
Package ‘censcyt’
January 29, 2026

Version 1.18.0

Title Differential abundance analysis with a right censored covariate
in high-dimensional cytometry

Description Methods for differential abundance analysis in high-dimensional cytome-
try data when a covariate is subject to right censoring (e.g. survival time) based on multiple im-
putation and generalized linear mixed models.

URL https://github.com/retogerber/censcyt

BugReports https://github.com/retogerber/censcyt/issues

License MIT + file LICENSE

biocViews ImmunoOncology, FlowCytometry, Proteomics, SingleCell,
CellBasedAssays, CellBiology, Clustering, FeatureExtraction,
Software, Survival

Depends R (>= 4.0), diffcyt

Imports BiocParallel, broom.mixed, dirmult, dplyr, edgeR,
fitdistrplus, lme4, magrittr, MASS, methods, mice, multcomp,
purrr, rlang, S4Vectors, stats, stringr, SummarizedExperiment,
survival, tibble, tidyr, utils

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, testthat, ggplot2

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/censcyt

git_branch RELEASE_3_22

git_last_commit c86eeed

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Reto Gerber [aut, cre] (ORCID: <https://orcid.org/0000-0001-5414-8906>)

Maintainer Reto Gerber <gerberreto@pm.me>

1

https://github.com/retogerber/censcyt
https://github.com/retogerber/censcyt/issues
https://orcid.org/0000-0001-5414-8906

2 censcyt

Contents
censcyt . 2
conditional_multiple_imputation . 6
createFormula . 9
simulate_multicluster . 10
simulate_singlecluster . 12
testDA_censoredGLMM . 14

Index 18

censcyt Run censcyt pipeline

Description

Wrapper function to run complete censcyt pipeline

Usage

censcyt(
d_input,
experiment_info = NULL,
marker_info = NULL,
design = NULL,
formula = NULL,
contrast,
analysis_type = c("DA"),
method_DA = c("censcyt-DA-censored-GLMM"),
markers_to_test = NULL,
clustering_to_use = NULL,
cols_to_include = NULL,
subsampling = FALSE,
n_sub = NULL,
seed_sub = NULL,
transform = TRUE,
cofactor = 5,
cols_clustering = NULL,
xdim = 10,
ydim = 10,
meta_clustering = FALSE,
meta_k = 40,
seed_clustering = NULL,
min_cells = 3,
min_samples = NULL,
normalize = FALSE,
norm_factors = "TMM",
verbose = TRUE,
mi_reps = 10,
imputation_method = c("km", "km_exp", "km_wei", "km_os", "rs", "mrl", "cc", "pmm"),
BPPARAM = BiocParallel::SerialParam()

)

censcyt 3

Arguments

d_input Input data. Must be either: (i) a flowSet-class or list of flowFrame-classs,
DataFrames, data.frames, or matrices as input (one flowFrame or list item
per sample) (see prepareData); or (ii) a CATALYST daFrame (containing cluster
labels in rowData; see vignette for an example).

experiment_info

data.frame, DataFrame, or {tbl_df} of experiment information, for exam-
ple sample IDs and group IDs. Must contain a column named sample_id.
See prepareData. (Not required when providing a CATALYST daFrame for
d_input.)

marker_info data.frame, DataFrame, or tbl_df of marker information for each column of
data. This should contain columns named marker_name and marker_class.
The columns contain: (i) marker names (and any other column names); and
(ii) a factor indicating the marker class for each column (with entries "type",
"state", or "none"). See prepareData. (Not required when providing a
CATALYST daFrame for d_input.)

design Design matrix, created with createDesignMatrix. See createDesignMatrix.

formula Model formula object, created with createFormula. See createFormula.

contrast Contrast matrix, created with createContrast. See createContrast.

analysis_type Type of differential analysis to perform: differential abundance (DA) of cell pop-
ulations. The only option at the moment is "DA". See testDA_censoredGLMM.

method_DA Method to use for calculating differential abundance (DA) tests. Currently the
only option is testDA_censoredGLMM. Default = testDA_censoredGLMM.

markers_to_test

(Optional) Logical vector specifying which markers to test for differential ex-
pression (from the set of markers stored in the assays of d_medians; for method
testDS_limma or testDS_LMM). Default = all ’cell state’ markers, which are
identified by the logical vector id_state_markers stored in the meta-data of
d_medians. See testDS_limma or testDS_LMM.

