Package ‘ReUseData’

January 30, 2026
Title Reusable and reproducible Data Management
Version 1.10.0

Description ReUseData is an _R/Bioconductor_ software tool to provide
a systematic and versatile approach for standardized and
reproducible data management. ReUseData facilitates transformation
of shell or other ad hoc scripts for data preprocessing into
workflow-based data recipes. Evaluation of data recipes generate
curated data files in their generic formats (e.g., VCF, bed). Both
recipes and data are cached using database infrastructure for easy
data management and reuse. Prebuilt data recipes are available
through ReUseData portal (" " https://rcwl.org/dataRecipes/") with
full annotation and user instructions. Pregenerated data are
available through ReUseData cloud bucket that is directly
downloadable through ** getCloudData()".

Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Imports Rcwl, RewlPipelines, BiocFileCache, S4 Vectors, stats, tools,
utils, methods, jsonlite, yaml, basilisk

Suggests knitr, rmarkdown, testthat (>= 3.0.0), BiocStyle
Config/testthat/edition 3
VignetteBuilder knitr

biocViews Software, Infrastructure, Datalmport, Preprocessing,
ImmunoOncology

License GPL-3
URL https://github.com/rworkflow/ReUseData

BugReports https://github.com/rworkflow/ReUseData/issues

git_url https://git.bioconductor.org/packages/ReUseData

git_branch RELEASE_3_22

git_last_commit 2d4066b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Qian Liu [aut, cre] (ORCID: <https://orcid.org/0000-0003-1456-5099>)

Maintainer Qian Liu <gian.liu@roswellpark.org>

1

https://github.com/rworkflow/ReUseData
https://github.com/rworkflow/ReUseData/issues
https://orcid.org/0000-0003-1456-5099

2 annData
Contents
annData e 2
dataHub 3
dataSearch e 5
dataUpdate e 5
getCloudData e 7
getData L e e e 8
meta_data e 9
recipeHub 10
recipeload 11
recipeMake L 12
recipeSearch L e e e e 14
recipeUpdate e e e e 14
ReUseData o e e 15
Index 16
annData annData
Description
Add annotation or meta information to existing data
Usage
annData(
path,
notes,
date = Sys.Date(),
recursive = TRUE,
md5 = FALSE,
skip = "*x.md|meta.yml",
force = FALSE,
)
Arguments
path The data path to annotate.
notes User assigned notes/keywords to annotate the data and be used for keywords
matching in dataSearch(keywords =).
date The date of the data.
recursive Whether to annotate all data recursively.
md5 Whether to generate md5 values for all files.
skip Patter to skip files in the path.
force Whether to force regenerate meta.yml.

The other options from list.files

dataHub

dataHub dataHub Class

Description

dataHub class, constructor, and methods.
Usage

dataHub (BFC)

dataHub (BFC)

S4 method for signature 'dataHub'
show(object)

dataNames(object)
dataParams(object)
dataNotes(object)
dataPaths(object)
dataYml(object)
dataTags(object)

S4 method for signature 'dataHub'
dataTags(object)

dataTags(object, append = TRUE) <- value

S4 replacement method for signature 'dataHub'
dataTags(object, append = FALSE) <- value

S4 method for signature 'dataHub,ANY,ANY,ANY'
x[i, j, drop]

S4 replacement method for signature 'dataHub,ANY,ANY,ANY'
x[i, j1 <- value

S4 method for signature 'dataHub'
c(x, ...)

toList(
X,
listNames = NULL,
format = c("list”, "json”, "yaml"),
type = NULL,
file = character()

Arguments

BFC
object
append
value
X

i

J
drop

listNames
format
type

file

Value

dataHub

A BiocFileCache object created for data and recipes.
A dataHub object.

Whether to append new tag or replace all tags.

A dataHub object

A dataHub object.

The integer index of the dataHub object, or a logical vector same length as the
dataHub object.

inherited from [generic.

Inherited from [generic.

More dataHub objects to combine.

A vector of names for the output list.

can be "list", "json" or "yaml". Supports partial match. Default is list.

The type of workflow input list, such as cwl.

