, intended to be used when a user wants to run a
single clustering and/or have a great deal of control over the clustering parameters. Most users

28

clusterSingle

will find clusterMany more relevant. However, clusterMany makes certain assumptions about
the intention of certain combinations of parameters that might not match the user’s intent; similarly
clusterMany does not directly take a dissimilarity matrix but only a matrix of values x (though a
user can define a distance function to be applied to x in clusterMany).

Unlike clusterMany, most of the relevant arguments for the actual clustering algorithms in clusterSingle
are passed to the relevant steps via the arguments mainClusterArgs, subsampleArgs, and segArgs.

These arguments should be named lists with parameters that match the corresponding functions:
mainClustering,subsampleClustering, and seqCluster. These three functions are not meant

to be called by the user, but rather accessed via calls to clusterSingle. But the user can look at

the help files of those functions for more information regarding the parameters that they take.

Only certain combinations of parameters are possible for certain choices of sequential and subsample.
These restrictions are documented below.

e clusterFunction for mainClusterArgs: The choice of subsample=TRUE also controls what
algorithm type of clustering functions can be used in the mainClustering step. When subsample=TRUE,
then resulting co-clustering matrix from subsampling is converted to a dissimilarity (specif-
icaly 1-coclustering values) and is passed to diss of mainClustering. For this reason, the
ClusterFunction object given to mainClustering via the argument mainClusterArgs must
take input of the form of a dissimilarity. When subsample=FALSE and sequential=TRUE,
the clusterFunction passed in clusterArgs element of mainClusterArgs must define a
ClusterFunction object with algorithmType ’K’. When subsample=FALSE and sequential=FALSE,
then there are no restrictions on the ClusterFunction and that clustering is applied directly
to the input data.

* clusterFunction for subsampleArgs: If the ClusterFunction object given to the clusterArgs
of subsamplingArgs is missing the algorithm will use the default for subsampleClustering
(currently "pam"). If sequential=TRUE, this ClusterFunction object must be of type 'K .

* Setting k for subsampling: If subsample=TRUE and sequential=TRUE, the current K of the
sequential iteration determines the 'k’ argument passed to subsampleClustering so setting
k=" in the list given to the subsampleArgs will not do anything and will produce a warning to
that effect (see documentation of seqCluster).

* Setting k for mainClustering step: If sequential=TRUE then the user should not set k in the
clusterArgs argument of mainClusterArgs because it must be set by the sequential code,
which has a iterative reseting of the parameters. Specifically if subsample=FALSE, then the
sequential method iterates over choices of k to cluster the input data. And if subsample=TRUE,
then the k in the clustering of mainClustering step (assuming the clustering function is of
type "K’) will use the k used in the subsampling step to make sure that the k used in the
mainClustering step is reasonable.

 Setting findBestK in mainClusterArgs: If sequential=TRUE and subsample=FALSE, the
user should not set ’findBestK=TRUE’ in mainClusterArgs. This is because in this case
the sequential method changes k; an error message will be given if this combination of op-
tions are set. However, if sequential=TRUE and subsample=TRUE, then passing either ’find-
BestK=TRUE’ or ’findBestK=FALSE’ via mainClusterArgs will function as expected (as-
suming the clusterFunction argument passed to mainClusterArgs is of type '’K’). In par-
ticular, the sequential step will set the number of clusters k for clustering of each subsample.
If findBestK=FALSE, that same k will be used for mainClustering step that clusters the re-
sulting co-occurance matrix after subsampling. If findBestK=TRUE, then mainClustering
will search for best k. Note that the default ’kRange’ over which mainClustering searches
when findBestK=TRUE depends on the input value of k which is set by the sequential method
if sequential=TRUE), see above. The user can change kRange to not depend on k and to be
fixed across all of the sequential steps by setting kRange explicitly in the mainClusterArgs
list.

clusterSingle 29

To provide a distance matrix via the argument distFunction, the function must be defined to take
the distance of the rows of a matrix (internally, the function will call distFunction(t(x)). This is
to be compatible with the input for the dist function. as.matrix will be performed on the output
of distFunction, so if the object returned has a as.matrix method that will convert the output
into a symmetric matrix of distances, this is fine (for example the class dist for objects returned by
dist have such a method). If distFunction=NA, then a default distance will be calculated based
on the type of clustering algorithm of clusterFunction. For type "K" the default is to take dist
as the distance function. For type "01", the default is to take the (1-cor(x))/2.

Value

A ClusterExperiment object if inputType is of type "X".

If input was not of type "X", then the result is a list with values

* clustering: The vector of clustering results
* clusterInfo: A list with information about the parameters run in the clustering

» coClusterMatrix: (only if saveSubsamplingMatrix=TRUE, NxB set of clusterings obtained
after B subsamples.

See Also

clusterMany to compare multiple choices of parameters, and mainClustering,subsampleClustering,

and seqCluster for the underlying functions called by clusterSingle.

Examples

data(simData)

Not run:

#following code takes some time.

#use clusterSingle to do sequential clustering

#(same as example in seqCluster only using clusterSingle ...)

set.seed(44261)

clustSegHier_v2 <- clusterSingle(simData,
sequential=TRUE, subsample=TRUE,
subsampleArgs=list(resamp.n=100, samp.p=0.7,
clusterFunction="kmeans"”, clusterArgs=list(nstart=10)),
segArgs=list(beta=0.8, k0=5), mainClusterArgs=list(minSize=5,
clusterFunction="hierarchical@1”,clusterArgs=list(alpha=0.1)))

End(Not run)

#use clusterSingle to do just clustering k=3 with no subsampling
clustObject <- clusterSingle(simData,
subsample=FALSE, sequential=FALSE,
mainClusterArgs=list(clusterFunction="pam", clusterArgs=list(k=3)))
#compare to standard pam
pamOut<-cluster::pam(t(simData),k=3,cluster.only=TRUE)
all(pamOut==primaryCluster(clustObject))

30 getBestFeatures

fluidigmData Subset of fluidigm data

Description

Subset of fluidigm data

Format

subset of fluidigm data used in vignette package.

Details

fluidigmData and fluidigmColData are portions of the fluidigm data distributed in the package
scRNAseq package. We have subsetted to only the cells sequenced under high depth, and lim-
ited our selves to only two of the four gene estimates provided by scRNAseq ("tophat_counts" and
"rsem_tpm").

Author(s)

Elizabeth Purdom <epurdom@stat.berkeley.edu>

See Also

fluidigm

Examples

#code used to create objects:

Not run:

library(scRNAseq)

if(packageVersion(”scRNAseq”)>="1.11.0") fluidigm <- ReprocessedFluidigmData() else data(fluidigm)
fluidSubset<- fluidigm[,colData(fluidigm)[,"Coverage_Type"J]=="High"]
fluidigmData<-assays(fluidSubset)[c("tophat_counts”,"rsem_tpm")]
fluidigmColData<-as.data.frame(colData(fluidSubset))

usethis::use_data(fluidigmData, fluidigmColData, overwrite=FALSE)

End(Not run)

getBestFeatures Function for finding best features associated with clusters

Description

Calls limma on input data to determine features most associated with found clusters (based on an
F-statistic, pairwise comparisons, or following a tree that clusters the clusters).

getBestFeatures

Usage

31

S4 method for signature 'matrixOrHDF5'
getBestFeatures(

X’
cluster,

contrastType = c("F", "Dendro”, "Pairs"”, "OneAgainstAll"),
dendro = NULL,
pairMat = NULL,

weights = NULL,
contrastAdj = c("All", "PerContrast”, "AfterF"),
DEMethod = c("edgeR"”, "limma", "limma-voom"),

dgeArgs = NULL,

)
S4 method for signature 'ClusterExperiment'’
getBestFeatures(
X,
contrastType = c("F", "Dendro”, "Pairs"”, "OneAgainstAll"),
whichCluster = "primary”,
whichAssay = 1,
DEMethod,
weights = if ("weights” %in% assayNames(x)) "weights"” else NULL,
)
Arguments
X data for the test. Can be a numeric matrix or a ClusterExperiment.
cluster A numeric vector with cluster assignments. “-1” indicates the sample was not
assigned to a cluster.
contrastType What type of test to do. ‘F’ gives the omnibus F-statistic, ‘Dendro’ traverses the
given dendrogram and does contrasts of the samples in each side, ‘Pairs’ does
pair-wise contrasts based on the pairs given in pairMat (if pairMat=NULL, does
all pairwise), and ‘OneAgainstAll’ compares each cluster to the average of all
others. Passed to clusterContrasts
dendro The dendrogram to traverse if contrastType="Dendro". Note that this should
be the dendrogram of the clusters, not of the individual samples, either of class
"dendrogram" or "phylo4"
pairMat matrix giving the pairs of clusters for which to do pair-wise contrasts (must
match to elements of cl). If NULL, will do all pairwise of the clusters in cluster
(excluding "-1" categories). Each row is a pair to be compared and must match
the names of the clusters in the vector cluster.
weights weights to use in by edgeR. If x is a matrix, then weights should be a matrix

of weights, of the same dimensions as x. If x is a ClusterExperiment object
weights can be a either a matrix, as previously described, or a character or
numeric index to an assay in x that contains the weights. We recommend that
weights be stored as an assay with name "weights” so that the weights will also
be used with mergeClusters, and this is the default. Setting weights=NULL
ensures that weights will NOT be used, and only the standard edgeR.

32 getBestFeatures

contrastAdj What type of FDR correction to do for contrasts tests (i.e. if contrastType="Dendro’
or 'Pairs’).
DEMethod character vector describing how the differential expression analysis should be

performed (replaces previous argument isCount. See details.

dgeArgs a list of arguments to pass to DGEList which is the starting point for both edgeR
and 1imma-voom methods of DE. This includes normalization factors/total count
values etc.

If x is a matrix, these are options to pass to topTable (see 1imma package). If
x is a ClusterExperiment object, these arguments can also be those to pass to
the matrix version.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

whichAssay numeric or character specifying which assay to use. See assay for details.

Details

getBestFeatures returns the top ranked features corresponding to a cluster assignment. It uses either
limma or edgeR to fit the models, and limma/edgeR functions topTable to find the best features.
See the options of this function to put better control on what gets returned (e.g. only if significant,
only if log-fc is above a certain amount, etc.). In particular, set ‘number=‘ to define how many
significant features to return (where number is per contrast for the ‘Pairs‘ or ‘Dendro* option)

DEMethod triggers what type of differential expression analysis will be performed. Three options
are available: limma, edgeR, and limma with a voom corrections. The last two options are only
appropriate for count data. If the input x is a ClusterExperiment object, and DEMethod="1imma",
then the data analyzed for DE will be after taking the transformation of the data (as given in the
transformation slot of the object). For the options "limma-voom" and "edgeR", the transformation
slot will be ignored and only the counts data (as specified by the whichAssay slot) will be passed to
the programs. Note that for "limma-voom" this implies that the data will be transformed by voom
with the function log2(x+0.5). If weights is not NULL, and DEMethod="edgeR", then the function
glmWeightedF from the zinbwave package is run; otherwise glmLRT from edgeR.

Note that the argument DEMethod replaces the previous option isCount, to decide on the method of
DE.

When ‘contrastType‘ argument implies that the best features should be found via contrasts (i.e.
*contrastType’ is ‘Pairs‘ or ‘Dendro‘), then then ‘contrastAdj‘ determines the type of multiple test-
ing correction to perform. ‘PerContrast’ does FDR correction for each set of contrasts, and does
not guarantee control across all the different contrasts (so probably not the preferred method). ‘All*
calculates the corrected p-values based on FDR correction of all of the contrasts tested. ‘AfterF*
controls the FDR based on a hierarchical scheme that only tests the contrasts in those genes where
the omnibus F statistic is significant. If the user selects ‘AfterF*, the user must also supply an option
‘p-value‘ to have any effect, and then only those significant at that p.value level will be returned.
Note that currently the correction for ‘AfterF* is not guaranteed to control the FDR; improvements
will be added in the future.

Note that the default option for topTable is to not filter based on adjusted p-values (p.value = 1)
and return only the top 10 most significant (number = 10) — these are options the user can change
(these arguments are passed via the . . . in getBestFeatures). In particular, it only makes sense to
set requireF = TRUE if p.value is meaningful (e.g. 0.1 or 0.05); the default value of p.value =1
will not result in any effect on the adjusted p-value otherwise.

getBestFeatures 33

Value

A data.frame in the same format as topTable, or topTags. The output differs between these
two programs, mainly in the naming of columns. Furthermore, if weights are used, an addi-
tional column padjFilter is included as the result of running glmWeightedF with default option
independentFiltering = TRUE. The following column names are the same between all of the DE
methods.

* Feature This is the column called "ProbelD’ by topTable

* IndexInOriginal Gives the index of the feature to the original input dataset, x

* Contrast The contrast that the results corresponds to (if applicable, depends on contrastType
argument)

e ContrastName The name of the contrast that the results corresponds to. For dendrogram
searches, this will be the node of the tree of the dendrogram. If x is a ClusterExperiment
object, this name will make use of the user defined names of the cluster or node in x.

e InternalName Only present if x is a ClusterExperiment object. In this case this column
will give the name of the contrast using the internal ids of the clusters and nodes, not the
user-defined names. This provides stability in matching the contrast if the user has changed
the names since running getBestFeatures

e P.Value The unadjusted p-value (changed from PValue in topTags)
* adj.P.Val The adjusted p-value (changed from FDR or FWER in topTags)

References

Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015). limma pow-
ers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research 43, e47. http://nar.oxfordjournals.org/content/43/7/e47

Law, CW, Chen, Y, Shi, W, and Smyth, GK (2014). Voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biology 15, R29. http://genomebiology.com/2014/15/2/R29

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Statistical Applications in Genetics and Molecular Biology,
Volume 3, Article 3. http://www.statsci.org/smyth/pubs/ebayes.pdf

See Also
gImLRT glmWeightedF topTable topTags

Examples

data(simData)

#create a clustering, for 8 clusters (truth was 4)
cl <- clusterSingle(simData, subsample=FALSE,
sequential=FALSE, mainClusterArgs=list(clusterFunction="pam"”, clusterArgs=1ist(k=8)))

#basic F test, return all, even if not significant:
testF <- getBestFeatures(cl, contrastType="F", number=nrow(simData),
DEMethod="1imma")

#Do all pairwise, only return significant, try different adjustments:

pairsPerC <- getBestFeatures(cl, contrastType="Pairs"”, contrastAdj="PerContrast”,
p.value=0.05, DEMethod="1limma")

pairsAfterF <- getBestFeatures(cl, contrastType="Pairs"”, contrastAdj="AfterF",

34 getClusterIndex

p.value=0.05, DEMethod="1limma")
pairsAll <- getBestFeatures(cl, contrastType="Pairs"”, contrastAdj="All",
p.value=0.05, DEMethod="1limma")

#not useful for this silly example, but could look at overlap with Venn
allGenes <- paste(”"Row”, 1:nrow(simData),sep="")

if(require(limma)){

vennC <- vennCounts(cbind(PerContrast= allGenes %in% pairsPerC$Feature,
AllJoint=allGenes %in% pairsAll$Feature, FHier=allGenes %in%
pairsAfterF$Feature))

vennDiagram(vennC, main="FDR Overlap")

}

#Do one cluster against all others
oneAll <- getBestFeatures(cl, contrastType="OneAgainstAll"”, contrastAdj="All",
p.value=0.05,DEMethod="1imma")

#Do dendrogram testing

hcl <- makeDendrogram(cl)

allDendro <- getBestFeatures(hcl, contrastType="Dendro”, contrastAdj=c("All"),
number=ncol(simData), p.value=0.05,DEMethod="1imma")

do DE on counts using voom

compare results to if used simData instead (not on count scale).

testFVoom <- getBestFeatures(simCount, primaryCluster(cl), contrastType="F",
number=nrow(simData), DEMethod="1limma-voom")
plot(testF$P.Valuel[order(testF$Index)],
testFVoom$P.Valuelorder(testFVoom$Index)], log="xy")

do DE on counts using edgeR, compare voom

testFEdge <- getBestFeatures(simCount, primaryCluster(cl), contrastType="F",
n=nrow(simData), DEMethod="edgeR")
plot(testFVoom$P.Valuelorder(testFVoom$Index)],
testFEdge$P.Valuelorder(testFEdge$Index)], log="xy")

getClusterIndex getClusterIndex

Description

Finds index of clustering in clusterMatrix slot of object based on descriptions of clusters.

Usage
S4 method for signature 'ClusterExperiment'’
getClusterIndex(
object,
whichClusters,
noMatch = c("silentlyRemove", "throwError")
)

S4 method for signature 'ClusterExperiment'
getSingleClusterIndex(object, whichCluster, passedArgs = NULL, ...)

getClusterIndex 35

Arguments

object a ClusterExperiment object

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

noMatch how to handle if there is no match to an given value of whichClusters. "silent-
lyRemove" means that no error will be given, and the result will be just those
that do match (resulting in a vector of length zero if there are none that match).
"throwError" means that the function will stop with an error describing the prob-
lem with the match.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

passedArgs other arguments passed to the function (only used internally)

Not for user use. Argument allows function getSingleClusterIndex to catch
the wrong argument (the plural whichClusters argument rather than singular
whichCluster).

Details

The function getClusterIndex is largely used internally to parse the argument whichClusters
which is used as an argument extensively across functions in this package. Note that some func-
tions require the match return a single clustering, in which case those functions use the function
getSingleClusterIndex with the singular argument whichCluster and returns an error if it indi-
cates more than one clustering. Furthermore getSingleClusterIndex does not allow for any mis-
matches (noMatch="throwError”. Otherwise the parsing of the two arguments whichClusters
and whichCluster is the same, and is described in what follows.

If whichClusters is numeric, then the function just returns the numeric values of whichClusters,
after checking that they are valid. If any are invalid, they are silently removed if silentlyRemove=TRUE.
The values will be returned in the order given, so this argument can also be used to defined by func-
tions to give an ordering for the clusterings (as relevant).

If whichClusters is a character value, then it the function attempts to use the character value
to identify the clustering. The value of the argument is first matched against a set of "special”
values: "workflow","all","none","primaryCluster","dendro" using the argument match.arg, which
does partial matching. If whichClusters is a vector of values, only the first value of the vector is
matched against these values and if it matches, the remaining values are ignored. If it matches one

of these values, then the cluster indices are given as follows.

» "workflow"all clusterings in the current workflow (see workflowClusters)

* "all"all clusterings, with the primary clustering put first.

* "none'"no clusterings

 "primaryCluster"the primary clustering index as given by primaryClusterIndex

* "dendro"the index of the clustering given to create the cluster dendrogram, if it exists
@details If whichClusters is a character value, but its first element does not match these predesig-
nated values, then all the values of whichClusters are attempted to be matched to the clusterTypes
of the object. Note that there may be more than one clustering that matches a given type. For any

entries that do not match a value in clusterTypes(object) are then matched based on the value
of clusterLabels of the object.

36 getClusterManyParams, ClusterExperiment-method

Value

getClusterIndex returns a vector of all numeric indices that are indicated by the requested whichClusters.
Note that there is not a one-to-one match between input values and returned values since there may
be more than one value for a given value of whichClusters or no value at all.

Examples

#load CE object

data(rsecFluidigm)

get the cluster index from mergeClusters step
getClusterIndex(rsecFluidigm,whichClusters="mergeClusters")
get the cluster indices from mergeClusters step
getClusterIndex(rsecFluidigm,whichClusters="clusterMany")

getClusterManyParams,ClusterExperiment-method
Get parameter values of clusterMany clusters

Description

Takes an input a ClusterExperiment object and returns the parameter values used in creating the
clusters that were created by ’clusterMany’

Usage

S4 method for signature 'ClusterExperiment'
getClusterManyParams(

X,

whichClusters = "clusterMany"”,

searchAll = FALSE,

simplify = TRUE

Arguments

X a ClusterExperiment object that contains clusterings from running clusterMany.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

searchAll logical, indicating whether all clusterings with clusterMany label should be al-
lowed (i.e. including those from previous ones with labels like clusterMany. 1),
or only limited to those in most recent workflow (default).

simplify logical. Whether to simplify the output so as to remove features that do not
change across the clusterings.

Details

The method simply parses the clusterlLabels of the indicated clusterings, relying on the spe-
cific format used by clusterMany to create labels. The function will only allow the parsing to be
performed on those clusterings with a ’clusterMany’ clusterType. If the user has manipulated the
clusterLabels manually or manually identified the clusterType of a clustering as ’clusterMany’, this

getReducedData,ClusterExperiment-method 37

function may create unexpected results or errors. Similarly, it cannot be used on ’clusterMany’
results from an old iteration (e.g. that have type ’clusterMany.1’)

Specifically, it splits the label of each clustering by the character ",", as indicating the different

parameters; this should return a value of form "ABC=123". The function then pulls out the numeric
value (°123’) and associates that value as the value of the parameter C ABC’)

Value

Returns a data.frame where the column names are the parameter names, and the entries are the
values of the parameter for the indicated clustering. The column ’clusteringIndex’ identifies the
index of the clustering in the full set of clusterings of the given ClusterExperiment object.

Examples

Not run:
data(simData)

cl <- clusterMany(simData, nReducedDims=c(5, 10), reduceMethod="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
makeMissingDiss=TRUE, removeSil=c(TRUE,FALSE))
getClusterManyParams(cl)

End(Not run)

getReducedData,ClusterExperiment-method

Return matrix from ClusterExperiment with reduced dimensions

Description

Returns a matrix of data from a ClusterExperiment object based on the choices of dimensionality
reduction given by the user.

Functions for calculating and manipulating either filtering statistics, stored in rowData, or the di-
mensionality reduction results, stored in reducedDims.

Usage

S4 method for signature 'ClusterExperiment'’
getReducedData(

object,

reduceMethod,

filterIgnoresUnassigned,

nDims = defaultNDims(object, reduceMethod),

whichCluster = "primary”,
whichAssay = 1,

returnValue = c("object”, "list"),
reducedDimName

S4 method for signature 'SingleCellExperiment'
defaultNDims(object, reduceMethod, typeToShow)

38

getReducedData,ClusterExperiment-method

S4 method for signature 'matrixOrHDF5'
defaultNDims(object, ...)

S4 method for signature 'SummarizedExperiment'’
makeFilterStats(
object,
filterStats = listBuiltInFilterStats(),
transFun = NULL,
isCount = FALSE,
filterNames = NULL,
whichAssay = 1
)

S4 method for signature 'matrixOrHDF5'
makeFilterStats(object, ...)

S4 method for signature 'ClusterExperiment'’
makeFilterStats(
object,
whichClusterIgnoreUnassigned = NULL,
filterStats = listBuiltInFilterStats(),

)

listBuiltInFilterStats()
S4 method for signature 'SummarizedExperiment'’
filterData(
object,
filterStats,
cutoff,
percentile,
absolute = FALSE,
keepLarge = TRUE,
whichAssay = 1
)

S4 method for signature 'SummarizedExperiment
filterNames(object)

S4 method for signature 'SingleCellExperiment'’
makeReducedDims (

object,

reducedDims = "PCA",

maxDims = 500,

transFun = NULL,

isCount = FALSE,

whichAssay = 1
)

S4 method for signature 'matrixOrHDF5'

getReducedData,ClusterExperiment-method 39

makeReducedDims(object, ...)

S4 method for signature 'SummarizedExperiment'
makeReducedDims(object, ...)