clustering_to_use

(Optional) Column name indicating which set of cluster labels to use for dif-
ferential testing, when input data are provided as a CATALYST daFrame object
containing multiple sets of cluster labels. (In this case, the metadata of the
daFrame object is assumed to contain a data frame named cluster_codes;
clustering_to_use is the column name of the selected column in cluster_codes.
If clustering_to_use is provided, an identifier clustering_name to identify
this column will also be saved in the metadata of the output object.) Default =
NULL, in which case cluster labels stored in column named cluster_id in the
rowData of the daFrame object are used.

cols_to_include

Logical vector indicating which columns to include from the input data. Default
= all columns. See prepareData.

subsampling Whether to use random subsampling to select an equal number of cells from
each sample. Default = FALSE. See prepareData.

n_sub Number of cells to select from each sample by random subsampling, if subsampling
= TRUE. Default = number of cells in smallest sample. See prepareData.

seed_sub Random seed for subsampling. Set to an integer value to generate reproducible
results. Default = NULL. See prepareData.

4 censcyt

transform Whether to apply ’arcsinh’ transform. This may be set to FALSE if the input
data has already been transformed. Default = TRUE. See transformData.

cofactor Cofactor parameter for ’arcsinh’ transform. Default = 5, which is appropriate
for mass cytometry (CyTOF) data. For fluorescence flow cytometry, cofactor =
150 is recommended instead. See transformData.

cols_clustering

Columns to use for clustering. Default = NULL, in which case markers identified
as ’cell type’ markers (with entries "type") in the vector marker_class in the
column meta-data of d_se will be used. See generateClusters.

xdim Horizontal length of grid for self-organizing map for FlowSOM clustering (num-
ber of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters). See generateClusters.

ydim Vertical length of grid for self-organizing map for FlowSOM clustering (number
of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters). See generateClusters.

meta_clustering

Whether to include FlowSOM ’meta-clustering’ step. Default = FALSE. See
generateClusters.

meta_k Number of meta-clusters for FlowSOM, if meta-clustering = TRUE. Default =
40. See generateClusters.

seed_clustering

Random seed for clustering. Set to an integer value to generate reproducible
results. Default = NULL. See generateClusters.

min_cells Filtering parameter. Default = 3. Clusters are kept for differential testing if they
have at least min_cells cells in at least min_samples samples. See testDA_censoredGLMM.

min_samples Filtering parameter. Default = number of samples / 2, which is appropriate for
two-group comparisons (of equal size). Clusters are kept for differential testing
if they have at least min_cells cells in at least min_samples samples. See
testDA_censoredGLMM.

normalize Whether to include optional normalization factors to adjust for composition ef-
fects. Default = FALSE. See testDA_censoredGLMM.

norm_factors Normalization factors to use, if normalize = TRUE. Default = "TMM", in which
case normalization factors are calculated automatically using the ’trimmed mean
of M-values’ (TMM) method from the edgeR package. Alternatively, a vector of
values can be provided (the values should multiply to 1). See testDA_censoredGLMM.

verbose Whether to print status messages during each step of the pipeline. Default =
TRUE.

mi_reps Number of imputations in multiple imputation. Default = 10. See testDA_censoredGLMM.
imputation_method

Method to be used in the imputation step. One of km,km_exp,km_wei,km_os, rs,
mrl, cc, pmm. See testDA_censoredGLMM.

BPPARAM Specification of parallelization option as one of BiocParallelParam if BiocParallel
is available otherwise no parallelization is used. e.g. MulticoreParam-class(workers=2)
for parallelization with two cores. Default is SerialParam-class() (no paral-
lelization).

Details

This wrapper function runs the complete diffcyt analysis pipeline where the only difference is the
analysis step which uses the functions from censcyt (which is currently only testDA_censoredGLMM).

censcyt 5

For more details about the functions for the individual steps, see diffcyt, the diffcyt vignette,
the censcyt package vignette and the function help pages. The following is a slightly adapted
summary from diffcyt:

Running the individual functions may provide additional flexibility, especially for complex analy-
ses.