The file name to save the data list in required format. The data extension needs
to be included, e.g., ".json" or ".yml".

dataHub: a dataHub object.

dataNames: the names of datasets in dataHub object.

dataParams: the data recipe parameter values for datasets in dataHub object.

dataNotes: the notes of datasets in dataHub object.

dataPaths: the file paths of datasets in dataHub object.

dataYml: the yaml

file paths of datasets in dataHub object.

dataTags: the tags of datasets in dataHub object.

toList: A list of datasets in specific format, and a file if file argument is specified.

Examples

outdir <- file.path(tempdir(), "SharedData")

dataUpdate(outdir

, cloud = TRUE)

dd <- dataSearch(c("liftover”, "GRCh38"))

dataNames (dd)
dataParams(dd)
dataNotes(dd)
dataTags(dd)
dataYml(dd)
toList(dd)
toList(dd, format
toList(dd, format

= "yaml")
= "json", file = tempfile())

dataSearch 5

dataSearch dataSearch search data in local data caching system

Description

dataSearch search data in local data caching system

Usage
dataSearch(keywords = character(), cachePath = "ReUseData")
Arguments
keywords character vector of keywords to be matched to the local datasets. It matches the
"notes" when generating the data using getData(notes =). Keywords can be
a tag with the data in #tag format. If not specified, function returns the full data
list.
cachePath A character string for the data cache. Must match the one specified in dataUpdate ().
Default is "ReUseData".
Value

a dataHub object containing the information about local data cache, e.g., data name, data path, etc.

Examples

dataSearch()
dataSearch(c("gencode"))
dataSearch("#gatk")

dataUpdate dataUpdate

Description

Function to update the local data records by reading the yaml files in the specified directory recur-
sively.

Usage

dataUpdate(
dir,
cachePath = "ReUseData",
outMeta = FALSE,
keepTags = TRUE,
cleanup = FALSE,
cloud = FALSE,
remote = FALSE,
checkData = TRUE,
duplicate = FALSE

Arguments

dir

cachePath

outMeta

keepTags

cleanup

cloud

remote

checkData

duplicate

Details

dataUpdate

a character string for the directory where all data are saved. Data information
will be collected recursively within this directory.

A character string specifying the name for the BiocFileCache object to store all
the curated data resources. Once specified, must match the cachePath argument
in dataSearch. Default is "ReUseData".

Logical. If TRUE, a "meta_data.csv" file will be generated in the dir, containing
information about all available datasets in the directory: The file path to the
yaml files, and yaml entries including parameter values for data recipe, file path
to datasets, notes, version (from getData()), if available and data generating
date.

If keep the prior assigned data tags. Default is TRUE.

If remove any invalid intermediate files. Default is FALSE. In cases one data
recipe (with same parameter values) was evaluated multiple times, the same
data file(s) will match to multiple intermediate files (e.g., .yml). cleanup will
remove older intermediate files, and only keep the most recent ones that matches
the data file. When there are any intermediate files that don’t match to any data
file, cleanup will also remove those.

Whether to return the pregenerated data from Google Cloud bucket of ReUse-
Data. Default is FALSE.

Whether to use the csv file (containing information about pregenerated data on
Google Cloud) from GitHub, which is most up-to-date. Only works when cloud
= TRUE. Default is FALSE.

check if the data (listed as "# output: " in the yml file) exists. If not, do not in-
clude in the output csv file. This argument is added for internal testing purpose.

Whether to remove duplicates. If TRUE, older version of duplicates will be
removed.

Users can directly retrieve information for all available datasets by using meta_data(dir=), which
generates a data frame in R with same information as described above and can be saved out.
dataUpdate does extra check for all datasets (check the file path in "output" column), remove
invalid ones, e.g., empty or non-existing file path, and create a data cache for all valid datasets.

Value

a dataHub object containing the information about local data cache, e.g., data name, data path, etc.