S4 method for signature 'ClusterExperiment'’
makeReducedDims(object, ...)

listBuiltInReducedDims()

Arguments

object For makeReducedDims,makeFilterStats, defaul tNDims either matrix-like, SingleCellExperimer
or ClusterExperiment object. For getReducedData only a ClusterExperiment
object allowed.

reduceMethod character. A method (or methods) for reducing the size of the data, either
by filtering the rows (genes) or by a dimensionality reduction method. Must
either be 1) must match the name of a built-in method, in which case if it
is not already existing in the object will be passed to makeFilterStats or
link{makeReducedDims}, or 2) must match a stored filtering statistic or di-
mensionality reduction in the object

filterIgnoresUnassigned
logical. Whether filtering statistics should ignore the unassigned samples within
the clustering. Only relevant if 'reduceMethod’ matches one of built-in filtering
statistics in listBuiltInFilterStats(), in which case the clustering identi-
fied in whichCluster is passed to makeFilterStats and the unassigned sam-
ples are excluded in calculating the statistic. See makeFilterStats for more
details.

nDims The number of dimensions to keep from reduceMethod. If missing calls defaultNDims.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

whichAssay numeric or character specifying which assay to use. See assay for details.
returnValue The format of output. Users will generally want to keep the default (see details)

reducedDimName The name given to the reducedDims slot storing result (if returnValue="object").
If missing, the function will create a default name: if reduceMethod is a dimen-
sionality reduction, then reduceMethod will be given as the name; if a filtering
statistic, "filteredBy_" followed by reduceMethod.

typeToShow character (optional). If given, should be one of "filterStats" or "reducedDims" to
indicate of the values in the reduceMethod vector, only show those correspond-
ing to "filterStats" or "reducedDims" options.

Values passed on the the ’SingleCellExperiment’ method.

filterStats character vector of statistics to calculate. Must be one of the character values
given by 1listBuildInFilterStats().

transFun a transformation function to be applied to the data. If the transformation applied
to the data creates an error or NA values, then the function will throw an error.
If object is of class ClusterExperiment, the stored transformation will be used
and giving this parameter will result in an error.

40

getReducedData,ClusterExperiment-method

isCount if transFun=NULL, then isCount=TRUE will determine the transformation as de-
fined by function(x){log2(x+1)3}, and isCount=FALSE will give a transfor-
mation function function(x){x}. Ignored if transFun=NULL. If object is of
class ClusterExperiment, the stored transformation will be used and giving
this parameter will result in an error.

filterNames if given, defines the names that will be assigned to the filtering statistics in the
rowData of the object. If missing, will be just the value of filterStats argu-
ment

whichClusterIgnoreUnassigned
indicates clustering that should be used to filter out unassigned samples from the
calculations. If NULL no filtering of samples will be done. See details for more

information.
cutoff numeric. A value at which to filter the rows (genes) for the test statistic
percentile numeric. Either a number between 0,1 indicating what percentage of the rows

(genes) to keep or an integer value indicated the number of rows (genes) to keep
absolute whether to take the absolute value of the filter statistic

keeplLarge logical whether to keep rows (genes) with large values of the test statistic or
small values of the test statistic.

reducedDims a vector of character values indicating the methods of dimensionality reduction
to be performed. Currently only "PCA" is implemented.

maxDims Numeric vector of integer giving the number of PC dimensions to calculate.
maxDims can also take values between (0,1) to indicate keeping the number of
dimensions necessary to account for that proportion of the variance. maxDims
should be of same length as reducedDims, indicating the number of dimensions
to keep for each method (if maxDims is of length 1, the same number of dimen-
sions will be used for each).

Details

getReducedData determines the matrix of values that can be used for computation based on the
user’s choice of dimensionality methods. The methods can be either of the filtering kind or the more
general dimensionality reduction. The function will first look at any stored ReducedDims or filtering
statistics already present in the data, and if missing, will assume that reduceMethod is one of the
built-in method provided by the package and calculate the necessary. Note that if reduceMethod
is a filtering statistic, in addition to filtering the features, the function will also perform the stored
transformation of the data.

Note that this is used internally by functions, but is mainly only of interest for the user if they want
to have the filtered, transformed data available as a matrix for continual use.

If returnValue="object"”, then the output is a single, updated ClusterExperiment object with
the reduced data matrix stored as an element of the list in reducedDims slot (with name given by
reducedDimName if given). If "list", then a list with one element that is the object and the other
that is the reduced data matrix. Either way, the object returned in the list will be updated to contain
with the filtering statistics or the dimensionality reduction. The only difference is that if "list", the
reduced dimension matrix is NOT saved in the object (and so only really makes a difference if the
reduceMethod argument is a filtering method). The option "list" is mainly for internal use, where
we do not want to continually save subseted datasets.

If nDims is missing, it will be given a default value depending on the value of reduceMethod. See
defaultNDims for details.

getReducedData,ClusterExperiment-method 41

If filterIgnoresUnassigned is missing, then it is set to TRUE unless: reduceMethod matches a
stored filtering statistic in rowData AND does not match a built-in filtering method provided by the
package.

For a reduceMethod that corresponds to a filtering statistics the current default is 1000 (or the
length of the number of features, if less). For a dimensionality reduction saved in the reducedDims
slot the default is 50 or the maximum number of dimensions if less than 50.

reduceMethod will first be checked to see if it corresponds with an existing saved filtering statistic
or a dimensionality reduction to determine which of these two types it is. If it does not match either,
then it will be checked against the built in functions provided by the package. @examples se<-
SingleCellExperiment(matrix(rnorm(5000*100),nrow=5000,ncol=100)) defaultNDims(se,"PCA") de-
faultNDims(se,"mad")

whichClusterIgnoreUnassigned is only an option when applied to a ClusterExperiment classs
and indicates that the filtering statistics should be calculated based on samples that are unas-
signed by the designated clustering. The name given to the filter in this case is of the form
<filterStats>_<clusterlLabel>, i.e. the clustering label of the clustering is appended to the
standard name for the filtering statistic.

Note that filterData returns a SingleCellExperiment object. To get the actual data out use either
assay or transformData if transformed data is desired.

The PCA method uses either prcomp from the stats package or svds from the RSpectra package
to perform PCA. Both are called on t(assay(x)) with center=TRUE and scale=TRUE (i.e. the
feature are centered and scaled), so that it is performing PCA on the correlation matrix of the
features.

Note that this function does not check if such a reduceDim value already exists, and will recalculate
(and overwrite) if it does.

Value

If returnValue="object"”, a ClusterExperiment object.

If returnValue="1ist" a list with elements:

* objectUpdateobject, potentially updated if had to calculate dimensionality reduction or fil-
tering statistic

* dataMatrixthe reduced dimensional matrix with the samples in columns, features in rows

defaultNDims returns a numeric vector giving the default dimensions the methods in clusterExperiment
will use for reducing the size of the data. If typeToShow is missing, the resulting vector will be equal

to the length of reduceMethod. Otherwise, it will be a vector with all the unique valid default val-

ues for the typeToShow (note that different dimensionality reduction methods can have different
maximal dimensions, so the result may not be of length one in this case).

makeFilterStats returns a SummarizedExperiment object with the requested filtering statistics
will be added to the DataFrame in the rowData slot and given names corresponding to the filterStats
values. Warning: the function will overwrite existing columns in rowData with the same name.
Columns in the rowData slot with different names should not be affected.

filterData returns a SingleCellExperiment object with the rows (genes) removed based on filters

filterNames returns a vector of the columns of the rowData that are considered valid filtering
statistics. Currently any numeric column in rowData is a valid filtering statistic.

makeReducedDims returns a SingleCellExperiment containing the calculated dimensionality re-
duction in the reduceDims with names corresponding to the name given in reducedDims.

42 internalFunctionCheck

See Also

makeFilterStats,makeReducedDims, filterData, reducedDim

Examples

data(simData)

listBuiltInFilterStats()
scf<-makeFilterStats(simData,filterStats=c("var"”,"mad"))
scf
scfFiltered<-filterData(scf,filterStats="mad",percentile=10)
scfFiltered

assay(scfFiltered)[1:10,1:10]

data(simData)

listBuiltInReducedDims()

scf<-makeReducedDims(simData, reducedDims="PCA", maxDims=3)
scf

internalFunctionCheck Class ClusterFunction

Description

ClusterFunction is a class for holding functions that can be used for clustering in the clustering
algorithms in this package.

The constructor ClusterFunction creates an object of the class ClusterFunction.

Usage

internalFunctionCheck(clusterFUN, inputType, algorithmType, outputType)
ClusterFunction(clusterFUN, ...)

S4 method for signature 'function'
ClusterFunction(
clusterFUN,
inputType,
outputType,
algorithmType,
inputClassifyType = NA_character_,
requiredArgs = NA_character_,
classifyFUN = NULL,
checkFunctions = TRUE

)

Arguments
clusterFUN function passed to slot clusterFUN.
inputType character for slot inputType

algorithmType character for slot inputType
outputType character for slot outputType

internalFunctionCheck 43

e arguments passed to different methods of ClusterFunction
inputClassifyType
character for slot inputClassifyType

requiredArgs character for slot requiredArgs
classifyFUN function for slot classifyFUN

checkFunctions logical for whether to check the input functions with internalFunctionsCheck

Details

internalFunctionCheck is the function that is called by the validity check of the ClusterFunction
constructor (if checkFunctions=TRUE). It is available as an S3 function for the user to be able to
test their functions and debug them, which is difficult to do with a S4 validity function.

clusterFUN: The following arguments are required to be accepted for clusterFUN — higher-level
code may pass these arguments (but the function can ignore them or just have be handled with a ...

)

* "inputMatrix"will be the matrix of data

* "inputType"one of "X", "diss", or "cat". If "X", then inputMatrix is assumed to be nfeatures
x nsamples (like assay(CEObj) would give). If "cat" then nfeatures x nsamples, but all entries
should be categorical levels, encoded by positive integers, with -1/-2 types of NA (like a
clusterMatrix slot, but with dimensions switched). If "diss", then inputMatrix should be a
nxn dissimilarity matrix.

* "checkArgs"logical argument. If checkArgs=TRUE, the clusterFUN should check if the argu-
ments passed in . . . are valid and return an error if not; otherwise, no error will be given, but
the check should be done and only valid arguments in . . . passed along. This is necessary for
the function to work with clusterMany which passes all arguments to all functions without
checking.

* "cluster.only"logical argument. If cluster.only=TRUE, then clusterFUN should return only
the vector of cluster assignments (or list if outputType="1ist"). If cluster.only=FALSE
then the clusterFUN should return a named list where one of the elements entitled clustering
contains the vector described above (no list allowed!); anything else needed by the classifyFUN
to classify new data should be contained in the output list as well. cluster.only is set in-
ternally depending on whether classifyFUN will be later used by subsampling or only for
clustering the final product.

 "..."Any additional arguments specific to the algorithm used by clusterFUN should be passed
via ... and NOT passed via arguments to clusterFUN

* "Other required arguments"clusterFUN must also accept arguments required for its algorithmType
(see Details below).

classifyFUN: The following arguments are required to be accepted for classifyFUN (if not NULL)

* inputMatrixthe new data that will be classified into the clusters
* inputTypethe inputType of the new data (see above)

* clusterResultthe result of running clusterFUN on the training data, when cluster.only=FALSE.
Whatever is returned by clusterFUN is assumed to be sufficient for this function to classify
new objects (e.g. could return the centroids of the clustering, if clustering based on nearest
centroid).

algorithmType: Type "01" is for clustering functions that expect as an input a dissimilarity matrix
that takes on 0-1 values (e.g. from subclustering) with 1 indicating more dissimilarity between

44

internalFunctionCheck

samples. "O1" algorithm types must also have inputType equal to "diss”. It is also generally
expected that "01" algorithms use the 0-1 nature of the input to set criteria as to where to find
clusters. "01" functions must take as an argument alpha between 0 and 1 to determine the clusters,
where larger values of alpha require less similarity between samples in the same cluster. "K" is for
clustering functions that require an argument k (the number of clusters), but arbitrary inputType.
On the other hand, "K" algorithms are assumed to need a predetermined "k’ and are also assumed
to cluster all samples to a cluster. If not, the post-processing steps in mainClustering such as
findBestK and removeSil may not operate correctly since they rely on silhouette distances.

Value

Returns a logical value of TRUE if there are no problems. If there is a problem, returns a character
string describing the problem encountered.

A ClusterFunction object.

Slots

clusterFUN a function defining the clustering function. See details for required arguments.

inputType a character vector defining what type(s) of input clusterFUN takes. Must consist of
values "diss","X", or "cat" indicating the set of input values that the algorithm can handle (see
details below).

algorithmType a character defining what type of clustering algorithm clusterFUN is. Must be
one of either "01" or "K". clusterFUN must take the corresponding required arguments for
its type (see details below).

classifyFUN a function that has takes as input new data and the output of clusterFUN (where
the output is from when cluster.only=FALSE) and results in cluster assignments of the new
data. Used in subsampling clustering. Note that the function should assume that the data given
to the inputMatrix argument is not the same samples that were input to the ClusterFunction
(but does assume that it is the same number of features/columns). If slot classifyFUNis given
value NULL then subsampling type can only be "InSample”, see subsampleClustering.

inputClassifyType the input type for the classification function (if not NULL); like inputType,
must be a vector containing "diss","X", or "cat"

outputType the type of output given by clusterFUN. Must either be "vector" or "list". If "vector"
then the output should be a vector of length equal to the number of observations with integer-
valued elements identifying them to different clusters; the vector assignments should be in
the same order as the original input of the data. Samples that are not assigned to any cluster
should be given a ’-1’ value. If "list", then it must be a list equal to the length of the number
of clusters, and the elements of the list contain the indices of the samples in that cluster. Any
indices not in any of the list elements are assumed to be -1. The main advantage of "list" is
that it can preserve the order of the clusters if the clusterFUN desires to do so. In which case
the orderBy argument of mainClustering can preserve this ordering (default is to order by
size).

requiredArgs Any additional required arguments for clusterFUN (beyond those required of all
clusterFUN, described in details). Will be used in checking that user provided necessary
arguments.

checkFunctions logical. If TRUE, the validity check of the ClusterFunction object will check
the clusterFUN with simple toy data using the function internalFunctionCheck.

listBuiltInFunctions 45

Examples

#Use internalFunctionCheck to check possible function
goodFUN<-function(inputMatrix,k,cluster.only,...){
cluster::pam(x=t(inputMatrix),k=k,cluster.only=cluster.only)
}
#passes internal check
internalFunctionCheck (goodFUN, inputType=c("X","diss"),

algorithmType="K" outputType="vector")
myCF<-ClusterFunction(clusterFUN=goodFUN, inputType="X",

algorithmType="K", outputType="vector")
#doesn't work, because haven't made results return vector when cluster.only=TRUE
badFUN<-function(inputMatrix, k,cluster.only,...){cluster: :pam(x=inputMatrix, k=k)}
internalFunctionCheck (badFUN, inputType=c("X","diss"),

algorithmType="K" outputType="vector")

listBuiltInFunctions Built in ClusterFunction options

Description

Documents the built-in clustering options that are available in the clusterExperiment package.

Usage
listBuiltInFunctions()

S4 method for signature 'character'
getBuiltInFunction(object)

listBuiltInTypeK()

listBuiltInType@1()

Arguments

object name of built in function.

Details
listBuiltInFunctions will return the character names of the built-in clustering functions avail-
able.
1istBuiltInTypeK returns the names of the built-in functions that have type 'K’
listBuiltInType®1 returns the names of the built-in functions that have type 01’

getBuiltInFunction will return the ClusterFunction object of a character value that corre-
sponds to a built-in function.

algorithmType and inputType will return the algorithmType and inputType of the built-in clus-
terFunction corresponding to the character value.

Built-in clustering methods: The built-in clustering methods, the names of which can be accessed
by listBuiltInFunctions() are the following:

46

Value

See Also

listBuiltInFunctions

"pam"Based on pam in cluster package. Arguments to that function can be passed via

nyn

clusterArgs. Input can be either "x" or "diss"; algorithm type is "K"

"clara"Based on clara in cluster package. Arguments to that function can be passed via
clusterArgs. Note that we have changed the default arguments of that function to match
the recommendations in the documentation of clara (numerous functions are set to less
than optimal settings for back-compatiability). Specifically, the following defaults are im-
plemented samples=50, keep.data=FALSE, mediods.x=FALSE,rngR=TRUE, pamLike=TRUE,
correct.d=TRUE. Input is "X"; algorithm type is "K".

"kmeans"Based on kmeans in stats package. Arguments to that function can be passed via
clusterArgs except for centers which is reencoded here to be the argument 'k’ Input is "X";
algorithm type is "K"

"mbkmeans"mbkmeans runs mini-batch kmeans, a more computationally efficient version of
kmeans.

"hierarchicalO1"hclust in stats package is used to build hiearchical clustering. Arguments
to that function can be passed via clusterArgs. The hierarchical@1 cuts the hiearchical
tree based on the parameter alpha. It does not use the cutree function, but instead transvers-
ing down the tree until getting a block of samples with whose summary of the values is greater
than or equal to 1-alpha. Arguments that can be passed to “hierarchicalO1’ are ’evalCluster-
Method’ which determines how to summarize the samples’ values of D[samples,samples]
for comparison to 1-alpha: "maximum" (default) takes the minimum of D[samples,samples]
and requires it to be less than or equal to 1-alpha; "average" requires that each row mean
of D[samples,samples] be less than or equal to 1-alpha. Additional arguments of hclust can
also be passed via clusterArgs to control the hierarchical clustering of D. Input is "diss";
algorithm type is "01"

"hierarchicalK"hclust in stats package is used to build hiearchical clustering and cutree is
used to cut the tree into k clusters. Input is "diss”; algorithm type is "K"

"tight"Based on the algorithm in Tsang and Wong, specifically their method of picking clus-
ters from a co-occurance matrix after subsampling. The clustering encoded here is not the
entire tight clustering algorithm, only that single piece that identifies clusters from the co-
occurance matrix. Arguments for the tight method are *'minSize.core’ (default=2), which sets
the minimimum number of samples that form a core cluster. Input is "diss"; algorithm type
is "01"

"spectral"specc in kernlab package is used to perform spectral clustering. Note that spectral
clustering can produce errors if the number of clusters (K) is not sufficiently smaller than the
number of samples (N). K < N is not always sufficient. Input is "X"; algorithm type is "K".

listBuiltInFunctions returns a character vector of all the built-in cluster functions’ names.

getBuiltInFunction returns the ClusterFunction object that corresponds to the character name
of a function

listBuiltInTypeK returns a character vector of the names of built-in cluster functions that are of
type IIKII

listBuiltInType®@1 returns a character vector of the names of built-in cluster functions that are of
type "01 n

ClusterFunction, algorithmType, inputType

mainClustering

Examples

47

listBuiltInFunctions()
algorithmType(c("kmeans"”,"pam”, "hierarchical@l1"))

non

non

inputType(c("kmeans”,"pam”,"hierarchical@1"))
listBuiltInTypeK()
listBuiltInType@1()

mainClustering

Cluster distance matrix from subsampling

Description

Given input data, this function will try to find the clusters based on the given ClusterFunction object.

Usage

S4 method for signature 'character'
mainClustering(clusterFunction, ...)

S4 method for signature 'ClusterFunction'
mainClustering(
clusterFunction,
inputMatrix,
inputType,
clusterArgs = NULL,
minSize = 1,
orderBy = c("size", "best"),
format = c("vector”, "list"),
returnData = FALSE,
warnings = TRUE,

S4 method for signature 'ClusterFunction'
getPostProcessingArgs(clusterFunction)

Arguments

clusterFunction

aClusterFunction object that defines the clustering routine. See ClusterFunction

for required format of user-defined clustering routines. User can also give a
character value to the argument clusterFunction to indicate the use of cluster-
ing routines provided in package. Type listBuiltInFunctions at command
prompt to see the built-in clustering routines. If clusterFunction is missing,
the default is set to "pam".

arguments passed to the post-processing steps of the clustering. The available
post-processing arguments for a ClusterFunction object depend on it’s algo-
rithm type and can be found by calling getPostProcessingArgs. See details
below for documentation.

inputMatrix numerical matrix on which to run the clustering or a SummarizedExperiment,
SingleCellExperiment, or ClusterExperiment object.

48

inputType

clusterArgs

minSize

orderBy

format

returnData

warnings

Details

mainClustering

a character vector defining what type of input is given in the inputMatrix ar-
gument. Must consist of values "diss","X", or "cat" (see details). "X" and "cat"
should be indicate matrices with features in the row and samples in the col-
umn; "cat" corresponds to the features being numerical integers corresponding
to categories, while "X" are continuous valued features. "diss" corresponds to an
inputMatrix that is a NxN dissimilarity matrix. "cat" is largely used internally
for clustering of sets of clusterings.

arguments to be passed directly to the clusterFUN slot of the ClusterFunction
object

the minimum number of samples in a cluster. Clusters found below this size
will be discarded and samples in the cluster will be given a cluster assignment
of "-1" to indicate that they were not clustered.

how to order the cluster (either by size or by maximum alpha value). If or-
derBy="size" the numbering of the clusters are reordered by the size of the
cluster, instead of by the internal ordering of the clusterFUN defined in the
ClusterFunction object (an internal ordering is only possible if slot outputType
of the ClusterFunctionis "list").

whether to return a list of indices in a cluster or a vector of clustering assign-
ments. List is mainly for compatibility with sequential part.

logical as to whether to return the diss or x matrix in the output. If FALSE only
the clustering vector is returned.

logical as to whether should give warning if arguments given that don’t match
clustering choices given. Otherwise, inapplicable arguments will be ignored
without warning.

mainClustering is not meant to be called by the user. It is only an exported function so as to be
able to clearly document the arguments for mainClustering which can be passed via the argument
mainClusterArgs in functions like clusterSingle and clusterMany.

Post-processing Arguments: For post-processing the clustering, currently only type *K’ algorithms
have a defined post-processing. Specifically

 "findBestK"logical, whether should find best K based on average silhouette width (only used
if clusterFunction of type "K").

» "kRange"vector of integers to try for k values if findBestK=TRUE. If k is given in clusterArgs,
then default is k-2 to k+20, subject to those values being greater than 2; if not the default is
2:20. Note that default values depend on the input k, so running for different choices of k and
findBestK=TRUE can give different answers unless kRange is set to be the same.

* "removeSil"logical as to whether remove the assignment of a sample to a cluster when the
sample’s silhouette value is less than silCutoff

* "silCutoff"Cutoff on the minimum silhouette width to be included in cluster (only used if
removeSil=TRUE).

Value

If returnData=FALSE, mainClustering returns a vector of cluster assignments (if format="vector")
or a list of indices for each cluster (if format="list"). Clusters less than minSize are removed. If
returnData=TRUE, then mainClustering returns a list

* resultsThe clusterings of each sample.

makeConsensus 49

* inputMatrixThe input matrix given to argument inputMatrix. Useful if input is result of
subsampling, in which case input is the set of clusterings found over subsampling.