The input data can be provided as a flowSet-class or a list of flowFrame-classs, DataFrames,
data.frames, or matrices (one flowFrame or list item per sample). Alternatively, it is also possi-
ble to provide the input as a daFrame object from the CATALYST Bioconductor package (Chevrier,
Crowell, Zanotelli et al., 2018). This can be useful when initial exploratory analyses and clustering
have been performed using CATALYST; the daFrame object from CATALYST (containing cluster labels
in the rowData) can then be provided directly to the censcyt functions for differential testing.

Minimum required arguments when not providing a flowSet-class or list of flowFrame-classs,
DataFrames, data.frames, or matrices:

• d_input

• experiment_info

• marker_info

• either design or formula (depending on the differential testing method used)

• contrast

• analysis_type

Minimum required arguments when providing a CATALYST daFrame object:

• d_input

• either design or formula (depending on the differential testing method used)

• contrast

• analysis_type

Value

Returns a list containing the results object res, as well as the data objects d_se, d_counts, d_medians,
d_medians_by_cluster_marker, and d_medians_by_sample_marker. (If a CATALYST daFrame
object was used as input, the output list contains objects res, d_counts, and d_medians.)

Examples

Function to create random data (one sample)
fcs_sim <- function(n = 2000, mean = 0, sd = 1, ncol = 10, cofactor = 5) {

d <- matrix(sinh(rnorm(n*ncol, mean, sd)) * cofactor,ncol=ncol)
for(i in seq_len(ncol)){
d[seq(n/ncol*(i-1)+1,n/ncol*(i)),i] <- sinh(rnorm(n/ncol, mean+5, sd)) * cofactor

}
colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
d

}

Create random data (without differential signal)
set.seed(123)
d_input <- lapply(1:50, function(i) fcs_sim())

simulate survival time

6 conditional_multiple_imputation

d_surv <- simulate_singlecluster(50, formula(Y~Surv(X,I)))[c("X","I","TrVal")]

Add differential abundance (DA) signal
for(i in 1:50){

number of cells in cluster 1
n_da <- round(sqrt(2000*d_surv$TrVal[i]))*9
set to no expression
tmpd <- matrix(sinh(rnorm(n_da*10, 0, 1)) * 5, ncol=10)
increase expresion for cluster 1
tmpd[,1] <- sinh(rnorm(n_da, 5, 1)) * 5
d_input[[i]][seq_len(n_da),] <- tmpd

}

experiment_info <- data.frame(
sample_id = factor(paste0("sample", 1:50)),
survival_time = d_surv$X,
event_indicator= d_surv$I,
stringsAsFactors = FALSE

)

marker_info <- data.frame(
channel_name = paste0("channel", sprintf("%03d", 1:10)),
marker_name = paste0("marker", sprintf("%02d", 1:10)),
marker_class = factor(c(rep("type", 10)),

levels = c("type", "state", "none")),
stringsAsFactors = FALSE

)

Create formula
da_formula <- createFormula(experiment_info, cols_fixed="survival_time",

cols_random = "sample_id",event_indicator = "event_indicator")
Create contrast matrix
contrast <- diffcyt::createContrast(c(0, 1))

Test for differential abundance (DA) of clusters
out_DA <- censcyt(d_input, experiment_info, marker_info,

formula = da_formula, contrast = contrast,
analysis_type = "DA", method_DA = "censcyt-DA-censored-GLMM",
seed_clustering = 123, verbose = FALSE, mi_reps = 3,
BPPARAM=BiocParallel::MulticoreParam(workers = 1),
imputation_method = "mrl",meta_clustering = TRUE, meta_k = 10)

Display results for top DA clusters
diffcyt::topTable(out_DA, format_vals = TRUE)

Plot heatmap for DA tests
diffcyt::plotHeatmap(out_DA, analysis_type = "DA")

conditional_multiple_imputation

Conditional multiple imputation

conditional_multiple_imputation 7

Description

First two steps for multiple imputation for censored covariates. Returns regression fits in a list that
can be combined using pool().