Examples

Generate data
Not run:
library(Rcwl)

outdir <- file.path(tempdir(), "SharedData")

echo_out <- recipelLoad("echo_out")
Rcwl: :inputs(echo_out)
echo_out$input <- "Hello World!"”
echo_out$outfile <- "outfile”

res <- getData(echo_out,

getCloudData 7

outdir = outdir,
notes = c("echo”, "hello”, "world", "txt"),
showLog = TRUE)

ensembl_liftover <- recipeLoad("ensembl_liftover")

Rcwl: :inputs(ensembl_liftover)

ensembl_liftover$species <- "human”

ensembl_liftover$from <- "GRCh37"

ensembl_liftover$to <- "GRCh38"

res <- getData(ensembl_liftover,
outdir = outdir,
notes = c("ensembl”, "liftover"”, "human"”, "GRCh37", "GRCh38"),
showLog = TRUE)

Update data cache (with or without prebuilt data sets from ReUseData cloud bucket)
dataUpdate(dir = outdir)
dataUpdate(dir = outdir, cloud = TRUE)

newly generated data are now cached and searchable
dataSearch(c("hello”, "world"))
dataSearch(c("ensembl”, "liftover"”)) ## both locally generated data and google cloud data!

End(Not run)

getCloudData getCloudData Download the pregenerated curated data sets from
ReUseData cloud bucket

Description

getCloudData Download the pregenerated curated data sets from ReUseData cloud bucket

Usage

getCloudData(datahub, outdir = character())

Arguments
datahub The dataHub object returned from dataSearch() with 1 data record available
on ReUseData cloud bucket.
outdir The output directory for the data (and concomitant annotation files) to be down-
loaded. It is recommended to use a new folder under a shared folder for a new
to-be-downloaded data.
Value

Data and concomitant annotation files will be downloaded to the user-specified folder that is locally
searchable with dataSearch().

8 getData

Examples

outdir <- file.path(tempdir(), "gcpData”)
dh <- dataSearch(c("ensembl”, "GRCh38"))
dh <- dh[grep("http”, dataPaths(dh))]

download data from google bucket
getCloudData(dh[1], outdir = outdir)

Update local data caching
dataUpdate(outdir) ## no "cloud=TRUE" here, only showing local data cache

Now the data is available to use locally
dataSearch(c("ensembl”, "GRCh38"))

getData getData

Description

Evaluation of data recipes to generate curated dataset of interest.

Usage

getData(
rep,
outdir,
prefix = NULL,
notes = c(),
conda = FALSE,
BPPARAM = NULL,

)
Arguments

rcp the data recipe in cwlProcess S4 class.

outdir Character string specifying the directory to store the output files. Will automat-
ically create if not exist or provided.

prefix Character string specifying the file name of the annotation files (.yml, .cwl, .sh,
.md5).

notes User assigned notes/keywords to annotate the data and be used for keywords
matching in dataSearch(keywords =).

conda Whether to use conda to install required software when evaluating the data
recipe as a CWL workflow. Default is FALSE.

BPPARAM The options for BiocParallel: :bpparam.

Arguments to be passed into Rcwl: runCWL ().

meta_data 9

Value

The data files and 4 meta files: .cwl: The cwl script that was internally run to get the data; .yml:
the input parameter values for the data recipe and user specified data annotation notes, versions etc;
.sh: The script for data processing; .md: checksum file to verify the integrity of generated data
files.

Examples

Not run:
library(Rcwl)
outdir <- file.path(tempdir(), "SharedData")

Example 1

echo_out <- recipeload("echo_out")

Rewl: :inputs(echo_out)

echo_out$input <- "Hello World!"

echo_out$outfile <- "outfile”

res <- getData(echo_out,
outdir = outdir,
notes = c("echo”, "hello”, "world”, "txt"),
showLog = TRUE)

Example 2

ensembl_liftover <- recipeLoad("ensembl_liftover")
Rcwl: :inputs(ensembl_liftover)
ensembl_liftover$species <- "human”
ensembl_liftover$from <- "GRCh37"
ensembl_liftover$to <- "GRCh38"

res <- getData(ensembl_liftover,
outdir = outdir,
notes = c("ensembl”, "liftover"”, "human”, "GRCh37", "GRCh38"),
showLog = TRUE)

dir(outdir)

End(Not run)

meta_data meta_data

Description

Functions to generate the meta csv file for local cached dataset.

Usage

meta_data(dir = "", cleanup = FALSE, checkData = TRUE)

Arguments

dir The path to the shared data folder.