Examples

data(simData)

cl1<-mainClustering(inputMatrix=simData, inputType="X",
clusterFunction="pam",clusterArgs=1ist(k=3))

#supply a dissimilarity, use algorithm type "01"

diss<-as.matrix(dist(t(simData),method="manhattan"))

cl2<-mainClustering(diss, inputType="diss", clusterFunction="hierarchical@1”,
clusterArgs=list(alpha=.1))

cl3<-mainClustering(inputMatrix=diss, inputType="diss"”, clusterFunction="pam",
clusterArgs=list(k=3))

run hierarchical method for finding blocks, with method of evaluating

coherence of block set to evalClusterMethod="average”, and the hierarchical

clustering using single linkage:

(clustering function requires type 'diss'),

clustSubHier <- mainClustering(diss, inputType="diss",
clusterFunction="hierarchical@1”, minSize=5,
clusterArgs=list(alpha=0.1,evalClusterMethod="average”", method="single"))

#post-process results of pam -- must pass diss for silhouette calculation
clustSubPamK <- mainClustering(simData, inputType="X", clusterFunction="pam",
silCutoff=0, minSize=5, diss=diss, removeSil=TRUE, clusterArgs=list(k=3))
clustSubPamBestK <- mainClustering(simData, inputType="X", clusterFunction="pam", silCutoff=0,
minSize=5, diss=diss, removeSil=TRUE, findBestK=TRUE, kRange=2:10)

note that passing the wrong arguments for an algorithm results in warnings
(which can be turned off with warnings=FALSE)
clustSubTight_test <- mainClustering(diss, inputType="diss"”,
clusterFunction="tight",
clusterArgs=list(alpha=0.1), minSize=5, removeSil=TRUE)
clustSubTight_test2 <- mainClustering(diss, inputType="diss",
clusterFunction="tight",
clusterArgs=list(alpha=0.1,evalClusterMethod="average"))

makeConsensus Find sets of samples that stay together across clusterings

Description

Find sets of samples that stay together across clusterings in order to define a new clustering vector.

Usage
S4 method for signature 'matrix’
makeConsensus (
X)
proportion,
clusterFunction = "hierarchicalel”,

minSize = 5,
propUnassigned = 0.5,

50

makeConsensus

whenUnassign = c("before”, "after"),
clusterArgs = NULL
)
S4 method for signature 'ClusterExperiment'
makeConsensus(
X’
whichClusters,
eraseOld = FALSE,
clusterLabel = "makeConsensus”,
)
Arguments
X a matrix with samples on the rows and different clusterings on the columns or

proportion

clusterFunction

minSize

propUnassigned

whenUnassign

clusterArgs

whichClusters

eraseOld

clusterLabel

ClusterExperiment object.

The proportion of times that two sets of samples should be together in order
to be grouped into a cluster (if <1, passed to mainClustering via alpha = 1 -
proportion)

the clustering function to use (passed to mainClustering); currently must be
of type 01’ and accept as input matrices of type "cat" (see details of ?Cluster-
Function).

minimum size required for a set of samples to be considered in a cluster because
of shared clustering, passed to mainClustering

samples with greater than this proportion of assignments equal to ’-1’ are as-
signed a ’-1’ cluster value as a last step (only if proportion < 1)

(provided for back compatibility with previous versions). Must be one of "be-
fore" or "after", indicating at what point are samples with a proportion of as-
signments of -1 greater than propUnassigned forced to have a ’-1’ value. If
"before", then these samples are removed and not used for clustering. If "after",
these samples are included in the clustering step, but then the cluster values they
receive are assigned a ’-1. These choices may result in different clusterings, be-
cause if these samples are included in the clustering (i.e. whenUnassign="after",
then these samples may affect the cluster assignments of other samples. The
default is currently "before", but previous to version 2.5.4, there was no such
option and the code internally set to "after", so for reproducibility with older
results, users may need to set this option.

list of arguments to be passed to the call to mainClustering that is used to
cluster the proportion overlap between samples.

argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

logical. Only relevant if input x is of class ClusterExperiment. If TRUE,
will erase existing workflow results (clusterMany as well as mergeClusters and
makeConsensus). If FALSE, existing workflow results will have "_i" added
to the clusterTypes value, where i is one more than the largest such existing
workflow clusterTypes.

a string used to describe the type of clustering. By default it is equal to "make-
Consensus", to indicate that this clustering is the result of a call to makeConsen-
sus. However, a more informative label can be set (see vignette).

makeConsensus 51

arguments to be passed on to the method for signature matrix,missing.

Details

This function was previously called combineMany (versions <= 2.0.0). combineMany is still avail-
able, but is considered defunct and users should update their code accordingly.

The function tries to find a consensus cluster across many different clusterings of the same sam-
ples. It does so by creating a nSamples x nSamples matrix of the percentage of co-occurance of
each sample and then calling mainClustering to cluster the co-occurance matrix. The function as-
sumes that ’-1’ labels indicate clusters that are not assigned to a cluster. Co-occurance with the
unassigned cluster is treated differently than other clusters. The percent co-occurance is taken only
with respect to those clusterings where both samples were assigned. Then samples with more than
propUnassigned values that are ’-1° across all of the clusterings are assigned a ’-1’ regardless of
their cluster assignment.

The method calls mainClustering on the proportion matrix with clusterFunction as the 01 clus-
tering algorithm, alpha=1-proportion, minSize=minSize, and evalClusterMethod=c("average").
See help of mainClustering for more details.

Value

If x is a matrix, a list with values

* clustering vector of cluster assignments, with "-1" implying unassigned

* percentageShared a nSample x nSample matrix of the percent co-occurance across clusters
used to find the final clusters. Percentage is out of those not ’-1’

* noUnassignedCorrection a vector of cluster assignments before samples were converted to
’-1’ because had >propUnassigned -1’ values (i.e. the direct output of the mainClustering
output.)

If x is a ClusterExperiment, a ClusterExperiment object, with an added clustering of cluster-
Types equal to makeConsensus and the percentageShared matrix stored in the coClustering
slot.

Examples

Not run:
data(simData)

cl <- clusterMany(simData,nReducedDims=c(5,10,50), reduceMethod="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(FALSE), removeSil=TRUE,
makeMissingDiss=TRUE, subsample=FALSE)

#make names shorter for plotting

clMat <- clusterMatrix(cl)

colnames(clMat) <- gsub("TRUE"”, "T", colnames(clMat))
colnames(clMat) <- gsub("FALSE", "F", colnames(clMat))
colnames(clMat) <- gsub("k=NA,"”, "", colnames(clMat))

#require 100% agreement -- very strict
clCommon10@ <- makeConsensus(clMat, proportion=1, minSize=10)

#require 70% agreement based on clustering of overlap
clCommon70@ <- makeConsensus(clMat, proportion=0.7, minSize=10)

52

oldpar <- par(no.readonly = TRUE)

par(mar=c(1.1, 12.1, 1.1, 1.1))
plotClusters(cbind("70%Similarity”=clCommon7@, clMat,
"100%Similarity"”=clCommon100), axisLine=-2)

#method for ClusterExperiment object

clCommon <- makeConsensus(cl, whichClusters="workflow", proportion=0.7,

minSize=10)
plotClusters(clCommon)
par(oldpar)

End(Not run)

makeDendrogram

makeDendrogram Make hierarchy of set of clusters

Description

Makes a dendrogram of a set of clusters based on hclust on the medoids of the cluster.

Usage
S4 method for signature 'ClusterExperiment'
makeDendrogram(
X,
whichCluster = "primaryCluster”,

reduceMethod = "mad”,

nDims = defaultNDims(x, reduceMethod),
filterIgnoresUnassigned = TRUE,
unassignedSamples = c("outgroup”, "cluster”),
whichAssay = 1,

)
S4 method for signature 'dist'
makeDendrogram(
X,
cluster,
unassignedSamples = c("outgroup”, "cluster”, "remove"),

calculateSample = TRUE,

)
S4 method for signature 'matrixOrHDF5'
makeDendrogram(
X,
cluster,
unassignedSamples = c("outgroup”, "cluster”, "remove"),

calculateSample = TRUE,

makeDendrogram 53

Arguments

X data to define the medoids from. Matrix and ClusterExperiment supported.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

reduceMethod character A character identifying what type of dimensionality reduction to per-
form before clustering. Can be either a value stored in either of reducedDims
or filterStats slot or a built-in diminsionality reduction/filtering. The option "co-
Cluster" will use the co-Clustering matrix stored in the *coClustering’ slot of the
ClusterExperiment object

nDims The number of dimensions to keep from reduceMethod. If missing calls defaultNDims.

filterIgnoresUnassigned
logical. Whether filtering statistics should ignore the unassigned samples within
the clustering. Only relevant if reduceMethod’ matches one of built-in filtering
statistics in 1istBuiltInFilterStats(), in which case the clustering identi-
fied in whichCluster is passed to makeFilterStats and the unassigned sam-
ples are excluded in calculating the statistic. See makeFilterStats for more
details.

unassignedSamples
how to handle unassigned samples("-1") ; only relevant for sample clustering.
See details.

whichAssay numeric or character specifying which assay to use. See assay for details.

for makeDendrogram, if signature matrix, arguments passed to hclust; if sig-
nature ClusterExperiment passed to the method for signature matrix. For
plotDendrogram, passed to plot.dendrogram.

cluster A numeric vector with cluster assignments. If x is a ClusterExperiment object,
cluster is automatically the primaryCluster(x). “-1” indicates the sample was not
assigned to a cluster.

calculateSample
only relevant for matrix or dist version of function. Indicates whether to cal-
culate the sample dendrogram.

Details

The function returns two dendrograms (as a list if X is a matrix or in the appropriate slots if x is
ClusterExperiment). The cluster dendrogram is created by applying hclust to the medoids of each
cluster. In the sample dendrogram the clusters are again clustered, but now the samples are also
part of the resulting dendrogram. This is done by giving each sample the value of the medoid of its
cluster.

The argument unassignedSamples governs what is done with unassigned samples (defined by a -1
cluster value). If unassigned=="cluster", then the dendrogram is created by hclust of the expanded
medoid data plus the original unclustered observations. If unassignedSamples is "outgroup", then
all unassigned samples are put as an outgroup. If the x object is a matrix, then unassignedSamples
can also be "remove", to indicate that samples with "-1" should be discarded. This is not a permitted
option, however, when x is a ClusterExperiment object, because it would return a dendrogram
with less samples than NCOL (x), which is not permitted for the @dendro_samples slot.

If any merge information is stored in the input object, it will be erased by a call to makeDendrogram.

54 mergeClusters

Value

If x is a matrix, a list with two dendrograms, one in which the leaves are clusters and one in which the
leaves are samples. If x is a ClusterExperiment object, the dendrograms are saved in the appropriate
slots.

See Also

makeFilterStats, makeReducedDims

Examples

data(simData)

#create a clustering, for 8 clusters (truth was 3)
cl <- clusterSingle(simData, subsample=FALSE,
sequential=FALSE, mainClusterArgs=list(clusterFunction="pam"”, clusterArgs=list(k=8)))

#create dendrogram of clusters:

hcl <- makeDendrogram(cl)

plotDendrogram(hcl)

plotDendrogram(hcl, leafType="samples”,plotType="colorblock")

mergeClusters Merge clusters based on dendrogram

Description

Takes an input of hierarchical clusterings of clusters and returns estimates of number of proportion
of non-null and merges those below a certain cutoff.

Usage

S4 method for signature 'matrixOrHDF5'
mergeClusters(

X,

cl,

dendro = NULL,

mergeMethod = c("none”, "Storey”, "PC", "adjP", "locfdr"”, "JC"),

plotInfo = "none”,

nodePropTable = NULL,

calculateAll = TRUE,

showWarnings = FALSE,

cutoff = 0.05,

plot = TRUE,

DEMethod,

logFCcutoff = 0,

weights = NULL,

S4 method for signature 'ClusterExperiment'

mergeClusters

mergeClusters(
X’

55

eraseOld = FALSE,
mergeMethod = "none”,
plotInfo = "all”,

clusterLabel

= "mergeClusters”,

leafType = c(”samples”, "clusters”),
plotType = c("colorblock”, "name"”, "ids"),

plot = TRUE,

whichAssay = 1,
forceCalculate = FALSE,
weights = if ("weights” %in% assayNames(x)) "weights"” else NULL,

DEMethod,

)

S4 method for signature 'ClusterExperiment'’
nodeMergeInfo(x)

S4 method for signature 'ClusterExperiment'

mergeCutoff(x)

S4 method for signature 'ClusterExperiment'’

mergeMethod(x)

S4 method for signature 'ClusterExperiment'
mergeClusterIndex(x)

S4 method for signature 'ClusterExperiment'
eraseMergeInfo(x)

S4 method for signature 'ClusterExperiment'’

getMergeCorrespond(x, by = c("merge”, "original”))
Arguments

X data to perform the test on. It can be a matrix or a ClusterExperiment.

cl A numeric vector with cluster assignments to compare to. “-1” indicates the
sample was not assigned to a cluster.

dendro dendrogram providing hierarchical clustering of clusters in cl. If x is a matrix,
then the default is dendro=NULL and the function will calculate the dendrogram
with the given (x, cl) pair using makeDendrogram. If x is a ClusterExperiment
object, the dendrogram in the slot dendro_clusters will be used. In this case,
this means that makeDendrogram needs to be called before mergeClusters.

mergeMethod method for calculating proportion of non-null that will be used to merge clusters
(if *none’, no merging will be done). See details for description of methods.

plotInfo what type of information about the merging will be shown on the dendrogram.

If ’all’, then all the estimates of proportion non-null will be plotted at each
node of the dendrogram; if *mergeMethod’, then only the value used in the
mergeClusters command is plotted at each node. If 'none’, then no propor-
tions will be added to the dendrogram, though the dendrogram will be drawn.
"plotInfo’ can also be one of the valid input to mergeMethod (even if that method

56

nodePropTable

calculateAll

showWarnings

cutoff

plot
DEMethod

logFCcutoff

weights

eraseOld

clusterLabel

mergeClusters

is not the method chosen in mergeMethod argument). plotInfo can also show
the information corresponding to "adjP" with a fold-change cutoff, by giving a
value to this argument in the form of "adjP_2.0", for example.

Only for matrix version. Matrix of results from previous run of mergeClusters
as returned by matrix version of mergeClusters. Useful if just want to change
the cutoff. Not generally intended for user but used internally by package.

logical. Whether to calculate the estimates for all methods. This reduces com-
putation costs for any future calls to mergeClusters since the results can be
passed to future calls of mergeClusters (and for ClusterExperiment objects
this is done automatically).

logical. Whether to show warnings given by the methods. The ’locfdr’ method
in particular frequently spits out warnings (which may indicate that its estimates
are not reliable). Setting showWarnings=FALSE will suppress all warnings from
all methods (not just "locfdr"). By default this is set to showWarnings=FALSE
by default to avoid large number of warnings being produced by "locfdr", but
users may want to be more careful to check the warnings for themselves.

minimimum value required for NOT merging a cluster, i.e. two clusters with the
proportion of DE below cutoff will be merged. Must be a value between 0, 1,
where lower values will make it harder to merge clusters.

logical as to whether to plot the dendrogram with the merge results

character vector describing how the differential expression analysis should be
performed that will be used in the estimation of the percentage DE per node.
See getBestFeatures for current options. See details.

Relevant only if the mergeMethod selected is "adjP", in which case the calcula-
tion of the proportion of individual tests significant will also require that the es-
timated log-fold change of the features to be at least this large in absolute value.

Value will be rounded to nearest tenth of an integer via round(logFCcutoff,digits=1).

For any other method, this parameter is ignored. Note that the logFC is based
on log?2 (the results of getBestFeatures)

weights to use in by edgeR. If x is a matrix, then weights should be a matrix
of weights, of the same dimensions as x. If x is a ClusterExperiment object
weights can be a either a matrix, as previously described, or a character or
numeric index to an assay in x that contains the weights. We recommend that
weights be stored as an assay with name "weights” so that the weights will also
be used with mergeClusters, and this is the default. Setting weights=NULL
ensures that weights will NOT be used, and only the standard edgeR.

for signature matrix, arguments passed to the plot.phylo function of ape that
plots the dendrogram. For signature ClusterExperiment arguments passed to
the method for signature matrix and then if do not match those arguments, will
be passed onto plot.phylo.

logical. Only relevant if input x is of class ClusterExperiment. If TRUE,
will erase existing workflow results (clusterMany as well as mergeClusters and
makeConsensus). If FALSE, existing workflow results will have "_i" added
to the clusterTypes value, where i is one more than the largest such existing
workflow clusterTypes.

a string used to describe the type of clustering. By default it is equal to "mergeClus-
ters", to indicate that this clustering is the result of a call to mergeClusters (only
if x is a ClusterExperiment object)

mergeClusters 57

leafType if plotting, whether the leaves should be the clusters or the samples. Choosing
’samples’ allows for visualization of how many samples are in the merged clus-
ters (only if x is a ClusterExperiment object), which is the main difference be-
tween choosing "clusters” and "samples", particularly if plotType="colorblock”

plotType if plotting, then whether leaves of dendrogram should be labeled by rectangular
blocks of color ("colorblock") or with the names of the leaves ("name") (only if
x is a ClusterExperiment object).

whichAssay numeric or character specifying which assay to use. See assay for details.

forceCalculate This forces the function to erase previously saved merge results and recalculate
the merging.

by indicates whether output from getMergeCorrespond should be a vector/list
with elements corresponding to merge cluster ids or elements corresponding
to the original clustering ids. See return value for details.

Details

Estimation of proportion non-null "Storey" refers to the method of Storey (2002). "PC" refers
to the method of Pounds and Cheng (2004). "JC" refers to the method of Ji and Cai (2007), and
implementation of "JC" method is copied from code available on Jiashin Ji’s website, December 16,
2015 (http://www.stat.cmu.edu/~jiashun/Research/software/NullandProp/). "locfdr" refers to the
method of Efron (2004) and is implemented in the package locfdr. "adjP" refers to the proportion
of genes that are found significant based on a FDR adjusted p-values (method "BH") and a cutoff of
0.05. Previous versions offered the method "MB", a method of Meinshausen and Buhlmann (2005),
but the package howmany is no longer supported for its implementation.

Control of Plotting If mergeMethod is not equal to 'none’ then the plotting will indicate where
the clusters will be merged by making dotted lines of edges that are merged together (assuming
plotInfo is not 'none’). plotInfo controls simultaneously what information will be plotted on
the nodes as well as whether the dotted lines will be shown for the merged cluster. Notice that the
choice of plotInfo (as long as it is not 'none’) has no effect on how the dotted edges are drawn
— they are always drawn based on the mergeMethod. If you choose plotInfo to not be equal to
the mergeMethod, then you will have a confusing picture where the dotted edges will be based on
the clustering created by mergeMethod while the information on the nodes is based on a different
method. Note that you can override plotInfo by setting show.node.label=FALSE (passed to
plot.phylo), so that no information is plotted on the nodes, but the dotted edges are still drawn. If
you just want plot of the dendrogram, with no merging performed nor demonstrated on the plot, see
plotDendrogram.

Saving and Reusing of results By default, the function saves the results in the ClusterExperiment
object and will not recalculate them if not needed. Note that by default calculateAl1=TRUE, which
means that regardless of the value of mergeMethod, all the methods will be calculated so that those
results will be stored and if you change the mergeMethod, no additional calculations are needed.
Since the computationally intensive step is the running the DE method on the genes, this is a big
savings (all of the methods then calculate the proportion from those results). However, note that if
calculateAll=TRUE and ANY of the methods returned NA for any value, the calculation will be
redone. Thus if, for example, the locfdr function does not run successfully and returns NA, the
function will always recalculate each time, even if you don’t specifically want the results of locfdr.
In this case, it makes sense to turn calculateAl1=FALSE.

If the dendrogram was made with option unassignedSamples="cluster” (i.e. unassigned were
clustered in with other samples), then you cannot choose the option leafType="'samples'. This is
because the current code cannot reliably link up the internal nodes of the sample dendrogram to the
internal nodes of the cluster dendrogram when the unassigned samples are intermixed.

58

mergeClusters

When the input is a ClusterExperiment object, the function attempts to update the merge infor-
mation in that object. This is done by checking that the existing dendrogram stored in the object
(and run on the clustering stored in the slot dendro_index) is the same clustering that is stored in
the slot merge_dendrocluster_index. For this reason, new calls to makeDendrogram will erase
the merge information saved in the object.

If mergeClusters is run with mergeMethod="none", the function may still calculate the propor-
tions per node if plotInfo is not equal to "none" or calculateAl1=TRUE. If the input object was a
ClusterExperiment object, the resulting information will be still saved, though no new clustering
was created; if there was not an existing merge method, the slot merge_dendrocluster_index will
be updated.

Value

If ‘x is a matrix, it returns (invisibly) a list with elements
» clustering a vector of length equal to ncol(x) giving the integer-valued cluster ids for each
sample. "-1" indicates the sample was not clustered.
* 0ldC1lToNew A table of the old cluster labels to the new cluster labels.

* nodeProp A table of the proportions that are DE on each node.This table is saved in the
merge_nodeProp slot of a ClusterExperiment object and can be accessed along with the
nodeMerge info with the nodeMergeInfo function.

* nodeMerge A table of indicating for each node whether merged or not and the cluster id in
the new clustering that corresponds to the node. Note that a node can be merged and not
correspond to a node in the new clustering, if its ancestor node is also merged. But there
must be some node that corresponds to a new cluster id if merging has been done. This table
is saved in the merge_nodeMerge slot of a ClusterExperiment object and can be accessed
along with the nodeProp info with the nodeMergeInfo function.

* updatedClusterDendro The dendrogram on which the merging was based (based on the
original clustering).

* cutoff The cutoff value for merging.
If ‘x is a ClusterExperiment, it returns a new ClusterExperiment object with an additional
clustering based on the merging. This becomes the new primary clustering. Note that even if

mergeMethod="none", the returned object will erase any old merge information, update the work
flow numbering, and return the newly calculated merge information.

nodeMergeInfo returns information collected about the nodes during merging as a data.frame with
the following entries:

* Node Name of the node

* ContrastThe contrast compared at each node, in terms of the cluster ids

* isMerged Logical as to whether samples from that node which were merged into one cluster
during merging

» mergeClusterId If a node corresponds to a new, merged cluster, gives the cluster id it corre-
sponds to. Otherwise NA

 ...Theremaining columns give the estimated proportion of genes differentially expressed for

each method. A column of NAs means that the method in question hasn’t been calculated yet.
mergeCutoff returns the cutoff used for the current merging.
mergeMethod returns the method used for the current merge.

mergeClusterIndex returns the index of the clustering used for the current merge.

mergeClusters 59

eraseMergelInfo returns object with all previously saved merge info removed.

getMergeCorrespond returns the correspondence between the merged cluster and its originating
cluster. If by="original" returns a named vector, where the names of the vector are the cluster ids
of the originating cluster and the values of the vector are the cluster ids of the merged cluster. If
by="merge" the results returned are organized by the merged clusters. This will generally be a list,
with the names of the list equal to the clusterIds of the merge clusters and the entries the clusterlds
of the originating clusters. However, if there was no merging done (so that the clusters are identical)
the output will be a vector like with by="original”.

References

Ji and Cai (2007), "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Mul-
tiple Comparisons", JASA 102: 495-906.

Efron (2004) "Large-scale simultaneous hypothesis testing: the choice of a null hypothesis," JASA,
99: 96-104.

Meinshausen and Buhlmann (2005) "Lower bounds for the number of false null hypotheses for
multiple testing of associations", Biometrika 92(4): 893-907.

Storey (2002) "A direct approach to false discovery rates”, J. R. Statist. Soc. B 64 (3)": 479-498.

Pounds and Cheng (2004). "Improving false discovery rate estimation." Bioinformatics 20(11):
1737-1745.