Usage

conditional_multiple_imputation(
data,
formula,
regression_type = c("lm", "glm", "glmer"),
mi_reps = 10,
imputation_method = c("km", "km_exp", "km_wei", "km_os", "rs", "mrl", "cc", "pmm"),
weights = NULL,
contrasts = NULL,
family = "binomial",
id = NULL,
verbose = FALSE,
n_obs_min = 2

)

Arguments

data ’data.frame’

formula the formula for fitting the regression model with a special syntax for the censored
covariate : e.g. ’y~Surv(x,I)’ means ’y~x’ with ’x’ being censored and ’I’ the
event indicator (0=censored,1=observed).

regression_type

function. The regression type to be used, lm for linear regression, glm for gen-
eral linear regression, glmer for generalized linear mixed-effects models. De-
fault: lm

mi_reps number of repetitions for multiple imputation. Default: 10
imputation_method

which method should be used in the imputation step. One of ’km’,’km_exp’,’km_wei’,’km_os’,
’rs’, ’mrl’, ’cc’, ’pmm’. See details. default = ’km’.

weights Weights to be used in fitting the regression model. Default = NULL

contrasts Contrast vector to be used in testing the regression model. Default = NULL

family The family to be used in the regression model. Default = "binomial". Omitted if
linear model is used.

id name of column containing id of sample

verbose Logical.

n_obs_min minimum number of observed events needed. default = 2. if lower than this
value will throw an error.

Details

Possible methods in ’imputation_method’ are:

’km’ Kaplan Meier imputation is similar to ’rs’ (Risk set imputation) but the random draw is ac-
cording to the survival function of the respective risk set.

8 conditional_multiple_imputation

’km_exp’ The same as ’km’ but if the largest value is censored the tail of the survival function
is modeled as an exponential distribution where the rate parameter is obtained by fixing the
distribution to the last observed value. See (Moeschberger and Klein, 1985).

’km_wei’ The same as ’km’ but if the largest value is censored the tail of the survival function is
modeled as an weibull distribution where the parameters are obtained by MLE fitting on the
whole data. See (Moeschberger and Klein, 1985).

’km_os’ The same as ’km’ but if the largest value is censored the tail of the survival function is
modeled by order statistics. See (Moeschberger and Klein, 1985).

’rs’ Risk Set imputation replaces the censored values with a random draw from the risk set of the
respective censored value.

’mrl’ Mean Residual Life (Conditional single imputation from Atem et al. 2017) is a multiple
imputation procedure that bootstraps the data and imputes the censored values by replacing
them with their respective mean residual life.

’cc’ complete case (listwise deletion) analysis removes incomlete samples.

’pmm’ predictive mean matching treats censored values as missing and uses predictive mean
matching method from mice.

Value

A list with five elements:

’data’ The input data frame

’betasMean’ the mean regression coefficients

’betasVar’ the variances of the mean regression coefficients

’metadata’ a list of three elements:

’mi_reps’ number of repetitions in multiple imputation
’betas’ all regression coefficients
’vars’ the variances of the regression coefficients

’fits’ list with all regression fits

References

A Comparison of Several Methods of Estimating the Survival Function When There is Extreme
Right Censoring (M. L. Moeschberger and John P. Klein, 1985)

Examples

define association
lm_formula <- formula(Y ~ Surv(X,I) + Z)
simulate data
data <- simulate_singlecluster(100, lm_formula, type = "lm", n_levels_fixeff=2)
run fitting
cmi_out <- conditional_multiple_imputation(data,lm_formula)
pool fits
comb_out <- mice::pool(cmi_out$fits)
result
pvals <- summary(comb_out)$p.value

https://www.researchgate.net/publication/319246304_Improved_conditional_imputation_for_linear_regression_with_a_randomly_censored_predictor

createFormula 9

createFormula Create model formula and corresponding data frame of variables

Description

Create model formula and corresponding data frame of variables for model fitting

Usage

createFormula(
experiment_info,
cols_fixed = NULL,
cols_random = NULL,
event_indicator = NULL

)

Arguments

experiment_info

data.frame, DataFrame, or tbl_df of experiment information (which was also
previously provided to prepareData). This should be a data frame containing
all factors and covariates of interest; e.g. group IDs, block IDs, batch IDs, and
continuous covariates.

cols_fixed Argument specifying columns of experiment_info to include as fixed effect
terms in the model formula. This can be provided as a character vector of col-
umn names, a numeric vector of column indices, or a logical vector.

cols_random Argument specifying columns of experiment_info to include as random inter-
cept terms in the model formula. This can be provided as a character vector of
column names, a numeric vector of column indices, or a logical vector. Default
= none.

event_indicator

Argument specifying columns of experiment_info to include as event indica-
tor for the censored covariate in the model formula. The censored covariate is
assumed to be the first element of argument cols_fixed. This can be provided
as a character vector of column names, a numeric vector of column indices, or a
logical vector. Default = none.

