Package ‘VAExprs’

January 30, 2026

Type Package

Title Generating Samples of Gene Expression Data with Variational
Autoencoders

Description A fundamental problem in biomedical research is the low number of observa-
tions, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. By aug-
menting a few real observations with artificially generated samples, their analy-
sis could lead to more robust and higher reproducible. One possible solution to the prob-
lem is the use of generative models, which are statistical models of data that attempt to cap-
ture the entire probability distribution from the observations. Using the variational autoen-
coder (VAE), a well-known deep generative model, this package is aimed to generate sam-
ples with gene expression data, especially for single-cell RNA-seq data. Further-
more, the VAE can use conditioning to produce specific cell types or subpopulations. The condi-
tional VAE (CVAE) allows us to create targeted samples rather than completely random ones.

Version 1.16.0

Date 2022-05-16
LazyData TRUE
Depends keras, mclust

Imports SingleCellExperiment, SummarizedExperiment, tensorflow,
scater, CatEncoders, DeepPINCS, purrr, DiagrammeR, stats

Suggests SC3, knitr, testthat, reticulate, rmarkdown
License Artistic-2.0

biocViews Software, GeneExpression, SingleCell
NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/VAExprs
git_branch RELEASE_3_22

git_last_commit 1b7ae7b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Dongmin Jung [cre, aut] (ORCID:
<https://orcid.org/0000-0001-7499-8422>)

Maintainer Dongmin Jung <dmdmjung@gmail.com>

1

https://orcid.org/0000-0001-7499-8422

2

fit_vae

Contents

Index

GEM_EXPIS « v v v v v e 5
plot_aug L e e e 7
plot_vae 8

fit_vae Variational autoencoder model fitting

Description

A fundamental problem in biomedical research is the low number of observations available. Aug-
menting a few real observations with generated in silico samples could lead to more robust analysis.
Here, the variational autoencoder (VAE) is used for the realistic generation of single-cell RNA-seq
data. Also, the conditional variational autoencoder (CVAE) can be used if labels of samples are
available. This function allows us to fit variational autoencoders with the standard Gaussian prior to
expression data. It is assumed that there will likely be no clusters in the latent space representation
of variational autoencoders.

Usage

fit_vae(object = NULL,

X_train = NULL,

x_val = NULL,

y_train = NULL,

y_val = NULL,

encoder_layers,

decoder_layers,

latent_dim = 2,

regularization = 1,

epochs,

batch_size,

preprocessing = list(
x_train = NULL,
x_val = NULL,
y_train = NULL,
y_val = NULL,
minmax = NULL,
lenc = NULL),

use_generator = FALSE,

optimizer = "adam",

validation_split = 0, ...)

Arguments

object SummarizedExperiment object

x_train expression data for train, where each row is a cell and each column is a gene

x_val expression data for validation, where each row is a cell and each column is a

gene

fit_vae 3

y_train labels for train

y_val labels for validation

encoder_layers list of layers for encoder

decoder_layers list of layers for decoder

latent_dim dimension of latent vector (default: 2)

regularization regularization parameter, which is nonnegative (default: 1)
epochs number of epochs

batch_size batch size

preprocessing list of preprocessed results, they are set to NULL as default

* Xx_train : expression data for train

» x_val : expression data for validation

e y_train : labels for train

 y_val : labels for validation

* minmax : result of min-max normalization

e lenc : encoded labels
use_generator use data generator if TRUE (default: FALSE)

optimizer name of optimizer (default: adam)
validation_split

proportion of validation data, it is ignored when there is a validation set (default:
0)

additional parameters for the "fit" or "fit_generator"

Value
model trained VAE model
encoder trained encoder model
decoder trained decoder model

preprocessing preprocessed results

Author(s)

Dongmin Jung

References

Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D. S., Krebs, C. F., & Bonn, S. (2020).
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adver-
sarial networks. Nature communications, 11(1), 1-12.

See Also

SummarizedExperiment::assay, SummarizedExperiment::colData, scater::logNormCounts, keras::fit,
keras::fit_generator, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, Deep-
PINCS::multiple_sampling_generator

Examples

fit_vae

if (keras::is_keras_available() & reticulate::py_available()) {

simulate differentially expressed genes

set.seed(1)

g <-3

n <- 100

m <- 1000

mu <- 5

sigma <- 5

mat <- matrix(rnorm(n*mxg, mu, sigma), m, nxg)

rownames(mat) <- paste@("gene”, seq_len(m))

colnames(mat) <- paste@(”cell”, seq_len(nxg))

group <- factor(sapply(seq_len(g), function(x) {
rep(paste@("group”, x), n)

1))

names(group) <- colnames(mat)

mu_upreg <- 6

sigma_upreg <- 10

deg <- 100

for (i in seq_len(g)) {

mat[(degx(i-1) + 1):(deg*i), group == paste@("group”, i)] <-
mat[1:deg, group==paste@("group”, i)] + rnorm(deg, mu_upreg, sigma_upreg)