See Also

makeDendrogram, plotDendrogram, getBestFeatures

Examples

data(simData)

#create a clustering, for 8 clusters (truth was 3)
cl<-clusterSingle(simData, subsample=FALSE,
sequential=FALSE, mainClusterArgs=list(clusterFunction="pam", clusterArgs=1list(k=8)))

#give more interesting names to clusters:

newNames<- paste("”Cluster”,clusterLegend(cl)[[11]1[, "name"],sep="")
clusterLegend(cl)[[1]]1L[, "name"J<-newNames

#make dendrogram

cl <- makeDendrogram(cl)

#plot showing the before and after clustering

#(Note argument 'use.edge.length' can improve

#readability)

merged <- mergeClusters(cl, plotInfo="all",
mergeMethod="adjP", use.edge.length=FALSE, DEMethod="1limma")

#Simpler plot with just dendrogram and single method

merged <- mergeClusters(cl, plotInfo="mergeMethod",
mergeMethod="adjP", use.edge.length=FALSE, DEMethod="limma",
leafType="clusters”,plotType="name")

#compare merged to original
tableClusters(merged,whichClusters=c("mergeClusters”,"clusterSingle"))

60 numerical AsCharacter

numericalAsCharacter Convert numeric values to character that sort correctly

Description

Small function that takes as input integer values (or values that can be converted to integer values)
and converts them into character values that are ’padded’ with zeros at the beginning of the numbers
so that they will sort correctly.

Usage
numericalAsCharacter(values, prefix = "")
Arguments
values vector of values to be converted into sortable character values
prefix optional character string that will be added as prefix to the result
Details

The function determines the largest value and adds zeros to the front of smaller integers so that the
resulting characters are the same number of digits. This allows standard sorting of the values to
correctly sort.

The maximum number of zeros that will be added is 3. Input integers beyond that point will not be
correctly fixed for sorting.

Negative integers will not be corrected, but left as-is

Value

A character vector

See Also

str_pad

Examples

numericalAsCharacter(c(-1, 5,10,20,100))

plotBarplot,ClusterExperiment-method 61

plotBarplot,ClusterExperiment-method
Barplot of 1 or 2 clusterings

Description

Make a barplot of sample’s assignments to clusters for single clustering, or cross comparison for
two clusterings.

Usage

S4 method for signature 'ClusterExperiment
plotBarplot(object, whichClusters = "primary”, labels = c("names"”", "ids"), ...)

S4 method for signature 'vector'
plotBarplot(object, ...)

S4 method for signature 'matrix’
plotBarplot(
object,
xNames = NULL,
legNames = NULL,
legend = ifelse(ncol(object) == 2, TRUE, FALSE),

xlab = NULL,

legend.title = NULL,
unassignedColor = "white"”,
missingColor = "grey",

colPalette = NULL,

Arguments

object A matrix of with each column corresponding to a clustering and each row a
sample or a ClusterExperiment object.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

labels if object is a ClusterExperiment object, then labels defines whether the clusters
will be identified by their names values in clusterLegend (labels="names", the
default) or by their clusterlds value in clusterLegend (labels="ids").

for plotBarplot arguments passed either to the method of plotBarplot for
matrices or ultimately to barplot.

xNames names for the clusters on x-axis (i.e. clustering given 1st). By default uses
names of the 1st column of clusters matrix. See details.

legNames names for the clusters dividing up the 1st clusters (will appear in legend). By
default uses names of the 2nd cluster of clusters matrix. If only one clustering,
xNames and legNames refer to the same clustering. See details.

legend whether to plot the legend

62

plotBarplot,ClusterExperiment-method

x1lab label for x-axis. By default or if equal NULL the column name of the 1st cluster
of clusters matrix

legend.title Ilabel for legend. By default or if equal NULL the column name of the 2st cluster
of clusters matrix

unassignedColor
If “-1” in clusters, will be given this color (meant for samples not assigned to
cluster).

missingColor If “-2”in clusters, will be given this color (meant for samples that were missing
from the clustering, mainly when comparing clusterings run on different sets of
samples)

colPalette a vector of colors used for the different clusters. See details.

Details

The first column of the cluster matrix will be on the x-axis and the second column (if present) will
separate the groups of the first column.

All arguments of the matrix version can be passed to the ClusterExperiment version. As noted
above, however, some arguments have different interpretations.

If whichClusters = "workflow”, then the most recent two clusters of the workflow will be chosen
where recent is based on the following order (most recent first): final, mergeClusters, makeConsen-
sus, clusterMany.

xNames, legNames and colPalette should all be named vectors, with the names referring to the
clusters they should match to (for ClusterExperiment objects, it is determined by the argument
labels as to whether the names should match the cluster names or the clusterlds). colPalette and
legNames must be same length of the number of clusters found in the second clustering, or if only
a single clustering, the same length as the number of clusters in that clustering.

Value

A plot is produced, nothing is returned

Author(s)

Elizabeth Purdom

Examples

Not run:
#clustering using pam: try using different dimensions of pca and different k
data(simData)

cl <- clusterMany(simData, nReducedDims=c(5, 10, 50), reduceMethod="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

plotBarplot(cl)
plotBarplot(cl,whichClusters=1:2)

End(Not run)

plotClusters

63

plotClusters

Visualize cluster assignments across multiple clusterings

Description

Align multiple clusterings of the same set of samples and provide a color-coded plot of their shared
cluster assignments

Usage
S4 method for signature 'ClusterExperiment'
plotClusters(
object,
whichClusters,
existingColors = c("ignore"”, "all”, "firstOnly"),

)

resetNames = FALSE,
resetColors = FALSE,
resetOrderSamples = FALSE,
colData = NULL,
clusterLabels = NULL,

S4 method for signature 'matrix’
plotClusters(

object,

orderSamples = NULL,
colData = NULL,
reuseColors = FALSE,
matchToTop = FALSE,

plot = TRUE,
unassignedColor = "white"”,
missingColor = "grey",

minRequireColor = 0.3,
startNewColors = FALSE,
colPalette = massivePalette,

input = c("clusters”, "colors"),
clusterLabels = colnames(object),
add = FALSE,

xCoord = NULL,

ylim = NULL,

tick = FALSE,

ylab = "",

xlab = "",

axisLine = 0,

box = FALSE,

64 plotClusters

Arguments

object A matrix of with each column corresponding to a clustering and each row a
sample or a ClusterExperiment object. If a matrix, the function will plot the
clusterings in order of this matrix, and their order influences the plot greatly.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

)

existingColors how to make use of the exiting colors in the ClusterExperiment object. ’ig-
nore’ will ignore them and assign new colors. *firstOnly’ will use the existing
colors of only the 1st clustering, and then align the remaining clusters and give
new colors for the remaining only. "all” will use all of the existing colors.

resetNames logical. Whether to reset the names of the clusters in clusterLegend to be the
aligned integer-valued ids from plotClusters.

resetColors logical. Whether to reset the colors in clusterLegend in the ClusterExperiment
returned to be the colors from the plotClusters.

resetOrderSamples

logical. Whether to replace the existing orderSamples slot in the ClusterExperiment
object with the new order found.

colData If clusters is a matrix, colData gives a matrix of additional cluster/sample
data on the samples to be plotted with the clusterings given in clusters. Val-
ues in colData will be added to the end (bottom) of the plot. NAs in the
colData matrix will trigger an error. If clusters is a ClusterExperiment
object, the input in colData refers to columns of the the colData slot of the
ClusterExperiment object to be plotted with the clusters. In this case, colData
can be TRUE (i.e. all columns will be plotted), or an index or a character vec-
tor that references a column or column name, respectively, of the colData slot
of the ClusterExperiment object. If there are NAs in the colData columns,
they will be encoded as 'unassigned’ and receive the same color as "unassigned’
samples in the clustering.

clusterLabels names to go with the columns (clusterings) in matrix colorMat. If colData
argument is not NULL, the clusterLabels argument must include names for the
sample data too. If the user gives only names for the clusterings, the code will
try to anticipate that and use the column names of the sample data, but this is
fragile. If set to FALSE, then no labels will be plotted.

for plotClusters arguments passed either to the method of plotClusters for
matrices, or ultimately to plot (if add=FALSE).

orderSamples A predefined order in which the samples will be plotted. Otherwise the order
will be found internally by aligning the clusters (assuming input="clusters")

reuseColors Logical. Whether each row should consist of the same set of colors. By default
(FALSE) each cluster that the algorithm doesn’t identify to the previous rows
clusters gets a new color.

matchToTop Logical as to whether all clusters should be aligned to the first row. By default
(FALSE) each cluster is aligned to the ordered clusters of the row above it.

plot Logical as to whether a plot should be produced.

unassignedColor
If “-1” in clusters, will be given this color (meant for samples not assigned to
cluster).

missingColor If “-2” in clusters, will be given this color (meant for samples that were missing
from the clustering, mainly when comparing clusterings run on different sets of
samples)

plotClusters 65

minRequireColor
In aligning colors between rows of clusters, require this percent overlap.

startNewColors logical, indicating whether in aligning colors between rows of clusters, should
the colors restart at beginning of colPalette as long as colors are not in imme-
diately proceeding row (the colors at the end of massivePalette are all of
colors() and many will be indistinguishable, so this option can be useful if
you have a large cluster matrix).

colPalette a vector of colors used for the different clusters. Must be as long as the maxi-
mum number of clusters found in any single clustering/column given in clusters
or will otherwise return an error.

input indicate whether the input matrix is matrix of integer assigned clusters, or con-
tains the colors. If input="colors", then the object clusters is a matrix of
colors and there is no alignment (this option allows the user to manually adjust
the colors and replot, for example).

add whether to add to existing plot.
xCoord values on x-axis at which to plot the rows (samples).
ylim vector of limits of y-axis.
tick logical, whether to draw ticks on x-axis for each sample.
ylab character string for the label of y-axis.
x1lab character string for the label of x-axis.
axisLine the number of lines in the axis labels on y-axis should be (passed to line = . ..
in the axis call).
box logical, whether to draw box around the plot.
Details

All arguments of the matrix version can be passed to the ClusterExperiment version. As noted
above, however, some arguments have different interpretations.

If whichClusters = "workflow"”, then the workflow clusterings will be plotted in the following
order: final, mergeClusters, makeConsensus, clusterMany.

Value

If clustersisaClusterExperiment Object, then plotClusters returns an updated ClusterExperiment
object, where the clusterLegend and/or orderSamples slots have been updated (depending on the
arguments).

If clusters is a matrix, plotClusters returns (invisibly) the orders and other things that go into
making the matrix. Specifically, a list with the following elements.

» orderSamples a vector of length equal to nrows(clusters) giving the order of the samples
(rows) to use to get the original clusters matrix into the order made by plotClusters.

* colors matrix of color assignments for each element of original clusters matrix. Matrix is in
the same order as original clusters matrix. The matrix colors[orderSamples,] is the matrix
that can be given back to plotClusters to recreate the plot (see examples).

* alignedClusterIds a matrix of integer valued cluster assignments that match the colors.
This is useful if you want to have cluster identification numbers that are better aligned than
that given in the original clusters. Again, the rows/samples are in same order as original input
matrix.

66 plotClusters

» clusterLegend list of length equal to the number of columns of input matrix. The elements
of the list are matrices, each with three columns named "Original","Aligned", and "Color"
giving, respectively, the correspondence between the original cluster ids in clusters, the
aligned cluster ids in aligned, and the color.

» origClustersThe original matrix of clusters given to plotClusters

Author(s)
Elizabeth Purdom and Marla Johnson (based on the tracking plot in ConsensusClusterPlus by Matt
Wilkerson and Peter Waltman).

References
Wilkerson, D. M, Hayes and Neil D (2010). "ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking." Bioinformatics, 26(12), pp. 1572-1573.

See Also

The ConsensusClusterPlus package.

Examples

Not run:
#clustering using pam: try using different dimensions of pca and different k
data(simData)

cl <- clusterMany(simData, nReducedDims=c(5, 10, 50), reduceMethod="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

clusterLabels(cl)

#make names shorter for better plotting

x <- clusterLabels(cl)

X <- gsub("TRUE", "T", x)

x <- gsub("FALSE", "F", x)
x <- gsub("k=NA,", "", x)

x <- gsub("Features”, "", x)

clusterLabels(cl) <- x

par(mar=c(2,10,1,1))
#this will make the choices of plotClusters
cl <- plotClusters(cl, axisLine=-1, resetOrderSamples=TRUE, resetColors=TRUE)

#see the new cluster colors
clusterLegend(cl)[1:2]

#We can also change the order of the clusterings. Notice how this
#dramatically changes the plot!

clOrder <- c¢(3:6, 1:2, 7:ncol(clusterMatrix(cl)))

cl <- plotClusters(cl, whichClusters=clOrder, resetColors=TRUE,
resetOrder=TRUE, axislLine=-2)

#We can manually switch the red ("#E31A1C") and green ("#33A02C") in the
#first cluster:

plotClustersTable

#see what the default colors are and their names
showPalette(wh=1:5)

#change "#E31A1C" to "#33A02C"

newColorMat <- clusterLegend(cl)[[clOrder[1]]]
newColorMat[2:3, "color”] <- c("#33A02C", "#E31A1C")
clusterLegend(cl)[[clOrder[1]]]<-newColorMat

#replot by setting 'input="colors"'

par(mfrow=c(1,2))

plotClusters(cl, whichClusters=clOrder, orderSamples=orderSamples(cl),
existingColors="all")

plotClusters(cl, whichClusters=clOrder, resetColors=TRUE, resetOrder=TRUE,
axisLine=-2)

par(mfrow=c(1,1))

#set some of clusterings arbitrarily to "-1", meaning not clustered (white),
#and "-2" (another possible designation getting gray, usually for samples not
#included in original clustering)

clMatNew <- apply(clusterMatrix(cl), 2, function(x) {

wh <- sample(1:nSamples(cl), size=10)

x[wh]<- -1

wh <- sample(1:nSamples(cl), size=10)

x[wh]<- -2

return(x)

b

#make a new object

cl2 <- ClusterExperiment(assay(cl), clMatNew,
transformation=transformation(cl))
plotClusters(cl2)

End(Not run)

plotClustersTable Plot heatmap of cross-tabs of 2 clusterings

Description

Plot heatmap of cross-tabulations of two clusterings

Usage

S4 method for signature 'ClusterExperiment'
plotClustersTable(

object,

whichClusters,

ignoreUnassigned = FALSE,

margin = NA,

S4 method for signature 'table'
plotClustersTable(

68 plotClustersTable

object,

plotType = c("heatmap”, "bubble"),
main = "",

xlab = NULL,

ylab = NULL,

legend = TRUE,

cluster = FALSE,

clusterLegend = NULL,

sizeTable = NULL,

)

S4 method for signature 'ClusterExperiment'
tableClusters(

object,

whichClusters = "primary",

useNames = TRUE,

tableMethod = c("intersect”, "union"),

)

S4 method for signature 'table,table’
bubblePlot(
propTable,
sizeTable,
gridColor = rgh(o, 0, 0, 0.05),
maxCex = 8,
cexFactor,
ylab,
xlab,
propLabel = "Value of %",
legend = TRUE,

las = 2,
colorScale = RColorBrewer: :brewer.pal(11, "Spectral”)[-6]
)
Arguments
object ClusterExperiment object (or matrix with table result)

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

ignoreUnassigned
logical as to whether to ignore unassigned clusters in the plotting. This means

they will also be ignored in the calculations of the proportions (if margin not
NA).

margin if NA, the actual counts from tableClusters will be plotted. Otherwise, prop. table
will be called and the argument margin will be passed to prop. table to deter-
mine whether proportions should be calculated. If ’1°, then the proportions in
the rows sum to 1, if *2’ the proportions in the columns sum to 1. If 'NULL’
then the proportion across the entire matrix will sum to 1. An additional option
has been added so that if you set margin=0, the entry displayed in each cell will
be the proportion equal to the size of the intersection over the size of the union

plotClustersTable 69

of the clusters (a Jaccard similarity between the clusters), in which case each
entry is a value between 0 and 1 but no combination of the entries sum to 1.

arguments passed on to plotHeatmap or bubblePlot depending on choice of
plotType. Note that these functions take different arguments so that switching
from one to the other may not take all arguments. In particular bubblePlot calls
plot while plotHeatmap calls NMF{aheatmap}.

plotType type of plot. If "heatmap", then a heatmap will be created of the values of the
contingency table of the two clusters (calculated as determined by the argument
"margin") using plotHeatmap. If "bubble", then a plot will be created using
bubblePlot, which will create circles for each cell of the contingencey table
whose size corresponds to the number of samples shared and the color based on
the value of the proportion (as chosen by the argument margin).

main title of plot, passed to plotHeatmap or to the argument proplLabel in bubblePlot

xlab label for labeling clustering on the x-axis. If NULL, will determine names. If
set to NA no label for clustering on the x-axis will be plotted (to turn off legend
of the clusterings in heatmap, set legend=FALSE).

ylab label for labeling clustering on the y-axis. If NULL, will determine names. If
set to NA no label for clustering on the y-axis will be plotted (to turn off legend
of the clusterings in heatmap, set legend=FALSE).

legend whether to draw legend along top (bubble plot) or the color legend (heatmap)

cluster logical, whether to cluster the rows and columns of the table. Passed to argu-
ments clusterFeatures AND clusterSamples of plotHeatmap.

clusterLegend listin clusterLegend format that gives colors for the clusters tabulated.
sizeTable table of sizes (only for use in bubblePlot or plotType="bubble"). See details.

useNames for tableClusters, whether the output should be tabled with names (useNames=TRUE)
or ids (useNames=FALSE)

tableMethod the type of table calculation to perform. "intersect" refers to the standard con-
tingency table (table), where each entry of the resulting table is the number
of objects in both clusters. "union" instead gives for each entry the number of
objects that are in the union of both clusters.

propTable table of proportions (bubblePlot))

gridColor color for grid lines (bubblePlot))

maxCex largest value of cex for any point (others will scale proportionally smaller)
(bubblePlot)).

cexFactor factor to multiple by to get values of circles. If missing, finds value automati-
cally, namely by using the maxCex value default. Overrides value of maxCex.
(bubblePlot))

propLabel the label to go with the legend of the color of the bubbles/circles

las the value for the las value in the call to axis in labeling the clusters in the bubble
plot. Determines whether parallel or perpindicular labels to the axis (see par).

colorScale the color scale for the values of the proportion table

Details

For plotClustersTable applied to the class table, sizeTable is passed to bubblePlot to in-
dicate the size of the circle. If sizeTable=NULL, then it is assumed that the object argument is

70

plotClustersTable

the table of counts and both the propTable and sizeTable are set to the same value (hence turn-
ing off the coloring of the circle/bubbles). This is equivalent effect to the margin=NA option of
plotClustersTable applied to the ClusterExperiment class.

Note that the cluster labels in plotClustersTable and tableClusters are converted to "proper" R
names via make.names. This is because tableClusters calls the R function table, which makes
this conversion

For plotClustersTable, whichClusters should define 2 clusters, while for tableClusters it
can indicate arbitrary number.

bubblePlot is mainly used internally by plotClustersTable but is made public for users who
want more control and to allow documentation of the arguments. bubblePlot plots a circle for
each intersection of two clusters, where the color of the circle is based on the value in propTable
and the size of the circle is based on the value in sizeTable. If propTable is equal to sizeTable,
then the propTable is ignored and the coloring of the circles is not performed, only the adjusting
of the size of the circles based on the total size. The size is determined by setting the cex value of
the point as $sqrt(sizeTable[i,j])/sqrt(max(sizeTable))*cexFactor$.

Value

tableClusters returns an object of class table (see table).

plotClustersTables returns invisibly the plotted proportion table. In particular, this is the result
of applying prop.table to the results of tableClusters (after removing unclustered samples if
ignoreUnassigned=TRUE).

Author(s)

Kelly Street, Elizabeth Purdom

See Also

plotHeatmap
table
prop.table

Examples

#clustering using pam: try using different dimensions of pca and different k
data(simData)

cl <- clusterMany(simData, nReducedDims=c(5, 10, 50), reducedDim="PCA",

clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),

removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

#give arbitrary names to clusters for demonstration

cl<-renameClusters(cl,value=letters[1:nClusters(cl)[1]],whichCluster=1)

tableClusters(cl,whichClusters=1:2)

#show options of margin in heatmap format:

par(mfrow=c(2,3))

plotClustersTable(cl,whichClusters=1:2, margin=NA, legend=FALSE,
ignoreUnassigned=TRUE)

plotClustersTable(cl,whichClusters=1:2, margin=0, legend=FALSE,
ignoreUnassigned=TRUE)

plotClustersTable(cl,whichClusters=1:2, margin=1, legend=FALSE,
ignoreUnassigned=TRUE)

plotClustersTable(cl,whichClusters=1:2, margin=2, legend=FALSE,

plotClusters Workflow, ClusterExperiment-method 71

ignoreUnassigned=TRUE)
plotClustersTable(cl,whichClusters=1:2, margin=NULL, legend=FALSE,
ignoreUnassigned=TRUE)

#show options of margin in bubble format:
par(mfrow=c(2,3))
plotClustersTable(cl,whichClusters=1:2, margin=NA,
ignoreUnassigned=TRUE, plotType="bubble")
plotClustersTable(cl,whichClusters=1:2, margin=0,
ignoreUnassigned=TRUE, plotType="bubble")
plotClustersTable(cl,whichClusters=1:2, margin=1,
ignoreUnassigned=TRUE, plotType="bubble")
plotClustersTable(cl,whichClusters=1:2, margin=2,
ignoreUnassigned=TRUE, plotType="bubble")
plotClustersTable(cl,whichClusters=1:2, margin=NULL,
ignoreUnassigned=TRUE, plotType="bubble")

plotClustersWorkflow,ClusterExperiment-method

A plot of clusterings specific for clusterMany and workflow visualiza-
tion

Description

A realization of plotClusters call specific to separating out the results of clusterMany and other
clustering results.

Usage

S4 method for signature 'ClusterExperiment'’
plotClustersWorkflow(
object,
whichClusters = c("mergeClusters”, "makeConsensus"),
whichClusterMany = NULL,
nBlankLines = ceiling(nClusterings(object) * 0.05),
existingColors = c("ignore”, "all", "highlightOnly"),
nSizeResult = ceiling(nClusterings(object) * 0.02),
clusterLabels = TRUE,
clusterManylLabels = TRUE,
sortBy = c("highlighted”, "clusterMany"),
highlightOnTop = TRUE,

Arguments

object A ClusterExperiment object on which clusterMany has been run

whichClusters which clusterings to "highlight", i.e draw separately from the bulk of the plot,
see argument whichClusters of getClusterIndex for description of format
allowed.

whichClusterMany
indicate which clusterings to plot in the bulk of the plot, see argument whichClusters
of getClusterIndex for description of format allowed.

72

nBlankLines

existingColors

nSizeResult

clusterLabels

plotClusters Workflow, ClusterExperiment-method

the number of blank (i.e. white) rows to add between the clusterMany cluster-
ings and the highlighted clusterings.

one of "ignore","all","highlightOnly". Whether the plot should use the stored
colors in the ClusterExperiment object given. "highlightOnly" means only the
highlighted clusters will use the stored colors, not the clusterMany clusterings.

the number of rows each highlighted clustering should take up. Increasing the
number increases the thickness of the rectangles representing the highlighted
clusterings.

either logical, indicating whether to plot the labels for the clusterings identified
to be highlighted in the whichClusters argument, or a character vector of labels
to use.

clusterManylLabels

sortBy

highlightOnTop

Details

either logical, indicating whether to plot the labels for the clusterings from clus-
terMany identified in the whichClusterMany, or a character vector of labels to
use.

how to align the clusters. If "highlighted" then the highlighted clusters indicated
in the argument whichClusters are first in the alignment done by plotClusters.
If "clusterMany", then the clusterMany results are first in the alignment. (Note
this does not determine where they will be plotted, but how they are ordered in
the aligning step done by plotClusters)

logical. Whether the highlighted clusters should be plotted on the top of cluster-
Many results or underneath.

arguments passed to the matrix version of plotClusters

This plot is solely intended to make it easier to use the plotClusters visualization when there are
a large number of clusterings from a call to clusterMany. This plot separates out the clusterMany
results from a designated clustering of interest, as indicated by the whichClusters argument (by
default clusterings from a call to makeConsensus or mergeClusters). In addition the highlighted
clusters are made bigger so that they can be easily seen.