Details

Creates a model formula and corresponding data frame of variables specifying the models to be
fitted. Extends createFormula from diffcyt.

The output is a list containing the model formula and corresponding data frame of variables (one
column per formula term). These can then be provided to differential testing functions that require
a model formula, together with the main data object and contrast matrix.

The experiment_info input (which was also previously provided to prepareData) should be a
data frame containing all factors and covariates of interest. For example, depending on the experi-
mental design, this may include the following columns:

• group IDs (e.g. groups for differential testing)

10 simulate_multicluster

• block IDs (e.g. patient IDs in a paired design; these may be included as either fixed effect or
random effects)

• batch IDs (batch effects)

• continuous covariates

• sample IDs (e.g. to include random intercept terms for each sample, to account for overdisper-
sion typically seen in high-dimensional cytometry data; this is known as an ’observation-level
random effect’ (OLRE); see see Nowicka et al., 2017, F1000Research for more details)

The arguments cols_fixed and cols_random specify the columns in experiment_info to include
as fixed effect terms and random intercept terms respectively. These can be provided as charac-
ter vectors of column names, numeric vectors of column indices, or logical vectors. The names
for each formula term are taken from the column names of experiment_info. The argument
event_indicator specifies the column in experiment_info as the event indicator (’0’ represents
censored and ’1’ represents observed) of the first element in cols_fixed.

Value

formula: Returns a list with three elements:

• formula: model formula

• data: data frame of variables corresponding to the model formula

• random_terms: TRUE if model formula contains any random effect terms

Examples

model formula with censored variable
experiment_info <- data.frame(

survival_time = rexp(8),
sample_id = factor(paste0("sample", 1:8)),
group_id = factor(rep(paste0("group", 1:2), each = 4)),
observed = factor(rep(c(0,1),4)),
patient_id = factor(rep(paste0("patient", 1:4), 2)),
stringsAsFactors = FALSE

)
createFormula(experiment_info, cols_fixed = c("survival_time","group_id"),

cols_random = c("sample_id", "patient_id"), event_indicator="observed")

simulate_multicluster Simulate multicluster counts with time dependent association from a
Dirichlet-Multinomial distribution

Description

Simulate multicluster counts with time dependent association from a Dirichlet-Multinomial distri-
bution

simulate_multicluster 11

Usage

simulate_multicluster(
counts = NULL,
nr_diff = 2,
nr_samples = NULL,
alphas = NULL,
theta = NULL,
sizes = NULL,
covariate = NULL,
slope = NULL,
group = NULL,
group_slope = NULL,
diff_cluster = FALSE,
enforce_sum_alpha = FALSE,
return_summarized_experiment = FALSE

)

Arguments

counts the reference counts data set, either a matrix with rows as cluster and colums as
samples or a SummarizedExperiment-class object as generated from calcCounts.

nr_diff number of clusters where an association should be introduced. Has to be an even
number.

nr_samples number of samples in output data. If NULL will set to same as input data.

alphas alpha parameter of Dirichlet-Multinomial distribution. If ’NULL’ will be esti-
mated from ’counts’.

theta correlation parameter. If ’NULL’ will be estimated from ’counts’.

sizes total sizes for each sample

covariate covariates, one for each sample. Default Null means random draws from an
exponential distribution with rate = 1.

slope negative double. Coefficients corresponding to the covariate for the DA clusters.
One for each pair of DA clusters. To ensure correctness of the final distribution
use only negative values. Alternatively can be a list of length ’nr_diff’/2, where
each elements indicates the proportion of the cluster size at the maximum co-
variate relative to the mean. E.g. 0.1 means that the cluster proportion at the
maximum covariate is 0.1 times smaller than the mean.

group either Null (no group effect), double between 0 and 1 (proportion of samples
with group effect), integer (total number of samples with group effect), vector
of 0 and 1 (indicating which samples have a group effect) or TRUE (effect with
even group size).

group_slope regression coefficient of second covariate ’group’. If Null will choose a value
automatically. Alternatively can be a list of length ’nr_diff’/2, where each el-
ements indicates the proportion of the cluster size at the maximum covariate
relative to the mean. E.g. 0.1 means that the cluster proportion at the maximum
covariate is 0.1 times smaller than the mean.

diff_cluster Logical. Should the clusters be choosen random (TRUE) or according to a min-
imal distance of of mean cluster sizes (FALSE). Alternatively a list of length
’nr_diff’ with each element a vector of length 2 indicating the paired clusters
can be given. Default is FALSE.