3

positive expression only
mat[mat < 0] <- @

x_train <- as.matrix(t(mat))

model

batch_size <- 32

original_dim <- 1000

intermediate_dim <- 512

epochs <- 2

VAE

vae_result <- fit_vae(x_train = x_train,

encoder_layers = list(layer_input(shape = c(original_dim)),

layer_dense(units

= intermediate_dim,

activation = "relu")),
decoder_layers = list(layer_dense(units = intermediate_dim,
activation = "relu”),

layer_dense(units

= original_dim,

activation = "sigmoid")),
epochs = epochs, batch_size = batch_size,

validation_split = 0.5,
use_generator = FALSE,

callbacks = keras::callback_early_stopping(

monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))

from preprocessing

vae_result_preprocessing <- fit_vae(preprocessing = vae_result$preprocessing,

encoder_layers = list(layer_input(shape = c(original_dim)),
layer_dense(units = intermediate_dim,
activation = "relu")),

gen_exprs
decoder_layers = list(layer_dense(units = intermediate_dim,
activation = "relu"),
layer_dense(units = original_dim,
activation = "sigmoid”)),
epochs = epochs, batch_size = batch_size,
validation_split = 0.5,
use_generator = FALSE,
callbacks = keras::callback_early_stopping(
monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))
3
gen_exprs Generate samples with expression data
Description

This function generate expression data by drawing samples from the latent vectors following the
standard multivariate Gaussian distribution (the standard multivariate normal distribution) for con-
venience. However, this assumption for the prior may not be appropriate because there may be
underlying distinctions between groups of samples. Any density function can be modeled by the
Gaussian mixture model. Here, by using the library "mclust"”, the finite Gaussian mixture is applied
for such sampling. Note that the Gaussian mixture model is not used for fitting in the function

"fit_vae".

Usage

gen_exprs(x, num_samples,
batch_size, use_generator = FALSE)

Arguments
X
num_samples
batch_size

use_generator

Value
x_gen
y_gen
x_train
y_train

latent_vector

Author(s)

Dongmin Jung

result of the function "fit_vae"

number of samples to be generated

batch size

use data generator if TRUE (default: FALSE)

generated expression data, where each row is a cell and each column is a gene
geneated labels

real expression data, where each row is a cell and each column is a gene

real labels

latent vector from real expression data

See Also

gen_exprs

mclust::mclustBIC, mclust::mclustModel, mclust::sim, DeepPINCS::multiple_sampling_generator,
CatEncoders::inverse.transform

Examples

if (

keras::is_keras_available() & reticulate::py_available()) {

simulate differentially expressed genes

set.seed(1)

g <3

n <- 100

m <- 1000

mu <- 5

sigma <- 5

mat <- matrix(rnorm(n*mxg, mu, sigma), m, n*xg)

rownames(mat) <- paste@("”gene", seq_len(m))

colnames(mat) <- paste@("cell”, seq_len(nxg))

group <- factor(sapply(seg_len(g), function(x) {
rep(paste@(”"group”, x), n)

1))

names(group) <- colnames(mat)

mu_upreg <- 6

sigma_upreg <- 10

deg <- 100

for (i in seq_len(g)) {
mat[(deg*x(i-1) + 1):(degxi), group == paste@("group”, i)] <-

mat[1:deg, group==paste@(”group”, i)] + rnorm(deg, mu_upreg, sigma_upreg)

}

positive expression only
mat[mat < @] <- @

x_train <- as.matrix(t(mat))

model

batch_size <- 32

original_dim <- 1000

intermediate_dim <- 512

epochs <- 2

VAE

vae_result <- fit_vae(x_train = x_train,

encoder_layers = list(layer_input(shape = c(original_dim)),
layer_dense(units = intermediate_dim,

activation =

decoder_layers = list(layer_dense(units = intermediate_dim,

activation =

layer_dense(units = original_dim,
"sigmoid")),

activation =
epochs = epochs, batch_size = batch_size,
validation_split = 0.5,
use_generator = FALSE,
callbacks = keras::callback_early_stopping(
monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))
plot
plot_vae(vae_result$model)

plot_aug 7

generate samples
set.seed(1)
gen_sample_result <- gen_exprs(vae_result, num_samples = 100)

plot_aug Visualization for augmented data

Description

For augmented data, we can create plots for specific types of dimension reduction.