Value

A plot is produced, nothing is returned.

See Also

plotClusters, clusterMany

Examples

#clustering using pam: try using different dimensions of pca and different k

Not run:
data(simData)

cl <- clusterMany(simData, nReducedDims=c(5, 10, 50), reduceMethod="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

cl <- makeConsensus(cl, proportion=0.7)

plotClustersWorkflow(cl)

End(Not run)

plotContrastHeatmap, ClusterExperiment-method 73

plotContrastHeatmap,ClusterExperiment-method

Plot heatmaps showing significant genes per contrast

Description

Plots a heatmap of the data, with the genes grouped based on the contrast for which they were

significant.
Usage
S4 method for signature 'ClusterExperiment'’
plotContrastHeatmap(
object,
signifTable,
whichCluster = NULL,

contrastColors = NULL,

Arguments

object
signifTable

whichCluster

contrastColors

Details

ClusterExperiment object on which biomarkers were found

A data.frame in format of the result of getBestFeatures. It must minimally
contain columns ’Contrast’ and "IndexInOriginal’ giving the grouping and orig-
inal index of the features in the assay(object)

if not NULL, indicates cluster used in making the significance table. Used to
match to colors in clusterLegend(object) (relevant for one-vs-all contrast so
that color aligns). See description of argument in getClusterIndex for futher
details.

vector of colors to be given to contrasts. Should match the name of the contrasts
in the *Contrast’ column of signifTable or ’ContrastName’, if given.. If miss-
ing, default colors given by match to the cluster names of whichCluster (see
above), or otherwise given a default assignment.

Arguments passed to plotHeatmap

If the column ’ContrastName’ is given in signifTable, these names will be used to describe the
contrast in the legend.

Within each contrast, the genes are sorted by log fold-change if the column "logFC" is in the
signifTable data.frame

Note that if whichCluster is NOT given (the default) then there is no automatic match of colors
with contrasts based on the information in object.

Value

A heatmap is created. The output of plotHeatmap is returned.

74 plotDendrogram, ClusterExperiment-method

See Also

plotHeatmap, makeBlankData, getBestFeatures

Examples

data(simData)

cl <- clusterSingle(simData, subsample=FALSE,
sequential=FALSE,
mainClusterArgs=list(clusterFunction="pam"”, clusterArgs=list(k=8)))

#Do all pairwise, only return significant, try different adjustments:
pairsPerC <- getBestFeatures(cl, contrastType="Pairs"”, number=5,
p.value=0.05, DEMethod="1imma")

plotContrastHeatmap(cl, pairsPerC)

plotDendrogram,ClusterExperiment-method
Plot dendrogram of ClusterExperiment object

Description

Plots the dendrogram saved in a ClusterExperiment object

Usage
S4 method for signature 'ClusterExperiment'
plotDendrogram(
X’
whichClusters = "dendro”,

leafType = c("samples”, "clusters"”),
plotType = c("colorblock”, "name", "ids"),
mergeInfo = "none"”,

main,

sub,

clusterLabelAngle = 45,
removeOutbranch = TRUE,

legend = c("side", "below”, "none"),
nodeColors = NULL,

colData = NULL,

clusterLegend = NULL,

Arguments

X a ClusterExperiment object.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

leafType if "samples" the dendrogram has one leaf per sample, otherwise it has one per
cluster.

plotDendrogram,ClusterExperiment-method 75

plotType one of 'name’, "colorblock’ or ’id’. If 'Name’ then dendrogram will be plotted,
and name of cluster or sample (depending on type of value for leafType) will be
plotted next to the leaf of the dendrogram. If ’colorblock’, rectangular blocks,
corresponding to the color of the cluster will be plotted, along with cluster name
legend. If ’id’ the internal clusterlds value will be plotted (only appropriate if
leafType="clusters").

mergelInfo What kind of information about merge to plot on dendrogram. If not equal to
"none", will replicate the kind of plot that mergeClusters creates, and the input
to mergeInfo corresponds to that of plotInfo in mergeClusters.

main passed to the plot.phylo function to set main title.
sub passed to the plot.phylo function to set subtitle.
clusterLabelAngle

angle at which label of cluster will be drawn. Only applicable if plotType="colorblock”.

removeQutbranch
logical, only applicable if there are missing samples (i.e. equal to -1 or -2),
leafType="samples” and the dendrogram for the samples was made by putting
missing samples in an outbranch. In which case, if this parameter is TRUE, the
outbranch will not be plotted, and if FALSE it will be plotted.

legend character, only applicable if plotType="colorblock”. Passed to phydataplot
in ape package that is used to draw the color values of the clusters/samples next
to the dendrogram. Options are 'none’, *below’, or ’side’. (Note 'none’ is only
available for *ape’ package >= 4.1-0.6).

nodeColors named vector of colors to be plotted on a node in the dendrogram (calls nodelabels).
Names should match the internal name of the node (the "Nodeld" value, see
clusterDendrogram).

colData index (by integer or name) the sample data stored as a DataFrame in colData

slot of the object. Only discrete valued ("character" or "factor" variables) will
be plotted; indexing of continous variables will be ignored. Whether that data
is continuous or not will be determined by the properties of colData (no user
input is needed). This argument is only relevant if plotType=="colorblock"”
and leafType=="samples”

clusterLegend Assignment of colors to the clusters or sample data (as designated by colData
argument) plotted with the dendrogram . If NULL or a particular variable/cluster
are not assigned a color, colors will be assigned internally for sample data and
pull from the clusterLegend slot of the x for the clusters.

arguments passed to the plot.phylo function of ape that plots the dendrogram.

Details

If leafType="clusters”, the plotting function will work best if the clusters in the dendrogram
correspond to the primary cluster. This is because the function colors the cluster labels based on the
colors of the clusterlds of the primaryCluster

Value

A dendrogram is plotted. Returns (invisibly) a list with elements

* plottedObject the phylo object that is plotted.
* originalObject the phylo object before adjusting the node/tip labels.

76 plotFeatureBoxplot

See Also

mergeClusters,plot.phylo, nodelabels,tiplabels

Examples

data(simData)

#tcreate a clustering, for 8 clusters (truth was 3)

cl <-clusterSingle(simData, subsample=FALSE,

sequential=FALSE,

mainClusterArgs=list(clusterFunction="pam", clusterArgs=1ist(k=8)))

#create dendrogram of clusters and then

merge clusters based ondendrogram:

cl <- makeDendrogram(cl)

cl <- mergeClusters(cl,mergeMethod="adjP",DEMethod="1imma",
cutoff=0.1,plot=FALSE)

plotDendrogram(cl)

plotDendrogram(cl, leafType="samples”,whichClusters="all",plotType="colorblock")

plotFeatureBoxplot Plot boxplot of feature values by cluster

Description

Plot a boxplot of the (transformed) values for a particular gene, separated by cluster

Usage

S4 method for signature 'ClusterExperiment,character’
plotFeatureBoxplot(object, feature, whichCluster = "primary”, ...)

S4 method for signature 'ClusterExperiment,numeric’

plotFeatureBoxplot(
object,
feature,
whichCluster = "primary”,

plotUnassigned = FALSE,
unassignedColor = NULL,
missingColor = NULL,
main = NULL,

whichAssay = 1,

Arguments

object a ClusterExperiment object

feature identification of feature to plot, either row name or index

plotFeatureScatter 77

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

arguments passed to boxplot
plotUnassigned whether to plot the unassigned samples as a cluster (either -1 or -2)
unassignedColor
If not NULL, should be character value giving the color for unassigned (-2)
samples (overrides clusterLegend) default.

missingColor If not NULL, should be character value giving the color for missing (-2) samples
(overrides clusterlLegend) default.

main title of plot. If NULL, given default title.
whichAssay numeric or character specifying which assay to use. See assay for details.
Value

A plot is created. The output of boxplot is returned (see boxplot), with additional elements
colors and clusterIds that gives the colors and internal ids that match each boxplot (pulled
from clusterLegend but in the order of plot)

See Also

boxplot

Examples

data(simData)

#Create a ClusterExperiment object

cl <- clusterMany(simData, nReducedDims=c(5, 10, 50), reducedDim="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

#give names to the clusters

cl<-renameClusters(cl, whichCluster=1,
value=letters[1:nClusters(cl)[1]1])

plotFeatureBoxplot(cl, feature=1)

plotFeatureScatter Plot scatter plot of feature values colored by cluster

Description

Plot a scatter plot of the (transformed) values for a set of gene expression values, colored by cluster

Usage

S4 method for signature 'ClusterExperiment,character’
plotFeatureScatter(object, features, ...)

S4 method for signature 'ClusterExperiment,numeric'’
plotFeatureScatter(

object,

features,

78 plotFeatureScatter
whichCluster = "primary”,
plotUnassigned = TRUE,
unassignedColor = "grey",
missingColor = "white”,
whichAssay = 1,
legendLocation = NA,
jitterFactor = NA,
)
Arguments
object a ClusterExperiment object
features the indices of the features (either numeric or character matching rownames of
object) to be plotted.
arguments passed to boxplot
whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.
plotUnassigned whether to plot the unassigned samples as a cluster (either -1 or -2)
unassignedColor
If not NULL, should be character value giving the color for unassigned (-2)
samples (overrides clusterLegend) default.
missingColor If not NULL, should be character value giving the color for missing (-2) samples
(overrides clusterlLegend) default.
whichAssay numeric or character specifying which assay to use. See assay for details.
legendLocation character value passed to location argument of plotClusterlLegend indicat-
ing where to put the legend. If NA, legend will not be plotted.
jitterFactor numeric. If NA, no jittering is done. Otherwise, passed to factor of function
jitter (useful for low counts)
Value

returns invisibly the results of pairs or plot command.

Examples

data(simData)

#Create a ClusterExperiment object

cl <- clusterMany(simData, nReducedDims=c(5, 10, 50), reducedDim="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

#give names to the clusters

cl<-renameClusters(cl, whichCluster=1,
value=letters[1:nClusters(cl)[1]]1)

plotFeatureScatter(cl, feature=1:2,pch=19, legendLocation="topright")

plotHeatmap

79

plotHeatmap

Heatmap for showing clustering results and more

Description

Make heatmap with color scale from one matrix and hiearchical clustering of samples/features
from another. Also built in functionality for showing the clusterings with the heatmap. Builds on

aheatmap function of NMF package.

Usage

S4 method for signature 'SingleCellExperiment’
plotHeatmap(data, isCount = FALSE, transFun = NULL, ...)

S4 method for signature 'SummarizedExperiment'’
plotHeatmap(data, isCount = FALSE, transFun = NULL, ...)

S4 method for signature 'table'
plotHeatmap(data, ...)

S4 method for signature 'ClusterExperiment'’

plotHeatmap(
data,
clusterSamplesData = c("dendrogramValue”, "hclust”, "orderSamplesValue",
"primaryCluster”),
clusterFeaturesData = "var",
nFeatures = NA,
visualizeData = c("transformed”, "centeredAndScaled”, "original"),
whichClusters = c("primary”, "workflow”, "all”, "none"),

colData = NULL,
clusterFeatures = TRUE,
nBlankLines = 2,
colorScale,

whichAssay = 1,

)

S4 method for signature 'data.frame'
plotHeatmap(data, ...)

S4 method for signature 'ExpressionSet'
plotHeatmap(data, ...)

S4 method for signature 'matrixOrHDF5'
plotHeatmap(
data,
colData = NULL,
clusterSamplesData = NULL,
clusterFeaturesData = NULL,
whColDataCont = NULL,
clusterSamples = TRUE,

80

plotHeatmap

showSampleNames = FALSE,
clusterFeatures = TRUE,
showFeatureNames = FALSE,

colorScale =

seqPal5,

clusterLegend = NULL,

alignColData

= FALSE,

unassignedColor = "white",
missingColor = "grey”,

breaks = NA,

symmetricBreaks = FALSE,

capBreakslLegend

isSymmetric

FALSE,
FALSE,

overRideClusterLimit = FALSE,

plot = TRUE,

labelTracks =

)

TRUE,

S4 method for signature 'ClusterExperiment'
plotCoClustering(data, invert, saveDistance = FALSE, ...)

Arguments

data

isCount

transFun

data to use to determine the heatmap. Can be a matrix, ClusterExperiment,
SingleCellExperiment or SummarizedExperiment object. The interpretation
of parameters depends on the type of the input to data.

if transFun=NULL, then isCount=TRUE will determine the transformation as de-
fined by function(x){log2(x+1)3}, and isCount=FALSE will give a transfor-
mation function function(x){x}. Ignored if transFun=NULL. If object is of
class ClusterExperiment, the stored transformation will be used and giving
this parameter will result in an error.

a transformation function to be applied to the data. If the transformation applied
to the data creates an error or NA values, then the function will throw an error.
If object is of class ClusterExperiment, the stored transformation will be used
and giving this parameter will result in an error.

for signature matrix, arguments passed to aheatmap. For the other signatures,
passed to the method for signature matrix. Not all arguments can be passed to
aheatmap effectively, see details.

clusterSamplesData

If data is a matrix, clusterSamplesData is either a matrix that will be used by
hclust to define the hiearchical clustering of samples (e.g. normalized data) or
a pre-existing dendrogram (of class dendrogram) that clusters the samples. If
data is a ClusterExperiment object, clusterSamplesData should be either
character or integers or logical which indicates how (and whether) the samples
should be clustered (or gives indices of the order for the samples). See details.

clusterFeaturesData

If data is a matrix, either a matrix that will be used in hclust to define the
hiearchical clustering of features (e.g. normalized data) or a pre-existing den-
drogram that clusters the features. If data is a ClusterExperiment object, the
input should be either character or integers indicating which features should be
used (see details).

plotHeatmap 81

nFeatures integer indicating how many features should be used (if clusterFeaturesData
is ’var’ or 'PCA’).

visualizeData either a character string, indicating what form of the data should be used for
visualizing the data (i.e. for making the color-scale), or a data.frame/matrix
with same number of samples as assay(data). If a new data.frame/matrix, any
character arguments to clusterFeaturesData will be ignored.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

colData If input to data is either a ClusterExperiment,or SummarizedExperiment ob-
jector SingleCellExperiment, then colData must index the colData stored as
a DataFrame in colData slot of the object. Whether that data is continuous or
not will be determined by the properties of colData (no user input is needed).
If input to data is matrix, colData is a matrix of additional data on the sam-
ples to show above heatmap. In this case, unless indicated by whColDataCont,
colData will be converted into factors, even if numeric. “-1” indicates the sam-
ple was not assigned to a cluster and gets color ‘unassignedColor’ and “-2* gets
the color *missingColor’.

clusterFeatures
Logical as to whether to do hiearchical clustering of features (if FALSE, any
input to clusterFeaturesData is ignored).

nBlankLines Only applicable if input is ClusterExperiment object. Indicates the number of
lines to put between groups of features if clusterFeaturesData gives groups
of genes (see details and makeBlankData).

colorScale palette of colors for the color scale of the heatmap.
whichAssay numeric or character specifying which assay to use. See assay for details.

whColDataCont Which of the colData columns are continuous and should not be converted to
counts. NULL indicates no additional colData. Only used if data input is matrix.

clusterSamples Logical as to whether to do hierarchical clustering of cells (if FALSE, any input
to clusterSamplesData is ignored).

showSampleNames
Logical as to whether show sample names.

showFeatureNames
Logical as to whether show feature names.

clusterLegend Assignment of colors to the clusters. If NULL, colData columns will be assigned
colors internally. See details for more.

alignColData Logical as to whether should align the colors of the colData (only if clusterLegend
not given and colData is not NULL).

unassignedColor
color assigned to cluster values of *-1° ("unassigned").

missingColor color assigned to cluster values of ’-2’ ("missing").

breaks Either a vector of breaks (should be equal to length 52), or a number between 0
and 1, indicating that the breaks should be equally spaced (based on the range
in the data) upto the ‘breaks’ quantile, see setBreaks

symmetricBreaks

logical as to whether the breaks created for the color scale should be symmetrical
around 0

82 plotHeatmap

capBreaksLegend
logical as to whether the legend for the breaks should be capped. Only relevant
if breaks is a value < 1, in which case if capBreaksLegend=TRUE, only the
values between the quantiles requested will show in the color scale legend.

isSymmetric logical. if TRUE indicates that the input matrix is symmetric. Useful when
plotting a co-clustering matrix or other sample by sample matrices (e.g., corre-
lation).

overRideClusterLimit

logical. Whether to override the internal limit that only allows 10 clusterings/annotations.
If overridden, may result in incomprehensible errors from aheatmap. Only over-
ride this if you have a very large plotting device and want to see if aheatmap can

render it.

plot logical indicating whether to plot the heatmap. Mainly useful for package man-
taince to avoid calls to aheatmap on unit tests that take a long time.

labelTracks logical, whether to put labels next to the color tracks corresponding to the col-
Data.

invert logical determining whether the coClustering matrix should be inverted to be

1-coClustering for plotting. By default, if the diagonal elements are all zero,
invert=TRUE, and otherwise invert=FALSE. If coClustering matrix is not a 0-1
matrix (e.g. if equal to a distance matrix output from clusterSingle, then the
user should manually set this parameter to FALSE.)

saveDistance logical. When the coClustering slot contains indices of the clusterings or a
NxB set of clusterings, the hamming distance will be calculated before running
the plot. This argument determines whether the ClusterExperiment object
with that distance in coClustering slot should be returned (so as to avoid re-
calculating it in the future) or not.

Details

The plotHeatmap function calls aheatmap to draw the heatmap. The main points of plotHeatmap
are to 1) allow for different matrix inputs, separating out the color scale visualization and the clus-
tering of the samples/features. 2) to visualize the clusters and meta data with the heatmap. The
intended use case is to allow the user to visualize the original count scale of the data (on the log-
scale), but create the hierarchical clustering on another, more appropriate dataset for clustering, such
as normalized data. Similarly, some of the palettes in the package were developed assuming that the
visualization might be on unscaled/uncentered data, rather than the residual from the mean of the
gene, and thus palettes need to take on a greater range of relevant values so as to show meaningful
comparisons with genes on very different scales.

If data is a ClusterExperiment object, visualizeData indicates what kind of transformation
should be done to assay(data) for calculating the color scale. The features will be clustered based
on these data as well. A different data.frame or matrix can be given for the visualization. For
example, if the ClusterExperiment object contains normalized data, but the user wishes that the
color scale be based on the log-counts for easier interpretation, visualizeData could be set to be
the log2(counts + 1).

If data is a ClusterExperiment object, clusterSamplesData can be used to indicate the type of
clustering for the samples. If equal to ‘dendrogramValue‘ the dendrogram stored in data will be
used; if dendrogram is missing, a new one will be created based on the primaryCluster of data us-
ing makeDendrogram, assuming no errors are created (if errors are created, then clusterSamplesData
will be set to "primaryCluster"). If clusterSamplesData is equal to "hclust”, then standard hier-
achical clustering of the transformed data will be used. If clusterSamplesData is equal to ’order-
SamplesValue’ no clustering of the samples will be done, and instead the samples will be ordered as

plotHeatmap 83

in the slot orderSamples of data. If clusterSamplesData is equal to *primaryCluster’, again no
clustering will be done, and instead the samples will be ordered based on grouping the samples to
match the primaryCluster of data; however, if the primaryCluster of data is only one cluster or con-
sists soley of -1/-2 values, clusterSamplesData will be set to "hclust". If clusterSamplesData
is not a character value, clusterSamplesData can be a integer valued vector giving the order of
the samples.

If data is a matrix, then colData is a data.frame of annotation data to be plotted above the heatmap
and whColDataCont gives the index of the column(s) of this dataset that should be consider con-
tinuous. Otherwise the annotation data for colData will be forced into a factor (which will be
nonsensical for continous data). If data is a ClusterExperiment object, colData should refer to
a index or column name of the colData slot of data. In this case colData will be added to any
choices of clusterings chosen by the whichClusters argument (if any). If both clusterings and
sample data are chosen, the clusterings will be shown closest to data (i.e. on bottom).

If data is a ClusterExperiment object, clusterFeaturesData is not a dataset, but instead indi-
cates which features should be shown in the heatmap. In this case clusterFeatures can be one of
the following:

» "all" All rows/genes will be shown

* character giving dimensionality reductionShould match one of values saved in reducedDims
slot or a builtin function in 1istBuiltInReducedDims(). nFeatures then gives the number
of dimensions to show. The heatmap will then be of the dimension reduction vectors

* character giving filtering Should match one of values saved in filterStats slot or a builtin
function in listBuiltInFilterStats(). nFeatures gives the number of genes to keep after
filtering.

* character giving gene/row names
* vector of integers giving row indices

* alist of indices or rownamesThis is used to indicate that the features should be grouped accord-
ing to the elements of the list, with blank (white) space between them (see makeBlankData
for more details). In this case, no clustering is done of the features.

If breaks is a numeric value between 0 and 1, then breaks is assumed to indicate the upper quantile
(on the log scale) at which the heatmap color scale should stop. For example, if breaks=0.9, then
the breaks will evenly spaced up until the 0.9 upper quantile of data, and then all values after the
0.9 quantile will be absorbed by the upper-most color bin. This can help to reduce the visual impact
of a few highly expressed genes (features).

Note that plotHeatmap calls aheatmap under the hood. This allows you to plot multiple heatmaps
via par(mfrow=c(2,2)), etc. However, the dendrograms do not resize if you change the size of
your plot window in an interactive session of R (this might be a problem for RStudio if you want
to pop it out into a large window...). Also, plotting to a pdf adds a blank page; see help pages of
aheatmap for how to turn this off.

clusterLegend takes the place of argument annColors from aheatmap for giving colors to the
annotation on the heatmap. clusterLegend should be list of length equal to ncol(colData) with
names equal to the colnames of colData. Each element of the list should be a either the format
requested by aheatmap (a vector of colors with names corresponding to the levels of the column of
colData), or should be format of the clusterlLegend slot in a ClusterExperiment object. Color
assignments to the rows/genes should also be passed via clusterLegend (assuming annRow is an
argument passed to . ..). If clusterFeaturesData is a named list describing groupings of genes
then the colors for those groups can be given in clusterLegend under the name "Gene Group".

If you have a factor with many levels, it is important to note that aheatmap does not recycle colors
across factors in the colData, and in fact runs out of colors and the remaining levels get the color

84 plotHeatmap

white. Thus if you have many factors or many levels in those factors, you should set their colors via
clusterLegend.