12 simulate_singlecluster

enforce_sum_alpha

Logical. Should the total sum of alphas be kept constant to ensure randomness
of non association clusters. The drawback is that one of the two paired clusters
with an association will not follow a GLMM (binomial link function) exactly
any more. Default is TRUE.

return_summarized_experiment

logical. Should the counts returned as a SummarizedExperiment-class object.
Default is FALSE.

Value

returns a list with elements counts (either matrix or SummarizedExperiment object, depending on
input), row_data (data per cluster: regression coefficients used), col_data (data per sample: co-
variates), alphas (matrix of alpha parameters used), theta (theta parameter), var_counts (covariance
matrix of a DM distribution with the given alphas and sizes).

Examples

without data reference:
alphas <- runif(20,10,100)
sizes <- runif(10,1e4,1e5)
output <- simulate_multicluster(alphas=alphas,sizes=sizes)
counts:
counts <- output$counts

with data reference:
first simulate reference data set (normally this would be a real data set):
data <- t(dirmult::simPop(n=runif(10,1e4,1e5),theta=0.001)$data)
then generate new data set based on original one but if DA clusters
output <- simulate_multicluster(data)

specify number of differential clusters (has to be an even number):
output <- simulate_multicluster(alphas=alphas,sizes=sizes,nr_diff = 4)

specify which clusters should be differential:
output <- simulate_multicluster(alphas=alphas,

sizes=sizes,
nr_diff = 4,
diff_cluster = list(c(2,9),c(6,7)))

with second covariate (group):
output <- simulate_multicluster(alphas=alphas,sizes=sizes, group = TRUE)

with second covariate (group), specify group proportion:
output <- simulate_multicluster(alphas=alphas,sizes=sizes, group = 0.5)

with second covariate (group), specify id of group memberships for one group:
output <- simulate_multicluster(alphas=alphas,sizes=sizes, group = 3:7)

simulate_singlecluster

Simulation of data with a censored covariate

simulate_singlecluster 13

Description

Function to simulate an association between a censored covariate and a predictor.

Usage

simulate_singlecluster(
n,
formula,
type = c("lm", "glm", "glmer"),
b = NULL,
n_levels_fixeff = NULL,
n_levels_raneff = NULL,
weibull_params = list(X = list(shape = 0.5, scale = 0.25), C = list(shape = 1, scale

= 0.25)),
censoring_dependent_on_covariate = FALSE,
weibull_params_covariate_dependent_censoring = list(shape = 1, scale = 0.1),
error_variance = 0,
variance_raneff = 0.5,
transform_fn = "identity",
verbose = FALSE

)

Arguments

n number of samples

formula the formula to specify the structure in the data. The censored variable should be
written in the following format: ’Surv(X,I)’, where ’X’ is the observed value,
and ’I’ is the event indicator (1 if observed, 0 if censored). A full example is:
’Y ~ Surv(X,I) + Covariate + (1|Random_effect)’.

type which regression type is used, one of ’lm’, ’glm’, ’glmer’. For the generalized
linear models the response is binomial with a logistic link function. default =
’lm’.

b the regression coefficients, either

NUll will us 0 for the intercept and 1 for the remaining coefficients
a vector with regression coefficients the length has to be (1 (intercept) + num-

ber of covariates (including the censored covariate))
n_levels_fixeff

The number of levels to use for each covariate, e.g. for two covariates: c(10,100).
If NULL sets all to 2 (two groups).

n_levels_raneff

The number of levels to use for each random effect. If NULL sets to ’n’ (obser-
vation level random effects).

weibull_params The parameters for the distribution of the censored variable and the censoring
time. Should be a list of lists, where the elements of the outer lists are ’X’ the
true value and ’C’ the censoring time. The inner lists should have two keywords,
’shape’ and ’scale’, for the parameters of the Weibull distribution (See Weibull).

censoring_dependent_on_covariate

Logical. If censoring should depend on a covariate. The respective covariate
needs to have only two levels (’n_level_fixeff’=2). Will use first covariate in
formula.