Usage
plot_aug(x, plot_fun, ...)
Arguments
X result of the function "gen_exprs"
plot_fun "PCA", "MDS", "TSNE", "UMAP", "NMF", or "DiffusionMap"
additional parameters for the reduced dimension plots such as "scater::runPCA"
Value

plot for augmented data

Author(s)

Dongmin Jung

See Also

SingleCellExperiment::SingleCellExperiment, scater::logNormCounts, scater::runPCA, scater::runMDS,
scater::rtunTSNE, scater::runUMAP, scater::runNMF, scater::runDiffusionMap, scater::plotPCA, scater::plotMDS,
scater::plotTSNE, scater::plotUMAP, scater::plotNMF, scater::plotDiffusionMap

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
simulate differentially expressed genes
set.seed(1)
g <-3
n <- 100
m <- 1000
mu <- 5
sigma <- 5
mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
rownames(mat) <- paste@("gene”, seq_len(m))
colnames(mat) <- paste@(”cell”, seq_len(nxg))
group <- factor(sapply(seq_len(g), function(x) {

rep(paste@("group”, x), n)

8 plot_vae

1))
names(group) <- colnames(mat)
mu_upreg <- 6
sigma_upreg <- 10
deg <- 100
for (i in seqg_len(g)) {
mat[(deg*x(i-1) + 1):(degxi), group == paste@("group”, i)] <-
mat[1:deg, group==paste@("group”, i)] + rnorm(deg, mu_upreg, sigma_upreg)
3
positive expression only
mat[mat < @] <- @
x_train <- as.matrix(t(mat))

model
batch_size <- 32
original_dim <- 1000
intermediate_dim <- 512
epochs <- 2
VAE
vae_result <- fit_vae(x_train = x_train,
encoder_layers = list(layer_input(shape = c(original_dim)),
layer_dense(units = intermediate_dim,

activation = "relu")),
decoder_layers = list(layer_dense(units = intermediate_dim,
activation = "relu"),
layer_dense(units = original_dim,
activation = "sigmoid")),

epochs = epochs, batch_size = batch_size,
validation_split = 0.5,
use_generator = FALSE,
callbacks = keras::callback_early_stopping(
monitor = "val_loss",
patience = 10,
restore_best_weights = TRUE))
plot
plot_vae(vae_result$model)

#i#t# generate samples

set.seed(1)

gen_sample_result <- gen_exprs(vae_result, num_samples = 100)
plot

plot_aug(gen_sample_result, "PCA")

plot_vae Visualization for the variational autoencoder

Description

You can create a plot of the VAE model. This plot can help you check that the model is connected
the way you intended. The node colors indicate the components of the VAE.

plot_vae 9
Usage
plot_vae(x, node_color = list(encoder_col = "tomato”,
mean_vector_col = "orange”,
stddev_vector_col = "lavender”,
latent_vector_col = "lightblue”,
decoder_col = "palegreen”,
condition_col = "gray"))
Arguments
X VAE model

node_color

Value

node colors for encoder(default: tomato), mean vector(default: orange), stan-
dard deviation vector(default: lavender), latent_vector(default: lightblue), de-
coder(default: palegreen), and condition(default: gray)

plot for the model architecture

Author(s)

Dongmin Jung

See Also

purrr::map, purrr::map_chr, purrr::pluck, purrr::imap_dfr, DiagrammeR::grViz

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
#i## simulate differentially expressed genes

set.seed(1)

g <3

n <- 100

m <- 1000

mu <- 5

sigma <- 5

mat <- matrix(rnorm(n*mxg, mu, sigma), m, n*xg)

rownames(mat) <- paste@("”gene”, seqg_len(m))

colnames(mat) <- paste@("cell”, seq_len(nxg))

group <- factor(sapply(seg_len(g), function(x) {
rep(paste@(”"group”, x), n)

m

names(group) <- colnames(mat)

mu_upreg <- 6

sigma_upreg <- 10

deg <- 100

for (i in seq_len(g)) {

mat[(deg*(i-1) + 1):(degxi), group == paste@("group”, i)] <-
mat[1:deg, group==paste@(”group”, i)] + rnorm(deg, mu_upreg, sigma_upreg)

}

positive expression only
mat[mat < @] <- @

x_train <- as.matrix(t(mat))

10

#i## model
batch_size <- 32
original_dim <- 1000
intermediate_dim <- 512
epochs <- 2
VAE
vae_result <- fit_vae(x_train = x_train,
encoder_layers = list(layer_input(shape

plot_vae

c(original_dim)),

layer_dense(units = intermediate_dim,

activation

decoder_layers = list(layer_dense(units

activation
original_dim,
"sigmoid")),

layer_dense(units =

activation

epochs = epochs, batch_size = batch_size,

validation_split = 0.5,
use_generator = FALSE,

callbacks = keras::callback_early_stopping(

monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))
plot
plot_vae(vae_result$model)

intermediate_dim,

Index

fit_vae, 2
gen_exprs, 5

plot_aug, 7
plot_vae, 8

11

	fit_vae
	gen_exprs
	plot_aug
	plot_vae
	Index