Many arguments can be passed on to aheatmap, however, some are set internally by plotHeatmap.
In particular, setting the values of Rowv or Colv will cause errors. color in aheatmap is replaced
by colorScale in plotHeatmap. The annCol to give annotation to the samples is replaced by the
colData; moreover, the annColors option in aheatmap will also be set internally to give more
vibrant colors than the default in aheatmap (for ClusterExperiment objects, these values can
also be set in the clusterLegend slot). Other options should be passed on to aheatmap, though
they have not been all tested. Useful options include treeheight=0 to suppress plotting of the
dendrograms, annLegend=FALSE to suppress the legend of factors shown beside columns/rows, and
cexRow=0 or cexCol=0 to suppress plotting of row/column labels.

plotCoClustering is a convenience function to plot the heatmap of the co-clustering distance ma-
trix from the coClustering slot of a ClusterExperiment object (either by calculating the ham-
ming distance of the clusterings stored in the coClustering slot, or the distance stored in the
coClustering slot if it has already been calculated.

Value
Returns (invisibly) a list with elements

* aheatmapOut The output from the final call of aheatmap.
* colData the annotation data.frame given to the argument annCol in aheatmap.
e clusterLegend the annotation colors given to the argument annColors aheatmap.

* breaks The breaks used for aheatmap, after adjusting for quantile.

Author(s)
Elizabeth Purdom

See Also

aheatmap, makeBlankData, showHeatmapPalettes, makeDendrogram, dendrogram

Examples

Not run:
data(simData)

cl <- rep(1:3,each=100)

cl2 <-cl

changeAssign <- sample(1:length(cl), 80)

cl2[changeAssign] <- sample(cl[changeAssign])

ce <- ClusterExperiment(simCount, cl2, transformation=function(x){log2(x+1)3})

#simple, minimal, example. Show counts, but cluster on underlying means
plotHeatmap(ce)

#assign cluster colors

colors <- bigPalette[20:23]

names(colors) <- 1:3

plotHeatmap(data=simCount, clusterSamplesData=simData,
colData=data.frame(cl), clusterLegend=list(colors))

#tshow two different clusters

plotReducedDims

anno <- data.frame(clusteri=cl, cluster2=cl2)
out <- plotHeatmap(simData, colData=anno)

#return the values to see format for giving colors to the annotations
out$clusterLegend

#assign colors to the clusters based on plotClusters algorithm
plotHeatmap(simData, colData=anno, alignColData=TRUE)

#assign colors manually
annoColors <- list(clusterl=c("black”, "red"”, "green"),

n on

cluster2=c("blue”, "purple”, "yellow"))
plotHeatmap(simData, colData=anno, clusterLegend=annoColors)

#give a continuous valued -- need to indicate columns
anno2 <- cbind(anno, Cont=c(rnorm(100, @), rnorm(100, 2), rnorm(100, 3)))
plotHeatmap(simData, colData=anno2, whColDataCont=3)

#compare changing breaks quantile on visual effect

par(mfrow=c(2,2))

plotHeatmap(simData, colorScale=seqPall, breaks=1, main="Full length")
plotHeatmap(simData, colorScale=segPall, breaks=.99, main="0.99 Quantile Upper
Limit")

plotHeatmap(simData,colorScale=seqPall, breaks=.95, main="0.95 Quantile Upper
Limit")

plotHeatmap(simData, colorScale=seqPall, breaks=.90, main="0.90 Quantile
Upper Limit")

End(Not run)

plotReducedDims Plot 2-dimensionsal representation with clusters

Description

Plot a 2-dimensional representation of the data, color-code by a clustering.

Usage
S4 method for signature 'ClusterExperiment'
plotReducedDims(
object,
whichCluster = "primary”,

reducedDim = "PCA",
whichDims = c(1, 2),
plotUnassigned = TRUE,
legend = TRUE,
legendTitle = "",
nColLegend = 6,
clusterLegend = NULL,
unassignedColor = NULL,

86

missingColor
pch = 19,

xlab = NULL,
ylab = NULL,

Arguments

object

whichCluster

reducedDim

whichDims

plotUnassigned
legend

legendTitle

nCollLegend

clusterLegend

unassignedColor

missingColor

pch
x1lab
ylab

Details

plotReducedDims

= NULL,

a ClusterExperiment object

argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

What dimensionality reduction method to use. Should match either a value in

reducedDimNames (object) or one of the built-in functions of 1istBuiltInReducedDims ()

vector of length 2 giving the indices of which dimensions to show. The first
value goes on the x-axis and the second on the y-axis.

logical as to whether unassigned (either -1 or -2 cluster values) should be plotted.

either logical, indicating whether to plot legend, or character giving the location
of the legend (passed to legend)

character value giving title for the legend. If NULL, uses the clusterLabels value
for clustering.

The number of columns in legend. If missing, picks number of columns inter-
nally.

matrix with three columns and colnames ’clusterlds’,’name’, and ’color’ that
give the color and name of the clusters in whichCluster. If NULL, pulls the
information from object.

If not NULL, should be character value giving the color for unassigned (-1)
samples (overrides clusterLegend) default.

If not NULL, should be character value giving the color for missing (-2) samples
(overrides clusterlLegend) default.

the point type, passed to plot.default
Label for x axis

Label for y axis

arguments passed to plot.default

If plotUnassigned=TRUE, and the color for -1 or -2 is set to "white", will be coerced to "lightgrey"
regardless of user input to missingColor and unassignedColor. If plotUnassigned=FALSE, the
samples with -1/-2 will not be plotted, nor will the category show up in the legend.

If the requested reducedDim method has not been created yet, the function will call nakeReducedDims
on the FIRST assay of x. The results of this method will be saved as part of the object and returned
INVISIBLY (meaning if you don’t save the output of the plotting command, the results will vanish).
To pick another assay, you should call ‘makeReducedDims* directly and specify the assay.

Value

A plot is created. Nothing is returned.

plottingFunctions 87

See Also

plot.default, makeReducedDims, listBuiltInReducedDims()

Examples

#clustering using pam: try using different dimensions of pca and different k
data(simData)

cl <- clusterMany(simData, nReducedDims=c(5, 1@, 50), reducedDim="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(TRUE,FALSE),
removeSil=c(TRUE,FALSE), makeMissingDiss=TRUE)

plotReducedDims(cl,legend="bottomright")

plottingFunctions Convert clusterLegend into useful formats

Description

Function for converting the information stored in the clusterLegend slot into other useful formats.

Most of these functions are called internally by plotting functions, but are exported in case the user
finds them useful.

Usage

makeBlankData(
data,
groupsOfFeatures = NULL,
groupsOfSamples = NULL,
nBlankFeatures = 1,
nBlankSamples = 1

)

S4 method for signature 'ClusterExperiment'
convertClusterLegend(

object,
output = c("plotAndLegend”, "aheatmapFormat”, "matrixNames"”, "matrixColors"),
whichClusters = ifelse(output == "plotAndLegend”, "primary", "all")

showPalette(colPalette = bigPalette, which = NULL, cex = 1)
bigPalette

massivePalette

setBreaks(data, breaks = NA, makeSymmetric = FALSE, returnBreaks = TRUE)
showHeatmapPalettes()

seqgPal5

88

segPal2
seqPal3
seqPal4

segPali

plottingFunctions

S4 method for signature 'ClusterExperiment'

plotClusterLegend(
object,
whichCluster = "primary”,
clusterNames,
title,
add = FALSE,
location = if (add) "topright” else "center”,
)
Arguments
data matrix with samples on columns and features on rows.
groupsOfFeatures
list, with each element of the list containing a vector of numeric indices of fea-
tures (rows).
groupsOfSamples
list, with each element of the list containing a vector of numeric indices of sam-
ples (columns).
nBlankFeatures the number of blank lines to add in the data matrix to separate the groups of
feature indices (will govern the amount of white space if data is then fed to
heatmap.)
nBlankSamples the number of blank lines to add in the data matrix to separate the groups of
sample indices (will govern the amount of white space if data is then fed to
heatmap.)
object a ClusterExperiment object.
output character value, indicating desired type of conversion.
whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex
colPalette a vector of character colors. By default, the palette bigPalette is used
which numeric. Which colors to plot. Must be a numeric vector with values between 1
and length of colPalette. If missing, all colors plotted.
cex numeric value giving the cex for the text of the plot.
breaks either vector of breaks, or number of breaks (integer) or a number between 0
and 1 indicating a quantile, between which evenly spaced breaks should be cal-
culated. If missing or NA, will determine evenly spaced breaks in the range of
the data.
makeSymmetric whether to make the range of the breaks symmetric around zero (only used if

not all of the data is non-positive and not all of the data is non-negative)

plottingFunctions 89

returnBreaks logical as to whether to return the vector of breaks. See details.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

clusterNames vector of names for the clusters; vector should have names that correspond to
the clusterlds in the ClusterExperiment object. If this argument is missing, will
use the names in the "name" column of the clusterLegend slot of the object.

title title for the clusterLegend plot
add logical. Whether legend should be added to the existing plot.
location character passed to x argument of legend indicating where to place legend.

arguments passed to legend

Format

An object of class character of length 56.
An object of class character of length 484.
An object of class character of length 16.
An object of class character of length 14.
An object of class character of length 11.
An object of class character of length 13.

An object of class character of length 11.

Details

makeBlankData pulls the data corresponding to the row indices in groupsOfFeatures adds lines of
NA values into data between these groups. When given to heatmap, will create white space between
these groups of features.

convertClusterLegend pulls out information stored in the clusterLegend slot of the object and
returns it in useful format.

bigPalette is a long palette of colors (length 58) used by plotClusters and accompanying func-
tions. showPalette creates plot that gives index of each color in a vector of colors. massivePalette
is a combination of bigPalette and the non-grey colors of colors() (length 487). massivePalette
is mainly useful for when doing plotClusters of a very large number of clusterings, each with
many clusters, so that the code doesn’t run out of colors. However, many of the colors will be very
similar to each other.

showPalette will plot the colPalette colors with their labels and index.

if returnBreaks if FALSE, instead of returning the vector of breaks, the function will just return the
second smallest and second largest value of the breaks. This is useful for alternatively just setting
values of the data matrix larger than these values to this value if breaks was a percentile. This
argument is only used if breaks<1, indicating truncating the breaks for large values of data.

setBreaks gives a set of breaks (of length 52) equally spaced between the boundaries of the data.
If breaks is between 0 and 1, then the evenly spaced breaks are between these quantiles of the data.

seqPall-segPal4 are palettes for the heatmap. showHeatmapPalettes will show you these palettes.

90 plottingFunctions

Value

makeBlankData returns a list with items

» "dataWBlanks" The data with the rows of NAs separating the given indices.

» "rowNamesWBlanks" A vector of characters giving the rownames for the data, including
blanks for the NA rows. These are not given as rownames to the returned data because they
are not necessarily unique. However, they can be given to the 1abRow argument of aheatmap
or plotHeatmap.

* "colNamesWBlanks" A vector of characters giving the colnames for the data, including blanks
for the NA rows. They can be given to the 1labCol argument of aheatmap or plotHeatmap.

» "featureGroupNamesWBlanks" A vector of characters of the same length as the number of
rows of the new data (i.e. with blanks) giving the group name for the data, indicating which
group (i.e. which element of groupsOfFeatures list) the feature came from. If groupsOfFeatures
has unique names, these names will be used, other wise "Feature Groupl", "Feature Group2",
etc. The NA rows are given NA values.

 "sampleGroupNamesWBlanks" A vector of characters of the same length as the number of
columns of the new data (i.e. with blanks) giving the group name for the data, indicat-
ing which group (i.e. which element of groupsOfFeatures list) the feature came from. If
groupsOfFeatures has unique names, these names will be used, other wise "SampleGroup1",
"Group2", etc. The NA rows are given NA values.

If output="plotAndLegend"”, "convertClusterLegend” will return a list that provides the neces-
sary information to color samples according to cluster and create a legend for it:

* "colorVector" A vector the same length as the number of samples, assigning a color to each
cluster of the primaryCluster of the object.

* "legendNames" A vector the length of the number of clusters of primaryCluster of the object
giving the name of the cluster.

* "legendColors" A vector the length of the number of clusters of primaryCluster of the object
giving the color of the cluster.
If output="aheatmap” a conversion of the clusterLegend to be in the format requested by aheatmap.
The column 'name’ is used for the names and the column ’color’ for the color of the clusters.

If output="matrixNames"” or "matrixColors” a matrix the same dimension of clusterMatrix(object),
but with the cluster color or cluster name instead of the clusterlds, respectively.

See Also

plotHeatmap

Examples

data(simData)

x <- makeBlankData(simData[,1:10], groupsOfFeatures=list(c(5, 2, 3), c(20,
34, 25)))

plotHeatmap(x$dataWBlanks,clusterFeatures=FALSE)

showPalette()

showPalette(massivePalette,cex=0.6)

setBreaks(data=simData,breaks=.9)

#show the palette colors

renameClusters 91

showHeatmapPalettes()

#compare the palettes on heatmap

cl <- clusterSingle(simData, subsample=FALSE,

sequential=FALSE,

mainClusterArgs=list(clusterFunction="pam", clusterArgs=1list(k=8)))

Not run:

par(mfrow=c(2,3))

plotHeatmap(cl, colorScale=seqPall, main="seqgPall")
plotHeatmap(cl, colorScale=seqgPal2, main="segPal2")
plotHeatmap(cl, colorScale=seqPal3, main="segPal3")
plotHeatmap(cl, colorScale=seqPal4, main="segPal4")
plotHeatmap(cl, colorScale=seqPal5, main="seqPal5")
par(mfrow=c(1,1))

End(Not run)

renameClusters Change assigned names or colors of clusters

Description

Change the assigned names or colors of the clusters in a clustering stored in the clusterLegend slot

of the object.
Usage
S4 method for signature 'ClusterExperiment,character'’
renameClusters(
object,
value,
whichCluster = "primary”,
matchTo = c("name"”, "clusterIds”)
)
S4 method for signature 'ClusterExperiment,character’
recolorClusters(
object,
value,
whichCluster = "primary"”,
matchTo = c("name”, "clusterIds")
)
Arguments
value The value to be substituted in the corresponding slot. See the slot descriptions
in ClusterExperiment for details on what objects may be passed to these func-
tions.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

matchTo whether to match to the cluster name ("name") or internal cluster id ("clusterIds”)

92 RSEC

Value

renameClusters changes the names assigned to clusters within a clustering

recolorClusters changes the colors assigned to clusters within a clustering

Examples

#create CE object

data(simData)

cll <- clusterSingle(simData, subsample=FALSE,
sequential=FALSE, mainClusterArgs=list(clusterArgs=list(k=3),
clusterFunction="pam"))

#Give names to the clusters

clusterLegend(cl1)

cli<-renameClusters(cll, c("1"="A",6"2"="B","3"="C"), matchTo="clusterIds")
clusterLegend(cl1)

Change name of single one

cli1<-renameClusters(cll, c("1"="D"), matchTo="clusterIds")
clusterLegend(cl1)

Match to existing name, rather than clusterId
cli1<-renameClusters(cll, c("B"="N"), matchTo="name")
clusterLegend(cl1)

Change colors in similar way

cli<-recolorClusters(cll, c(”"N"="red"),matchTo=c("name"))
clusterLegend(cl1)

RSEC Resampling-based Sequential Ensemble Clustering

Description

Implementation of the RSEC algorithm (Resampling-based Sequential Ensemble Clustering) for
single cell sequencing data. This is a wrapper function around the existing ClusterExperiment
workflow that results in the output of RSEC.

Usage

S4 method for signature 'SummarizedExperiment'’
RSEC(x, ...)

S4 method for signature 'data.frame'
RSEC(x, ...)

S4 method for signature 'ClusterExperiment'
RSEC(x, eraseOld = FALSE, rerunClusterMany = FALSE, ...)

S4 method for signature 'matrixOrHDF5'
RSEC(x, ...)

S4 method for signature 'SingleCellExperiment'’
RSEC(

X,

isCount = FALSE,

RSEC 93

transFun = NULL,

reduceMethod = "PCA",

nFilterDims = defaultNDims(x, reduceMethod, type = "filterStats"),
nReducedDims = defaultNDims(x, reduceMethod, type = "reducedDims"),
kos = 4:15,

subsample = TRUE,

sequential = TRUE,

clusterFunction = "hierarchical@1”,
alphas = c(0.1, 0.2, 0.3),
betas = 0.9,

minSizes = 1,
makeMissingDiss = if (ncol(x) < 1000) TRUE else FALSE,
consensusProportion = 0.7,

consensusMinSize,
dendroReduce,
dendroNDims,
mergeMethod = "adjP",
mergeCutoff,
mergelLogFCcutoff,

mergeDEMethod = if (isCount) "limma-voom” else "limma",
verbose = FALSE,
parameterWarnings = FALSE,
mainClusterArgs = NULL,
subsampleArgs = NULL,
segArgs = NULL,
consensusArgs = NULL,
whichAssay = 1,

ncores = 1,

random.seed = NULL,
stopOnErrors = FALSE,

run = TRUE

Arguments

X the data matrix on which to run the clustering. Can be object of the following
classes: matrix (with genes in rows), SummarizedExperiment, SingleCellExperiment
or ClusterExperiment.

For signature matrix, arguments to be passed on to mclapply (if ncores>1).
For all the other signatures, arguments to be passed to the method for signature
matrix.

erase0ld logical. Only relevant if input x is of class ClusterExperiment. If TRUE,
will erase existing workflow results (clusterMany as well as mergeClusters and
makeConsensus). If FALSE, existing workflow results will have "_i" added
to the clusterTypes value, where i is one more than the largest such existing
workflow clusterTypes.

rerunClusterMany
logical. If the object is a ClusterExperiment object, determines whether to rerun
the clusterMany step. Useful if want to try different parameters for combin-
ing clusters after the clusterMany step, without the computational costs of the
clusterMany step.

94

RSEC

isCount if transFun=NULL, then isCount=TRUE will determine the transformation as de-
fined by function(x){log2(x+1)3}, and isCount=FALSE will give a transfor-
mation function function(x){x}. Ignored if transFun=NULL. If object is of
class ClusterExperiment, the stored transformation will be used and giving
this parameter will result in an error.

transFun a transformation function to be applied to the data. If the transformation applied
to the data creates an error or NA values, then the function will throw an error.
If object is of class ClusterExperiment, the stored transformation will be used
and giving this parameter will result in an error.

reduceMethod character A character identifying what type of dimensionality reduction to per-
form before clustering. Options are 1) "none", 2) one of listBuiltInReduced-
Dims() or listBuiltInFitlerStats OR 3) stored filtering or reducedDim values in
the object.

"non

nFilterDims vector of the number of the most variable features to keep (when "var", "abscv",
or "mad" is identified in reduceMethod).

nReducedDims vector of the number of dimensions to use (when reduceMethod gives a dimen-
sionality reduction method).

kos the kO parameter for sequential clustering (see seqCluster)

subsample logical as to whether to subsample via subsampleClustering. If TRUE, clus-
tering in mainClustering step is done on the co-occurance between clusterings
in the subsampled clustering results. If FALSE, the mainClustering step will be
run directly on x/diss

sequential logical whether to use the sequential strategy (see details of seqCluster). Can
be used in combination with subsample=TRUE or FALSE.

clusterFunction
function used for the clustering. This must be either 1) a character vector of
built-in clustering techniques, or 2) a named list of ClusterFunction objects.
Current functions can be found by typing listBuiltInFunctions() into the
command-line.

alphas values of alpha to be tried. Only used for clusterFunctions of type *01°. Deter-
mines tightness required in creating clusters from the dissimilarity matrix. Takes
on values in [0,1]. See documentation of ClusterFunction.

betas values of beta to be tried in sequential steps. Only used for sequential=TRUE.
Determines the similarity between two clusters required in order to deem the
cluster stable. Takes on values in [0,1]. See documentation of seqCluster.

minSizes the minimimum size required for a cluster (in the mainClustering step). Clus-
ters smaller than this are not kept and samples are left unassigned.

makeMissingDiss
logical. Whether to calculate necessary distance matrices needed when input
is not "diss". If TRUE, then when a clustering function calls for a inputType
"diss", but the given matrix is of type "X", the function will calculate a distance
function. A dissimilarity matrix will also be calculated if a post-processing ar-
gument like findBestK or removeSil is chosen, since these rely on calcualting
silhouette widths from distances.

consensusProportion

passed to proportion in makeConsensus
consensusMinSize
passed to minSize in makeConsensus

dendroReduce passed to reduceMethod in makeDendrogram

RSEC

95

dendroNDims passed to nDims in makeDendrogram

mergeMethod passed to mergeMethod in mergeClusters

mergeCutoff passed to cutoff in mergeClusters

mergelLogFCcutoff
passed to logFCcutoff in mergeClusters

mergeDEMethod passed to DEMethod argument in mergeClusters. By default, unless otherwise
chosen by the user, if isCount=TRUE, then mergeDEMethod="1imma-voom",
otherwise mergeDEMethod="1imma". These choices are for speed considera-
tions and the user may want to try mergeDEMethod="edgeR" on smaller datasets
of counts.

verbose logical. If TRUE it will print informative messages.

parameterWarnings
logical, as to whether warnings and comments from checking the validity of the
parameter combinations should be printed.

mainClusterArgs
list of arguments to be passed for the mainClustering step, see help pages of
mainClustering.

subsampleArgs list of arguments to be passed to the subsampling step (if subsample=TRUE), see
help pages of subsampleClustering.

segArgs list of arguments to be passed to seqCluster.

consensusArgs list of additional arguments to be passed to makeConsensus

whichAssay numeric or character specifying which assay to use. See assay for details.

ncores the number of threads

random. seed

stopOnErrors

run

Details

a value to set seed before each run of clusterSingle (so that all of the runs are
run on the same subsample of the data). Note, if 'random.seed’ is set, argument
‘ncores’ should NOT be passed via subsampleArgs; instead set the argument
’ncores’ of clusterMany directly (which is preferred for improving speed any-
way).

logical. If FALSE, if RSEC hits an error after the clusterMany step, it will return
the results up to that point, rather than generating a stop error. The text of error
will be printed as a NOTE. This allows the user to get the results to that point, so
as to not have to rerun the computationally heavy earlier steps. The TRUE option
is only provided for debugging purposes.

logical. If FALSE, doesn’t run clustering, but just returns matrix of parameters
that will be run, for the purpose of inspection by user (with rownames equal
to the names of the resulting column names of clMat object that would be re-
turned if run=TRUE). Even if run=FALSE, however, the function will create the
dimensionality reductions of the data indicated by the user input.

Note that the argument isCount is mainly used when the input is a matrix or SingleCellExperiment
Class and passed to clusterMany to set the transformation function of the data. However, if RSEC
is being re-called on an existing ClusterExperiment object, it does not reset the transformation; in
this case the only impact it will have is in setting the default value for DEMethod for mergeClusters
step, but ONLY if mergeClusters hasn’t already been calculated. To set arguments that allow you
to recalculate the non-null probabilities of the hierarchy see mergeClusters.

96 rsecFluidigm

Value

A ClusterExperiment object is returned containing all of the clusterings from the steps of RSEC

rsecFluidigm Documentation of rsecFluidigm object

Description

Documentation of the creation of rsecFluidigm, result of RSEC run on fluidigm data for vignette

Usage

makeRsecFluidigmObject(object)

Arguments

object object given to functions

Format

rsecFluidigm is a ClusterExperiment object, the result of running RSEC on fluidigm data de-
scribed in vignette and available in the scRNAseq package.

Details

The functions makeRsecFluidigmObject and checkRsecFluidigmObject are helper functions
whose sole purpose is to create rsecFluidigm and check that the results are the same as expected.
makeRsecFluidigmObject also serves as documentation of the specific RSEC call that was made
to create the rsecFluidigm object, as well as filtering and normalization of the fluidigm data. The
purpose of making them functions is internal, to help more easily mantain and check if changes to
the package have affected the results.