14 testDA_censoredGLMM

weibull_params_covariate_dependent_censoring

list with two elements, shape and scale, representing the parameters of a weibull
distribution for the second level of a covariate if ’censoring_dependent_on_covariate’=TRUE.

error_variance positive double. Variance of additional gaussian noise to add in the linear sum
of the predictors. For linear regression this is the only error added. Otherwise it
should be set to zero. default = 0.

variance_raneff

positive double vector of the length of ’n_levels_raneff’. The variance of the
gaussian distributed random effect covariates. default = 0.5.

transform_fn function to transform censored covariate or one of ’identity’ (no transforma-
tion), ’boxcox’ (box-cox transformation), ’boxcox_positive’ (box-cox transfor-
mation and translation to all positive values), ’log_positive’ (log transformation
and translation to all positive values). The transformation is applied before the
response is modeled. default = ’identity’.

verbose verbose

Value

tibble

Examples

single differential cluster
glmer_formula <- formula(Y ~ Surv(X,I) + Z + (1|R))
simulate_singlecluster(100, glmer_formula, type = "glmer")

testDA_censoredGLMM Test for differential abundance: method ’censcyt-DA-censored-
GLMM’

Description

Calculate tests for differential abundance of cell populations using method ’censcyt-DA-censored-
GLMM’

Usage

testDA_censoredGLMM(
d_counts,
formula,
contrast,
mi_reps = 10,
imputation_method = c("km", "km_exp", "km_wei", "km_os", "rs", "mrl", "cc", "pmm"),
min_cells = 3,
min_samples = NULL,
normalize = FALSE,
norm_factors = "TMM",
BPPARAM = BiocParallel::SerialParam(),
verbose = FALSE

)

testDA_censoredGLMM 15

Arguments

d_counts SummarizedExperiment object containing cluster cell counts, from calcCounts.
formula Model formula object, see testDA_GLMM and for more details createFormula.

Be aware of the special format required for the censored covariate: instead of
just the covariate name (e.g. ’X’) the columnname of the data being an event
indicator (e.g. ’I’, with ’I’ = 1 if ’X’ is observed and ’I’ = 0 if ’X’ is censored,)
needs to specified as well. The notation in the formula is then ’Surv(X,I)’.

contrast Contrast matrix, created with createContrast. See createContrast for de-
tails.

mi_reps number of imputations in multiple imputation. default = 10.
imputation_method

which method should be used in the imputation step. One of ’km’,’km_exp’,’km_wei’,’km_os’,
’rs’, ’mrl’, ’cc’, ’pmm’. See details. default = ’km’.

min_cells Filtering parameter. Default = 3. Clusters are kept for differential testing if they
have at least min_cells cells in at least min_samples samples.

min_samples Filtering parameter. Default = number of samples / 2, which is appropriate for
two-group comparisons (of equal size). Clusters are kept for differential testing
if they have at least min_cells cells in at least min_samples samples.

normalize Whether to include optional normalization factors to adjust for composition ef-
fects (see details). Default = FALSE.

norm_factors Normalization factors to use, if normalize = TRUE. Default = "TMM", in which
case normalization factors are calculated automatically using the ’trimmed mean
of M-values’ (TMM) method from the edgeR package. Alternatively, a vector
of values can be provided (the values should multiply to 1).

BPPARAM specify parallelization option as one of BiocParallelParam if ’BiocParallel’ is
available otherwise no parallelization. e.g. MulticoreParam-class(workers=2)
for parallelization with two cores. Default is SerialParam-class() (no paral-
lelization).

verbose Logical.

Details

Calculates tests for differential abundance of clusters, using generalized linear mixed models (GLMMs)
where a covariate is subject to right censoring.

The same underlying testing as described in testDA_GLMM is applied here. The main difference
is that multiple imputation is used to handle a censored covariate. In short, multiple imputation
consists of three steps: imputation, analysis and pooling. In the imputation step multiple complete
data sets are generated by imputation. The imputed data is then analysed in the second step and the
results are combined in the third step. See also pool. The imputation in the first step is specific for
censored data in contrast to the ’normal’ use of multiple imputation where data is missing. Alter-
natively the samples with censored data can be removed (complete case analysis) or the censored
values can be treated as missing (predictive mean matching).