Author(s)

Elizabeth Purdom <epurdom@stat.berkeley.edu>

See Also
fluidigm.

Examples

see code used create rsecFluidigm

(print out the function)
makeRsecFluidigmObject

#code actualy run to create rsecFluidigm:
Not run:

library(clusterExperiment)
data(fluidigmData)

data(fluidigmColData)
se<-SummarizedExperiment (assays=fluidigmData, colData=fluidigmColData)
RNGversion("3.5.0")
rsecFluidigm<-makeRsecFluidigmObject(se)

search_pairs 97

Internal function for checking got correct results...
clusterExperiment: ::checkRsecFluidigmObject(rsecFluidigm)
usethis::use_data(rsecFluidigm,overwrite=FALSE)

End(Not run)

search_pairs Search pairs of samples that co-cluster across subsamples

Description
Assume that our input is a matrix, with N columns and B rows (the number of subsamples), storing
integers — the cluster labels.

Usage

search_pairs(clusterings)

Arguments

clusterings a matrix with the cluster labels

Value

A matrix with the co-clusters, but only the lower triangle is populated.

seqCluster Program for sequentially clustering, removing cluster, and starting
again.

Description

Given a data matrix, this function will call clustering routines, and sequentially remove best clusters,
and iterate to find clusters.

Usage

seqCluster(
inputMatrix,
inputType,
ko,
subsample = TRUE,
beta,
top.can = 0.01,
remain.n = 30,
k.min = 3,
k.max = ko + 10,
verbose = TRUE,
subsampleArgs = NULL,
mainClusterArgs = NULL,
warnings = FALSE

98 seqCluster

Arguments

inputMatrix numerical matrix on which to run the clustering or a SummarizedExperiment,
SingleCellExperiment, or ClusterExperiment object.

inputType a character vector defining what type of input is given in the inputMatrix ar-
gument. Must consist of values "diss","X", or "cat" (see details). "X" and "cat"
should be indicate matrices with features in the row and samples in the col-
umn; "cat” corresponds to the features being numerical integers corresponding
to categories, while "X" are continuous valued features. "diss" corresponds to an
inputMatrix that is a NxN dissimilarity matrix. "cat" is largely used internally
for clustering of sets of clusterings.

ko the value of K at the first iteration of sequential algorithm, see details below or
vignette.

subsample logical as to whether to subsample via subsampleClustering to get the dis-
tance matrix at each iteration; otherwise the distance matrix is set by arguments
tomainClustering.

beta value between 0 and 1 to decide how stable clustership membership has to be
before ’finding’ and removing the cluster.

top.can only the top.can clusters from mainClustering (ranked by "orderBy’ argument
given to mainClustering) will be compared pairwise for stability. Can be ei-
ther an integer value, identifying the absolute number of clusters, or a value
between 0 and 1, meaning to keep all clusters with at least this proportion of
the remaining samples in the cluster. Making this either a very big integer or
equal to 0 will effectively remove this parameter and all pairwise comparisons
of all clusters found will be considered; this might result in smaller clusters be-
ing found. If top.can is between O and 1, then there is still a hard threshold of at
least 5 samples in a cluster to be considered as a cluster.

remain.n when only this number of samples are left (i.e. not yet clustered) then algorithm
will stop.

k.min each iteration of sequential detection of clustering will decrease the beginning
K of subsampling, but not lower than k.min.

k.max algorithm will stop if K in iteration is increased beyond this point.
verbose whether the algorithm should print out information as to its progress.

subsampleArgs list of arguments to be passed to subsampleClustering.
mainClusterArgs
list of arguments to be passed to mainClustering).

warnings logical. Whether to print out the many possible warnings and messages regard-
ing checking the internal consistency of the parameters.

Details

seqCluster is not meant to be called by the user. It is only an exported function so as to be able to
clearly document the arguments for seqCluster which can be passed via the argument segArgs in
functions like clusterSingle and clusterMany.

This code is adapted from the sequential protion of the code of the tightClust package of Tseng and
Wong. At each iteration of the algorithm it finds a set of samples that constitute a homogeneous
cluster and remove them, and iterate again to find the next set of samples that form a cluster.

In each iteration, to determine the next set of homogeneous set of samples, the algorithm will
iteratively cluster the current set of samples for a series of increasing values of the parameter K,

seqCluster 99

starting at a value kinit and increasing by 1 at each iteration, until a sufficiently homogeneous set
of clusters is found. For the first set of homogeneous samples, kinit is set to the argument $k0$,
and for iteration, kinit is increased internally.

Depending on the value of subsample how the value of KS is used differs. If subsample=TRUE,
KS is the k sent to the cluster function clusterFunction sent to subsampleClustering via
subsampleArgs; then mainClustering is run on the result of the co-occurance matrix from subsampleClustering
with the ClusterFunction object defined in the argument clusterFunction set viamainClusterArgs.
The number of clusters actually resulting from this run of mainClustering may not be equal to the
KS sent to the clustering done in subsampleClustering. If subsample=FALSE, mainClustering

is called directly on the data to determine the clusters and K set by seqCluster for this itera-
tion determines the parameter of the clustering done by mainClustering. Specifically, the argu-
ment clusterFunction defines the clustering of the mainClustering step and k is sent to that
ClusterFunction object. This means that if subsample=FALSE, the clusterFunction must be of
algorithmType "K".

In either setting of subsample, the resulting clusters from mainClustering for a particular K
will be compared to clusters found in the previous iteration of $K-1$. For computational (and
other?) convenience, only the first top.can clusters of each iteration will be compared to the first
top. can clusters of previous iteration for similarity (where top. can currently refers to ordering by
size, so first top. can largest clusters.

If there is no cluster of the first top.can in the current iteration K that has overlap similarity >
beta to any in the previous iteration, then the algorithm will move to the next iteration, increasing
to $K+18.

If, however, of these clusters there is a cluster in the current iteration K that has overlap similarity
> beta to a cluster in the previous iteration $K-1$, then the cluster with the largest such similarity
will be identified as a homogenous set of samples and the samples in it will be removed and desig-
nated as such. The algorithm will then start again to determine the next set of homogenous samples,
but without these samples. Furthermore, in this case (i.e. a cluster was found and removed), the
value of kinit will be be reset to kinit-1; i.e. the range of increasing K that will be iterated over
to find a set of homogenous samples will start off one value less than was the case for the previous
set of homogeneous samples. If kinit-1<k.min, then kinit will be set to k.min.

If there are less than remain.n samples left after finding a cluster and removing its samples, the al-
gorithm will stop, as subsampling is deamed to no longer be appropriate. If the K has to be increased
to beyond k.max without finding any pair of clusters with overlap > beta, then the algorithm will
stop. Any samples not found as part of a homogenous set of clusters at that point will be classified
as unclustered (given a value of -1)

Certain combinations of inputs to mainClusterArgs and subsampleArgs are not allowed. See
clusterSingle for these explanations.

Value

A list with values

* clustering a vector of length equal to nrows(x) giving the integer-valued cluster ids for each
sample. The integer values are assigned in the order that the clusters were found. "-1" indicates
the sample was not clustered.

» clusterInfo if clusters were successfully found, a matrix of information regarding the algo-
rithm behavior for each cluster (the starting and stopping K for each cluster, and the number
of iterations for each cluster).

* whyStop a character string explaining what triggered the algorithm to stop.

100 simData

References

Tseng and Wong (2005), "Tight Clustering: A Resampling-Based Approach for Identifying Stable
and Tight Patterns in Data", Biometrics, 61:10-16.

See Also

tight.clust, clusterSingle,mainClustering,subsampleClustering

Examples

Not run:
data(simData)

set.seed(12908)

clustSegHier <- seqCluster(simData, inputType="X", k@=5, subsample=TRUE,
beta=0.8, subsampleArgs=list(resamp.n=100,
samp.p=0.7, clusterFunction="kmeans", clusterArgs=list(nstart=10)),
mainClusterArgs=list(minSize=5,clusterFunction="hierarchicalo1”,
clusterArgs=list(alpha=0.1)))

End(Not run)

simData Simulated data for running examples

Description

Simulated data for running examples

Format
Three objects are loaded, two data frame(s) of simulated data each with 300 samples/columns and
153 variables/rows, and a vector of length 300 with the true cluster assignments.

Details

simData is simulated normal data of 300 observations with 51 relevant variables and the rest of the
variables being noise, with observations being in one of 3 groups. simCount is simulated count data
of the same dimensions. trueCluster gives the true cluster identifications of the samples. The true
clusters are each of size 100 and are in order in the columns of the data.frames.

Author(s)

Elizabeth Purdom <epurdom@stat.berkeley.edu>

Examples
#code used to create data:
Not run:
nvar<-51 #multiple of 3
n<-100

x<-cbind(matrix(rnorm(n*nvar,mean=5),nrow=nvar),
matrix(rnorm(nxnvar,mean=-5),nrow=nvar),

subsampleClustering 101

matrix(rnorm(n*nvar,mean=0),nrow=nvar))
#make some of them flipped effects (better for testing if both sig under/over
#expressed variables)
geneGroup<-sample(rep(1:3,each=floor(nvar/3)))
gpIndex<-list(1:n, (n+1):(n*x2), (2*n+1):(n*3))
x[geneGroup==1, J<-x[geneGroup==1,unlist(gpIndex[c(3,1,2)1)]
x[geneGroup==2, J<-x[geneGroup==2,unlist(gpIndex[c(2,3,1)1)]

#add in differences in variable means
smp<-sample(1:nrow(x),10)
x[smp, 1<-x[smp,]+10

#make different signal y

y<-cbind(matrix(rnorm(n*nvar,mean=1),nrow=nvar),
matrix(rnorm(nxnvar,mean=-1),nrow=nvar),
matrix(rnorm(nxnvar,mean=0),nrow=nvar))

y<-y[,sample(1:ncol(y))]+ matrix(rnorm(3*nxnvar,sd=3),nrow=nvar)

#add together the two signals
simData<-x+y

#add pure noise variables

simData<-rbind(simData,matrix(rnorm(3*nxnvar,mean=10),nrow=nvar),
matrix(rnorm(3xn*nvar,mean=5),nrow=nvar))

#make count data

countMean<-exp(simData/2)

simCount<-matrix(rpois(n=length(as.vector(countMean)), lambda

=as.vector(countMean)+.1),nrow=nrow(countMean),ncol=ncol (countMean))

#labels for the truth

trueCluster<-rep(c(1:3),each=n)

save(list=c("simCount”,”simData”,"trueCluster"”),file="data/simData.rda")

End(Not run)

subsampleClustering Cluster subsamples of the data

Description

Given input data, this function will subsample the samples, cluster the subsamples, and return a n x
n matrix with the probability of co-occurance.

Usage

S4 method for signature 'character'
subsampleClustering(clusterFunction, ...)

S4 method for signature 'ClusterFunction'
subsampleClustering(

clusterFunction,

inputMatrix,

inputType,

clusterArgs = NULL,

classifyMethod = c("All", "InSample”, "OutOfSample”),

102 subsampleClustering
resamp.num = 100,
samp.p = 0.7,
ncores = 1,
warnings = TRUE,
)
Arguments
clusterFunction
aClusterFunction object that defines the clustering routine. See ClusterFunction
for required format of user-defined clustering routines. User can also give a
character value to the argument clusterFunction to indicate the use of cluster-
ing routines provided in package. Type listBuiltInFunctions at command
prompt to see the built-in clustering routines. If clusterFunction is missing,
the default is set to "pam".
arguments passed to mclapply (if ncores>1).
inputMatrix numerical matrix on which to run the clustering or a SummarizedExperiment,
SingleCellExperiment, or ClusterExperiment object.
inputType a character vector defining what type of input is given in the inputMatrix ar-
gument. Must consist of values "diss","X", or "cat" (see details). "X" and "cat"
should be indicate matrices with features in the row and samples in the col-
umn; "cat” corresponds to the features being numerical integers corresponding
to categories, while "X" are continuous valued features. "diss" corresponds to an
inputMatrix that is a NxN dissimilarity matrix. "cat" is largely used internally
for clustering of sets of clusterings.
clusterArgs a list of parameter arguments to be passed to the function defined in the clusterFunction
slot of the ClusterFunction object. For any given ClusterFunction object,
use function requiredArgs to get a list of required arguments for the object.
classifyMethod method for determining which samples should be used in calculating the co-

resamp.num
samp.p
ncores

warnings

Details

occurance matrix. "All"= all samples, "OutOfSample"= those not subsampled,
and "InSample"=those in the subsample. See details for explanation.

the number of subsamples to draw.
the proportion of samples to sample for each subsample.
integer giving the number of cores. If ncores>1, mclapply will be called.

logical as to whether should give warning if arguments given that don’t match
clustering choices given. Otherwise, inapplicable arguments will be ignored
without warning.

subsampleClustering is not usually called directly by the user. It is only an exported function so
as to be able to clearly document the arguments for subsampleClustering which can be passed
via the argument subsampleArgs in functions like clusterSingle and clusterMany.

requiredArgs: The choice of "All" or "OutOfSample" for requiredArgs require the classification
of arbitrary samples not originally in the clustering to clusters; this is done via the classifyFUN
provided in the ClusterFunction object. If the ClusterFunction object does not have such
a function to define how to classify into a cluster samples not in the subsample that created the
clustering then classifyMethod must be "InSample”. Note that if "All" is chosen, all samples
will be classified into clusters via the classifyFUN, not just those that are out-of-sample; this could

subset 103

result in different assignments to clusters for the in-sample samples than their original assignment
by the clustering depending on the classification function. If you do not choose *All’,it is possible
to get NAs in resulting S matrix (particularly if when not enough subsamples are taken) which can
cause errors if you then pass the resulting D=1-S matrix to mainClustering. For this reason the
default is "All".

Value

A n x n matrix of co-occurances, i.e. a symmetric matrix with [i,j] entries equal to the percentage

of subsamples where the ith and jth sample were clustered into the same cluster. The percentage is
only out of those subsamples where the ith and jth samples were both assigned to a clustering. If
classifyMethod=="A11", this is all subsamples for all i,j pairs. Butif classifyMethod=="InSample"
or classifyMethod=="0utOfSample"”, then the percentage is only taken on those subsamples
where the ith and jth sample were both in or out of sample, respectively, relative to the subsam-
ple.

Examples

Not run:

#takes a bit of time, not run on checks:

data(simData)

coOccur <- subsampleClustering(inputMatrix=simData, inputType="X",
clusterFunction="kmeans",

clusterArgs=list(k=3,nstart=10), resamp.n=100, samp.p=0.7)

#visualize the resulting co-occurance matrix
plotHeatmap(coOccur)

End(Not run)

subset Functions to subset ClusterExperiment Objects

Description

These functions are used to subset ClusterExperiment objects, either by removing samples, genes,
or clusterings

Usage

S4 method for signature 'ClusterExperiment'
removeClusterings(x, whichClusters)

S4 method for signature 'ClusterExperiment'’
removeClusters(

X,

whichCluster,

clustersToRemove,

makePrimary = FALSE,

clusterLabels = NULL

104 subset

S4 method for signature 'ClusterExperiment,ANY,character,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'ClusterExperiment,ANY,logical, ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'ClusterExperiment,ANY,numeric,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'ClusterExperiment'

subsetByCluster(
X,
clusterValue,
whichCluster = "primary”,
matchTo = c("name”, "clusterlIds”)

)

Arguments
X a ClusterExperiment object.

whichClusters argument that can be either numeric or character vector indicating the clusterings
to be used. See details of getClusterIndex.

whichCluster argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

clustersToRemove
numeric vector identifying the clusters to remove (whose samples will be reas-
signed to -1 value).

makePrimary whether to make the added cluster the primary cluster (only relevant if y is a
vector)

clusterLabels label(s) for the clusters being added. If y a matrix, the column names of that
matrix will be used by default, if clusterLabels is not given.

i, j A vector of logical or integer subscripts, indicating the rows and columns to be
subsetted for i and j, respectively.

The arguments transformation, clusterTypes and clusterInfo to be passed
to the constructor for signature SingleCellExperiment,matrix.

drop A logical scalar that is ignored.
clusterValue values of the cluster to match to for subsetting

matchTo whether to match to the cluster name ("name"”) or internal cluster id ("clusterIds”)

Details

removeClusterings removes the clusters given by whichClusters. If the primaryCluster is one
of the clusters removed, the primaryClusterIndex is set to 1 and the dendrogram and coclustering
matrix are discarded and orderSamples is set to 1:NCOL (x).

removeClusters creates a new cluster that unassigns samples in cluster clustersToRemove (in the
clustering defined by whichClusters) and assigns them to -1 (unassigned)

Note that when subsetting the data, the dendrogram information and the co-clustering matrix are
lost.

transformData 105

Value

A ClusterExperiment object.

removeClusterings returns a ClusterExperiment object, unless all clusters are removed, in
which case it returns a SingleCellExperiment object.

subsetByCluster subsets the object by clusters in a clustering and returns a ClusterExperiment
object with only those samples

Examples

#load CE object

data(rsecFluidigm)

remove the mergeClusters step from the object

clusterLabels(rsecFluidigm)

test<-removeClusterings(rsecFluidigm,whichClusters="mergeClusters"”)

clusterLabels(test)

tableClusters(rsecFluidigm)
test<-removeClusters(rsecFluidigm,whichCluster="mergeClusters"”,clustersToRemove=c("m@1","mo4"))
tableClusters(test,whichCluster="mergeClusters")

transformData Transform the original data in a ClusterExperiment object

Description

Provides the transformed data

Usage

S4 method for signature 'matrixOrHDF5'
transformData(object, transFun = NULL, isCount = FALSE)

S4 method for signature 'ClusterExperiment'’
transformData(object, whichAssay =1, ...)

S4 method for signature 'SingleCellExperiment'’
transformData(object, whichAssay = 1, ...)

S4 method for signature 'SummarizedExperiment'’

transformData(object, ...)
Arguments
object a matrix, SummarizedExperiment, SingleCellExperiment or ClusterExperiment
object.
transFun a transformation function to be applied to the data. If the transformation applied

to the data creates an error or NA values, then the function will throw an error.
If object is of class ClusterExperiment, the stored transformation will be used
and giving this parameter will result in an error.

106 updateObject

isCount if transFun=NULL, then isCount=TRUE will determine the transformation as de-
fined by function(x){log2(x+1)3}, and isCount=FALSE will give a transfor-
mation function function(x){x}. Ignored if transFun=NULL. If object is of
class ClusterExperiment, the stored transformation will be used and giving
this parameter will result in an error.

whichAssay numeric or character specifying which assay to use. See assay for details.

Values passed on the the "matrix’ method.

Details

The data matrix defined by assay(x) is transformed based on the transformation function either
defined in x (in the case of a ClusterExperiment object) or by user given values for other classes.

Value

A DataFrame defined by assay(x) suitably transformed

Examples

mat <- matrix(data=rnorm(200), ncol=10)

mat[1,1] <- -1 #force a negative value

labels <- gl(5, 2)

cc <- ClusterExperiment(mat, as.numeric(labels), transformation =
function(x){x”*2}) #define transformation as x*2
z<-transformData(cc)

updateObject Update old ClusterExperiment object to current class definition

Description

This function updates ClusterExperiment objects from previous versions of package into the current

definition
Usage

S4 method for signature 'ClusterExperiment'

updateObject(object, checkTransformAndAssay = FALSE, ..., verbose = FALSE)
Arguments

object a ClusterExperiment (or clusterExperiment from older versions). Must

have at a minimum a slot clusterMatrix.

checkTransformAndAssay
logical. Whether to check the content of the assay and given transformation
function for whether they are valid.

Additional arguments, for use in specific updateObject methods.

verbose TRUE or FALSE, indicating whether information about the update should be re-
ported. Use message to report this information.

workflowClusters 107

Details

The function creates a valid ClusterExperiment object by adding the default values of missing
slots. It does so by calling the ClusterExperiment function, which imputs default (empty) values
for missing slots.

The object is required to have minimal components to be updated. Specifically, it must have all the
required elements of a Summarized Experiment as well as the basic slots of a ClusterExperiment ob-
ject which have not changed over time. These are: clusterMatrix, primaryIndex, clusterInfo,
transformation, clusterTypes, clusterLegend, orderSamples.

If any of the dendrogram-related slots are missing, ALL of the dendrogram and merge related slots
will be cleared to default values. Similarly, if any of the merge-related slots are missing, ALL of
the merge-related slots will be cleared to the default values.

Cluster and Sample dendrograms of the class dendrogram will be updated to the phylo4d class now
used in ClusterExperiment objects; the merge information on these nodes will be updated to have
the correct format (i.e. match to the internal node id names in the new dendrogram). The previous
identification of nodes that was previously created internally by plotDendrogram and the merging
(labels in the form of 'Nodel’,’Node2’), will be kept as nodeLabels in the new dendrogram class.

The function currently only works for object of ClusterExperiment, not the older name clusterExperiment.

Value

A valid ClusterExperiment object based on the current definition of ClusterExperiment.

See Also

ClusterExperiment

workflowClusters Methods for workflow clusters

Description

The main workflow of the package is made of clusterMany, makeConsensus, and mergeClusters.
The clusterings from these functions (and not those obtained in a different way) can be obtained with
the functions documented here.

Usage
S4 method for signature 'ClusterExperiment'’

workflowClusters(x, iteration = Q)

S4 method for signature 'ClusterExperiment'
workflowClusterDetails(x)

S4 method for signature 'ClusterExperiment'’
workflowClusterTable(x)

S4 method for signature 'ClusterExperiment'
setToCurrent(x, whichCluster, eraseOld = FALSE)

S4 method for signature 'ClusterExperiment'
setToFinal(x, whichCluster, clusterLabel)

108

Arguments

X
iteration

whichCluster

eraseOld

clusterLabel

Value

workflowClusters

a ClusterExperiment object.
numeric. Which iteration of the workflow should be used.

argument that can be a single numeric or character value indicating the single
clustering to be used. Giving values that result in more than one clustering will
result in an error. See details of getClusterIndex.

logical. Only relevant if input x is of class ClusterExperiment. If TRUE,
will erase existing workflow results (clusterMany as well as mergeClusters and
makeConsensus). If FALSE, existing workflow results will have "_i" added
to the clusterTypes value, where i is one more than the largest such existing
workflow clusterTypes.

optional string value to give to cluster set to be "final"

workflowClusters returns a matrix consisting of the appropriate columns of the clusterMatrix

slot.

workflowClusterDetails returns a data. frame with some details on the clusterings, such as the
type (e.g., ‘clusterMany*, ‘makeConsensus‘) and iteration.

workflowClusterTable returns a table of how many of the clusterings belong to each of the fol-
lowing possible values: ‘final‘, ‘mergeClusters‘, ‘makeConsensus‘ and ‘clusterMany".

setToCurrent returns a ClusterExperiment object where the indicated cluster of whichCluster
has been set to the most current iteration in the workflow. Pre-existing clusters are appropriately

updated.

setToFinal returns a ClusterExperiment object where the indicated cluster of whichCluster has
clusterType set to "final". The primaryClusterIndex is also set to this cluster, and the clusterLabel,

if given.