Possible imputation methods in argument ’imputation_method’ are:

’km’ Kaplan Meier imputation is similar to ’rs’ (Risk set imputation) but the random draw is ac-
cording to the survival function of the respective risk set. The largest value is treated as
observed to obtain a complete survival function. (Taylor et al. 2002)

’km_exp’ The same as ’km’ but if the largest value is censored the tail of the survival function
is modeled as an exponential distribution where the rate parameter is obtained by fixing the
distribution to the last observed value. See (Moeschberger and Klein, 1985).

16 testDA_censoredGLMM

’km_wei’ The same as ’km’ but if the largest value is censored the tail of the survival function is
modeled as an weibull distribution where the parameters are obtained by MLE fitting on the
whole data. See (Moeschberger and Klein, 1985).

’km_os’ The same as ’km’ but if the largest value is censored the tail of the survival function is
modeled by order statistics. See (Moeschberger and Klein, 1985).

’rs’ Risk Set imputation replaces the censored values with a random draw from the risk set of the
respective censored value. (Taylor et al. 2002)

’mrl’ Mean Residual Life (Conditional multiple imputation, See Atem et al. 2017) is a multiple
imputation procedure that bootstraps the data and imputes the censored values by replacing
them with their respective mean residual life.

’cc’ complete case (listwise deletion) analysis removes incomlete samples.

’pmm’ predictive mean matching treats censored values as missing and uses predictive mean
matching from mice.

Value

Returns a new SummarizedExperiment object, with differential test results stored in the rowData
slot. Results include raw p-values (p_val) and adjusted p-values (p_adj), which can be used to
rank clusters by evidence for differential abundance. The results can be accessed with the rowData
accessor function.

References

A Comparison of Several Methods of Estimating the Survival Function When There is Extreme
Right Censoring (M. L. Moeschberger and John P. Klein, 1985)

Improved conditional imputation for linear regression with a randomly censored predictor (Atem et
al. 2017)

Survival estimation and testing via multiple imputation (Taylor et al. 2002)

Examples

create small data set with 2 differential clusters with 10 samples.
d_counts <- simulate_multicluster(alphas = runif(10,1e4,1e5),

sizes = runif(10,1e4,1e5),
nr_diff = 2,
group=2,
return_summarized_experiment = TRUE)$counts

extract covariates data.frame
experiment_info <- SummarizedExperiment::colData(d_counts)
add censoring
experiment_info$status <- sample(c(0,1),size=10,replace = TRUE,prob = c(0.3,0.7))
experiment_info$covariate[experiment_info$status == 0] <-

runif(10-sum(experiment_info$status),
min=0,
max=experiment_info$covariate[experiment_info$status == 0])

create model formula object
da_formula <- createFormula(experiment_info,

cols_fixed = c("covariate", "group_covariate"),
cols_random = "sample",event_indicator = "status")

create contrast matrix

testDA_censoredGLMM 17

contrast <- diffcyt::createContrast(c(0, 1, 0))

run testing with imputation method 'km'
outs <- testDA_censoredGLMM(d_counts = d_counts, formula = da_formula,

contrast = contrast, mi_reps = 2, imputation_method = "km")
diffcyt::topTable(outs)
differential clusters:
which(!is.na(SummarizedExperiment::rowData(d_counts)$paired))

Index

BiocParallelParam, 4, 15

calcCounts, 11, 15
censcyt, 2
censcyt-package (censcyt), 2
conditional_multiple_imputation, 6
createContrast, 3, 15
createDesignMatrix, 3
createFormula, 3, 9, 9, 15

DataFrame, 3, 5
diffcyt, 4, 5

generateClusters, 4

mice, 8, 16

pool, 7, 15
prepareData, 3, 9

rowData, 16

simulate_multicluster, 10
simulate_singlecluster, 12
SummarizedExperiment, 15, 16

tbl_df, 3
testDA_censoredGLMM, 3, 4, 14
testDA_GLMM, 15
testDS_limma, 3
testDS_LMM, 3
tibble, 14
transformData, 4

Weibull, 13

18

	censcyt
	conditional_multiple_imputation
	createFormula
	simulate_multicluster
	simulate_singlecluster
	testDA_censoredGLMM
	Index