Examples

Not run:
data(simData)

cl <- clusterMany(simData,nReducedDims=c(5,10,50), reduceMethod="PCA",
clusterFunction="pam", ks=2:4, findBestK=c(FALSE), removeSil=TRUE,
subsample=FALSE, makeMissingDiss=TRUE)

clCommon <- makeConsensus(cl, whichClusters="workflow", proportion=0.7,

minSize=10)

clCommon <- makeDendrogram(clCommon)

clMerged <- mergeClusters(clCommon,mergeMethod="adjP"”, DEMethod="1limma")

head(workflowClusters(clMerged))
workflowClusterDetails(clMerged)
workflowClusterTable(clMerged)

End(Not run)

Index

+ datasets

plottingFunctions, 87
+ data

fluidigmData, 30

rsecFluidigm, 96

simData, 100
[,ClusterExperiment, ANY,ANY, ANY-method

(subset), 103

[,ClusterExperiment,ANY, character,ANY-method

(subset), 103

[,ClusterExperiment,ANY,logical, ANY-method

(subset), 103

[,ClusterExperiment, ANY,numeric, ANY-method

(subset), 103

addClusterings, 3

axis, 69

barplot, 6/

bigPalette (plottingFunctions), 87

boxplot, 77, 78

bubblePlot, table, table-method
(plotClustersTable), 67

checkDendrogram (clusterDendrogram), 8

checkDendrogram,ClusterExperiment,phylo4d, phylo4d-methc
(clusterDendrogram), 8

clara, 46

clusterContrasts, 6, 3/

clusterContrasts,ClusterExperiment-method
(clusterContrasts), 6

addClusterings,ClusterExperiment,ClusterExperitéptencenbgasts, vector-method

(addClusterings), 3

(clusterContrasts), 6

addClusterings,ClusterExperiment,matrix-methoglusterDendrogram, 8, /4,75

(addClusterings), 3

addClusterings,ClusterExperiment, vector-method

(addClusterings), 3
addToColData
(ClusterExperiment-methods), 15
addToColData,ClusterExperiment-method
(ClusterExperiment-methods), 15
aheatmap, 79, 82-84, 90
algorithmType, 45, 46
algorithmType
(ClusterFunction-methods), 19
algorithmType, character-method
(ClusterFunction-methods), 19
algorithmType,ClusterFunction-method
(ClusterFunction-methods), 19
algorithmType, factor-method
(ClusterFunction-methods), 19
algorithmType,list-method
(ClusterFunction-methods), 19
ape, 75
assay, 23, 26, 32, 39, 53, 57,77, 78, 81, 95,
106
assignUnassigned, 4

assignUnassigned,ClusterExperiment-method

(assignUnassigned), 4

clusterDendrogram,ClusterExperiment-method
(clusterDendrogram), 8
ClusterkExperiment, 17, 26, 29, 31, 47, 50,
51,53,55,58,61, 64, 65,74, 80, 81,
91, 96, 98, 102, 105, 107, 108
ClusterExperiment
(ClusterExperiment-class), 11
ClusterExperiment,matrixOrHDF5,ANY-method
(ClusterExperiment-class), 11
ClusterExperiment,SingleCellExperiment,character-methoc
(ClusterExperiment-class), 11
ClusterExperiment,SingleCellExperiment, factor-method
(ClusterExperiment-class), 11
ClusterExperiment,SingleCellExperiment,matrix-method
(ClusterExperiment-class), 11
ClusterExperiment,SingleCellExperiment, numeric-method
(ClusterExperiment-class), 11
ClusterExperiment, SummarizedExperiment, ANY-method
(ClusterExperiment-class), 11
ClusterExperiment-class, 11
clusterExperiment-deprecated, 15
ClusterkExperiment-methods, 15
ClusterFunction, 22, 46, 47, 94, 102
ClusterFunction
(internalFunctionCheck), 42

110 INDEX

ClusterFunction, function-method 98—-100, 102
(internalFunctionCheck), 42 clusterSingle,ClusterExperiment-method

ClusterFunction-class (clusterSingle), 25
(internalFunctionCheck), 42 clusterSingle,matrixOrHDF50rNULL-method

ClusterFunction-methods, 19 (clusterSingle), 25

clusteringInfo clusterSingle,SingleCellExperiment-method
(ClusterExperiment-methods), 15 (clusterSingle), 25

clusteringInfo,ClusterExperiment-method clusterSingle, SummarizedExperiment-method
(ClusterExperiment-methods), 15 (clusterSingle), 25

clusterlabels, 35 clusterTypes, 35

clusterLabels clusterTypes
(ClusterExperiment-methods), 15 (ClusterExperiment-methods), 15

clusterLabels,ClusterExperiment-method clusterTypes,ClusterExperiment-method
(ClusterExperiment-methods), 15 (ClusterExperiment-methods), 15

clusterLabels<- clusterTypes<-
(ClusterExperiment-methods), 15 (ClusterExperiment-methods), 15

clusterLabels<-,ClusterExperiment,character-met#dterTypes<-,ClusterExperiment,character-method
(ClusterExperiment-methods), 15 (ClusterExperiment-methods), 15

coClustering

clusterLegend, 9
clusterLegend
(ClusterExperiment-methods), 15
clusterLegend,ClusterExperiment-method
(ClusterExperiment-methods), 15
clusterLegend<-
(ClusterExperiment-methods), 15
clusterLegend<-,ClusterExperiment,list-method
(ClusterExperiment-methods), 15
clusterMany, 11, 20, 28, 29, 36,48, 71, 72,
98, 102, 107
clusterMany,ClusterExperiment-method
(clusterMany), 20
clusterMany,data.frame-method
(clusterMany), 20
clusterMany,matrixOrHDF5-method
(clusterMany), 20

(ClusterExperiment-methods), 15
coClustering,ClusterExperiment-method

(ClusterExperiment-methods), 15
coClustering<-

(ClusterExperiment-methods), 15
coClustering<-,ClusterExperiment,dsCMatrix-method

(ClusterExperiment-methods), 15
coClustering<-,ClusterExperiment,matrix-method

(ClusterExperiment-methods), 15
coClustering<-,ClusterExperiment, numeric-method

(ClusterExperiment-methods), 15
colDataClusters

(ClusterExperiment-methods), 15
colDataClusters,ClusterExperiment-method

(ClusterExperiment-methods), 15
colors, 65, 89

1 M SingleCellE . hod combineMany
clusterMany,singleCellExperiment-metho (clusterExperiment-deprecated),
(clusterMany), 20 15

clusterMany, SummarizedExperiment-method combineMany , ANY-method
(clusterMany), 20 (clusterExperiment-deprecated),
clusterMatrix 15
(ClusterExperiment-methods), 15
clusterMatrix,ClusterExperiment-method
(ClusterExperiment-methods), 15
clusterMatrixColors convertClusterLegend,ClusterExperiment-method
(ClusterExperiment-methods), 15 (plottingFunctions), 87
clusterMatrixColors,ClusterExperiment-method convertToDendrogram

ConsensusClusterPlus, 66
convertClusterLegend
(plottingFunctions), 87

(ClusterExperiment-methods), 15 (clusterDendrogram), 8
clusterMatrixNamed convertToDendrogram,ClusterExperiment-method
(ClusterExperiment-methods), 15 (clusterDendrogram), 8

clusterMatrixNamed,ClusterExperiment-method cytree, 46
(ClusterExperiment-methods), 15
clusterSingle, 11, 13, 23-25, 25, 27,48, 82, defaultNDims, 26, 39, 40, 53

INDEX 111

defaultNDims getClusterManyParams,ClusterExperiment-method,
(getReducedData,ClusterExperiment-method), 36
37 getMergeCorrespond (mergeClusters), 54
defaultNDims,matrixOrHDF5-method getMergeCorrespond, ClusterExperiment-method
(getReducedData,ClusterExperiment-method), (mergeClusters), 54
37 getPostProcessingArgs (mainClustering),
defaultNDims,SingleCellExperiment-method 47
(getReducedData,ClusterExperiment-metigedRostProcessingArgs,ClusterFunction-method
37 (mainClustering), 47
dendroClusterIndex getReducedData, 5, 6
(ClusterExperiment-methods), 15 getReducedData
dendroClusterIndex,ClusterExperiment-method (getReducedData,ClusterExperiment-method),
(ClusterExperiment-methods), 15 37
dendrogram, 10, 80, 84 getReducedData,ClusterExperiment-method,
DGEList, 32 37

getSingleClusterIndex
(getClusterIndex), 34
getSingleClusterIndex,ClusterExperiment-method
(getClusterIndex), 34

filterData, 42 gImLRT, 33
filterData glmWeightedF, 33

eraseMergelnfo (mergeClusters), 54
eraseMergelnfo,ClusterExperiment-method
(mergeClusters), 54

(getReducedData,ClusterExperiment-method),
37 hclust, 46, 53
filterData, SummarizedExperiment-method

(getReducedData, ClusterExperiment-metRO8YETYPE, 45, 46
37 inputType (ClusterFunction-methods), 19

inputType, character-method

filterNames .
(getReducedData,ClusterExperiment-method), (ClusterFunction-methods), 19
37 inputType,ClusterFunction-method

filterNames, SummarizedExperiment-method . (ClusterFunction-methods), 19
(getReducedData, ClusterExperiment-metfo@ytType, factor-method

37 (ClusterFunction-methods), 19
fluidigm, 30, 96 inputType,list-method
fluidigmColData (fluidigmData), 30 (ClusterFunction-methods), 19
fluidigmData, 30 internalFunctionCheck, 42
getBestFeatures, 30, 56, 73, 74 jitter, 78
getBestFeatures,ClusterExperiment-method

(getBestFeatures), 30 kmeans, 46
getBestFeatures,matrixOrHDF5-method

(getBestFeatures), 30 legend, 86
getBuiltInFunction limma, 7, 32

(listBuiltInFunctions), 45 listBuiltInFilterStats, 39, 53
getBuiltInFunction,character-method listBuiltInFilterStats

(listBuiltInFunctions), 45 (getReducedData,ClusterExperiment-method),
getClusterlIndex, 5, 9, 17, 32, 34, 35, 36, 39, 37

50, 53,61, 64,68,71,73,74,77, 78, listBuiltInFunctions, 45, 47, 102

81, 86, 88, 89, 91, 104, 108 listBuiltInReducedDims, 86, 87
getClusterIndex,ClusterExperiment-method listBuiltInReducedDims

(getClusterIndex), 34 (getReducedData,ClusterExperiment-method),
getClusterManyParams 37

(getClusterManyParams,ClusterExperimedtist8thddLnTyped1
36 (listBuiltInFunctions), 45

112

listBuiltInTypeK
(listBuiltInFunctions), 45
locfdr, 57

mainClustering, 23, 24, 27-29, 44, 47, 50
51,95, 98-100, 103
mainClustering, character-method
(mainClustering), 47
mainClustering,ClusterFunction-method
(mainClustering), 47
makeBlankData, 74, 81, 83, 84
makeBlankData (plottingFunctions), 87
makeConsensus, 11, 15,49, 72, 94, 95, 107
makeConsensus,ClusterExperiment-method
(makeConsensus), 49
makeConsensus,matrix-method
(makeConsensus), 49
makeContrasts, 7
makeDendrogram, 10, 52, 55, 58, 82, 84, 94, 95
makeDendrogram,ClusterExperiment-method
(makeDendrogram), 52
makeDendrogram,dist-method
(makeDendrogram), 52
makeDendrogram,matrixOrHDF5-method
(makeDendrogram), 52
makeFilterStats, 5, 24, 39, 42, 53
makeFilterStats

INDEX

37

makeRsecFluidigmObject (rsecFluidigm),
96

massivePalette (plottingFunctions), 87

MAST, 7

match.arg, 35

mbkmeans, 46

mergeClusterIndex (mergeClusters), 54

mergeClusterIndex,ClusterExperiment-method

(mergeClusters), 54

mergeClusters, 14, 31, 54, 56, 72,75, 76, 95,
107

mergeClusters,ClusterExperiment-method
(mergeClusters), 54

mergeClusters,matrixOrHDF5-method
(mergeClusters), 54

mergeCutoff (mergeClusters), 54

mergeCutoff,ClusterExperiment-method
(mergeClusters), 54

mergeMethod (mergeClusters), 54

mergeMethod,ClusterExperiment-method
(mergeClusters), 54

message, 106

nClusterings
(ClusterExperiment-methods), 15

(getReducedData, ClusterExperiment-metRGd)isterings, ClusterExperiment-method

37

makeFilterStats,ClusterExperiment-method
(getReducedData,ClusterExperiment-method),

37
makeFilterStats,matrixOrHDF5-method

37

(ClusterExperiment-methods), 15
nClusters (ClusterExperiment-methods),
15
nClusters,ClusterExperiment-method

(ClusterExperiment-methods), 15

(getReducedData,ClusterExperiment—metﬁgéﬁture?£C1“5terEXperiment'methOdsL

makeFilterStats,SummarizedExperiment-method NFeatures,ClusterExperiment-method

(getReducedData,ClusterExperiment-method),

37
makeReducedDims, 24, 42, 86, 87
makeReducedDims

(ClusterExperiment-methods), 15
nInternalNodes (clusterDendrogram), 8
nInternalNodes,ClusterExperiment-method
(clusterDendrogram), 8

(getReducedData, ClusterExperiment-methi) 69

37

makeReducedDims,ClusterExperiment-method
(getReducedData,ClusterExperiment-method),

37
makeReducedDims,matrixOrHDF5-method

(getReducedData,ClusterExperiment-method),

37

nNodes (clusterDendrogram), 8
nNodes, ClusterExperiment-method
(clusterDendrogram), 8
nodelds (clusterDendrogram), 8
nodelds,ClusterExperiment-method
(clusterDendrogram), 8
nodelLabels, 107

makeReducedDims,SingleCellExperiment-method nodelLabels (clusterDendrogram), 8
(getReducedData,ClusterExperiment-methodglabels, 75, 76

37

makeReducedDims, SummarizedExperiment-method

nodelLabels,ClusterExperiment-method
(clusterDendrogram), 8

(getReducedData,ClusterExperiment-methodglLabels<- (clusterDendrogram), 8

INDEX 113

nodelLabels<-,ClusterExperiment-method plotClustersTable,ClusterExperiment-method
(clusterDendrogram), 8 (plotClustersTable), 67
nodeMergeInfo (mergeClusters), 54 plotClustersTable, table-method
nodeMergeInfo,ClusterExperiment-method (plotClustersTable), 67
(mergeClusters), 54 plotClustersWorkflow
nSamples (ClusterExperiment-methods), 15 (plotClustersWorkflow,ClusterExperiment-method)
nSamples,ClusterExperiment-method 71
(ClusterExperiment-methods), 15 plotClustersWorkflow,ClusterExperiment-method,
nTips (clusterDendrogram), 8 71
nTips,ClusterExperiment-method plotCoClustering (plotHeatmap), 79
(clusterDendrogram), 8 plotCoClustering,ClusterExperiment-method
numericalAsCharacter, 60 (plotHeatmap), 79
plotContrastHeatmap
orderSamples (plotContrastHeatmap,ClusterExperiment-method),
(ClusterExperiment-methods), 15 73
orderSamples,ClusterExperiment-method plotContrastHeatmap,ClusterExperiment-method,
(ClusterExperiment-methods), 15 73
orderSamples<-

) plotDendrogram, 57
(ClusterExperiment-methods), 15 plotDendrogram

orderSamples<-,ClusterExperiment, numeric-method (plotDendrogram, ClusterExperiment-method)

(ClusterExperiment-methods), 15 74
pairs, 78 plotDendrogram,ClusterExperiment-method,
pam, 46 74
par, 69 plotFeatureBoxplot, 76
phydataplot, 75 plotFeatureBoxplot,ClusterExperiment, character-method
phylo, 9, 10 (plotFeatureBoxplot), 76
phylodd, 14, 107 plotFeatureBoxplot,ClusterExperiment, numeric-method
plot, 64, 78 (plotFeatureBoxplot), 76
plot.default, 86, 87 plotFeatureScatter, 77
plot.dendrogram, 53 plotFeatureScatter,ClusterExperiment,character-method
plot.phylo, 56, 75, 76 (plotFeatureScatter), 77
plotBarplot plotFeatureScatter,ClusterExperiment, numeric-method
(plotBarplot,ClusterExperiment-method), (plotFeatureScatter), 77
61 plotHeatmap, 69, 70, 73, 74,79, 90
plotBarplot,ClusterExperiment-method, plotHeatmap, ClusterExperiment-method
61 (plotHeatmap), 79
plotBarplot,matrix-method plotHeatmap,data. frame-method
(plotBarplot,ClusterExperiment-method), (plotHeatmap), 79
61 plotHeatmap,ExpressionSet-method
plotBarplot,vector-method (plotHeatmap), 79
(plotBarplot,ClusterExperiment-methodplotHeatmap,matrixOrHDF5-method
61 (plotHeatmap), 79
plotClusterLegend (plottingFunctions), plotHeatmap, SingleCellExperiment-method
87 (plotHeatmap), 79
plotClusterLegend,ClusterExperiment-method plotHeatmap, SummarizedExperiment-method
(plottingFunctions), 87 (plotHeatmap), 79
plotClusters, 63,71, 72, 89 plotHeatmap, table-method (plotHeatmap),
plotClusters,ClusterExperiment-method 79
(plotClusters), 63 plotReducedDims, 85
plotClusters,matrix-method plotReducedDims,ClusterExperiment-method
(plotClusters), 63 (plotReducedDims), 85

plotClustersTable, 67 plottingFunctions, 87

114 INDEX

primaryCluster requiredArgs,ClusterFunction-method
(ClusterExperiment-methods), 15 (ClusterFunction-methods), 19
primaryCluster,ClusterExperiment-method requiredArgs, factor-method
(ClusterExperiment-methods), 15 (ClusterFunction-methods), 19
primaryClusterIndex, 35 requiredArgs,list-method
primaryClusterIndex (ClusterFunction-methods), 19
(ClusterExperiment-methods), 15 RSEC, 92, 96
primaryClusterIndex,ClusterExperiment-method RSEC,ClusterExperiment-method (RSEC), 92
(ClusterExperiment-methods), 15 RSEC,data. frame-method (RSEC), 92
primaryClusterIndex<- RSEC,matrix-method (RSEC), 92
(ClusterExperiment-methods), 15 RSEC,matrix0OrHDF5-method (RSEC), 92
primaryClusterIndex<-,ClusterExperiment, numeriEmethogleCellExperiment-method
(ClusterExperiment-methods), 15 (RSEC), 92
primaryClusterLabel RSEC, SummarizedExperiment-method
(ClusterExperiment-methods), 15 (RSEC), 92
primaryClusterLabel,ClusterExperiment-method RSEC-methods (RSEC), 92
(ClusterExperiment-methods), 15 rsecFluidigm, 96
primaryClusterNamed

sampleDendrogram, /4

sampleDendrogram (clusterDendrogram), 8

sampleDendrogram,ClusterExperiment-method
(clusterDendrogram), 8

search_pairs, 97

seqCluster, 22-24, 27-29, 94, 95, 97

segPall (plottingFunctions), 87

seqPal2 (plottingFunctions), 87

seqPal3 (plottingFunctions), 87

segPal4 (plottingFunctions), 87
recolorClusters (renameClusters), 91 seqPal5 (plottingFunctions), 87

recolorClusters,ClusterExperiment,character—mgéhgpeaks 8]
(renameClusters), 91

(ClusterExperiment-methods), 15
primaryClusterNamed,ClusterExperiment-method
(ClusterExperiment-methods), 15

primaryClusterType
(ClusterExperiment-methods), 15
primaryClusterType,ClusterExperiment-method
(ClusterExperiment-methods), 15
prop.table, 68, 70

setBreaks (plottingFunctions), 87

reducedDim, 42 setToCurrent (workflowClusters), 107
reduceFunctions setToCurrent,ClusterExperiment-method
(getReducedData,ClusterExperiment-method), (workflowClusters), 107

37 setToFinal (workflowClusters), 107
removeClusterings (addClusterings), 3 setToFinal,ClusterExperiment-method
removeClusterings,ClusterExperiment-method (workflowClusters), 107

(subset), 103 show (ClusterExperiment-methods), 15
removeClusters (subset), 103 show, ClusterExperiment-method
removeClusters,ClusterExperiment-method (ClusterExperiment-methods), 15

(subset), 103 showHeatmapPalettes, 84
removeUnassigned, 15 showHeatmapPalettes
removeUnassigned (assignUnassigned), 4 (plottingFunctions), 87
removeUnassigned,ClusterExperiment-method showPalette (plottingFunctions), 87

(assignUnassigned), 4 simCount (simData), 100
renameClusters, 9, 91 simData, 100
renameClusters,ClusterExperiment, character-me$hegleCellExperiment, 22, 26, 41, 47, 80,

(renameClusters), 91 93,98, 102, 105
requiredArgs, 20, 102 sparseMatrix, 14
requiredArgs (ClusterFunction-methods), specc, 46

19 str_pad, 60
requiredArgs,character-method subsampleClustering, 23, 24, 27-29, 44, 94

(ClusterFunction-methods), 19 95, 98-100, 101

INDEX 115

subsampleClustering,character-method
(subsampleClustering), 101
subsampleClustering,ClusterFunction-method
(subsampleClustering), 101
subset, 103
subsetByCluster (subset), 103
subsetByCluster,ClusterExperiment-method
(subset), 103
SummarizedExperiment, 22, 26, 41, 47, 80,
93,98, 102

table, 69, 70

tableClusters (plotClustersTable), 67

tableClusters,ClusterExperiment-method
(plotClustersTable), 67

tdata, 9

tiplabels, 76

topTable, 32, 33

topTags, 33

transformation
(ClusterExperiment-methods), 15

transformation,ClusterExperiment-method
(ClusterExperiment-methods), 15

transformation<-
(ClusterExperiment-methods), 15

transformation<-,ClusterExperiment, function-method
(ClusterExperiment-methods), 15

transformData, 4/, 105

transformData,ClusterExperiment-method
(transformData), 105

transformData,matrixOrHDF5-method
(transformData), 105

transformData,SingleCellExperiment-method
(transformData), 105

transformData, SummarizedExperiment-method
(transformData), 105

trueCluster (simData), 100

updateObject, 106
updateObject,ClusterExperiment-method
(updateObject), 106

workflowClusterDetails

(workflowClusters), 107
workflowClusterDetails,ClusterExperiment-method

(workflowClusters), 107
workflowClusters, 35, 107
workflowClusters,ClusterExperiment-method

(workflowClusters), 107
workflowClusterTable

(workflowClusters), 107
workflowClusterTable,ClusterExperiment-method

(workflowClusters), 107

	addClusterings
	assignUnassigned
	clusterContrasts
	clusterDendrogram
	ClusterExperiment-class
	clusterExperiment-deprecated
	ClusterExperiment-methods
	ClusterFunction-methods
	clusterMany
	clusterSingle
	fluidigmData
	getBestFeatures
	getClusterIndex
	getClusterManyParams,ClusterExperiment-method
	getReducedData,ClusterExperiment-method
	internalFunctionCheck
	listBuiltInFunctions
	mainClustering
	makeConsensus
	makeDendrogram
	mergeClusters
	numericalAsCharacter
	plotBarplot,ClusterExperiment-method
	plotClusters
	plotClustersTable
	plotClustersWorkflow,ClusterExperiment-method
	plotContrastHeatmap,ClusterExperiment-method
	plotDendrogram,ClusterExperiment-method
	plotFeatureBoxplot
	plotFeatureScatter
	plotHeatmap
	plotReducedDims
	plottingFunctions
	renameClusters
	RSEC
	rsecFluidigm
	search_pairs
	seqCluster
	simData
	subsampleClustering
	subset
	transformData
	updateObject
	workflowClusters
	Index