10 recipeHub

cleanup If remove any invalid intermediate files. Default is FALSE. In cases one data
recipe (with same parameter values) was evaluated multiple times, the same
data file(s) will match to multiple intermediate files (e.g., .yml). cleanup will
remove older intermediate files, and only keep the most recent ones that matches
the data file. When there are any intermediate files that don’t match to any data
file, cleanup will also remove those.

checkData check if the data (listed as "# output: " in the yml file) exists. If not, do not in-
clude in the output csv file. This argument is added for internal testing purpose.

Value

a data.frame with yml file name, parameter values, data file paths, date, and user-specified notes
when generating the data with getData().

Examples

outdir <- file.path(tempdir(), "SharedData")
meta_data(outdir)

recipeHub recipeHub

Description

recipeHub class, constructor, and methods.

Usage
recipeHub (BFC)

recipeHub (BFC)

S4 method for signature 'recipeHub'
show(object)

S4 method for signature 'recipeHub,ANY,ANY,ANY'

x[i]
recipeNames(object)
Arguments
BFC A BiocFileCache object created for recipe and recipes.
object The recipeHub object
X The recipeHub object
i The integer index of the recipeHub object
Value

recipeHub: a recipeHub object.
[: A recipeHub object that was subsetted.

recipeNames: the recipe names for the recipeHub object.

recipeLoad 11

Examples

rcps <- recipeSearch(c("gencode"))
rcpl <- rcps[1]
recipeNames(rcpl)

recipeload recipelLoad

Description

To load data recipe(s) into R environment.

Usage
recipelLoad(
rep = c(),
cachePath = "ReUseDataRecipe”,
env = .GlobalEnv,
return = TRUE
)
Arguments
rcp The (vector of) character string of recipe name or file path (recipeNames() or
mcols()$fpath column of the recipeHub object returned from recipeSearch).
cachePath A character string for the recipe cache. Must match the one specified in recipeUpdate().
Default is "ReUseDataRecipe".
env The R environment to export to. Default is . GlobalEnv.
return Whether to return the recipe to a user-assigned R object. Default is TRUE, where
user need to assign a variable name to the recipe. e.g., rcp1 <- recipelLoad().
If FALSE, it loads the recipe and uses its original name, and user doesn’t need
to assign a new name. e.g., recipeload(return=TRUE). If multiple recipes are
to be loaded, return=FALSE must be used.
Value

A data recipe of cwlProcess S4 class, which is ready to be evaluated in R.

Examples

S
Load single recipe
S

library(Rcwl)

recipeUpdate()
recipeSearch("liftover")

rcp <- recipelLoad("ensembl_liftover")
Rewl: :inputs(rcp)

rm(rcp)

12

gencode_annota

recipeMake

tion <- recipeload("gencode_annotation”)

inputs(gencode_annotation)
rm(gencode_annotation)

I

Load multip

le recipes

A

rcphub <- recipeSearch("gencode")

recipeNames (rcphub)
recipelLoad(recipeNames(rcphub), return=FALSE)
inputs(gencode_transcripts)

recipeMake

recipeMake

Description

Constructor function of data recipe

Usage

recipeMake(
shscript =
paramID = ¢
paramType =
outputID =
outputType
outputGlob
requireTool

Arguments

shscript

paramID

paramType

outputID
outputType
outputGlob

requireTools

character(),
O,
cQ),
cQ),
= c("File[1™),
= character(9),
s = character(0)

character string. Can take either the file path to the user provided shell script, or
directly the script content, that are to be converted into a data recipe.

Character vector. The user specified parameter ID for the recipe.

Character vector specifying the type for each paramID. One parameter can be of
multiple types in list. Valid values are "int" for integer, "boolean" for boolean,
"float" for numeric, "File" for file path, "File[]" for an array of files, etc. Can

non

also take "double", "long", "null", "Directory". See details.
the ID for each output.

the output type for each output.

the glob pattern of output files. E.g., "hg19.*".

the command-line tools to be used for data processing/curation in the user-
provided shell script. The value here must exactly match the tool name. E.g.,

"bwa", "samtools", etc. A particular version of that tool can be specified in the
format of "tool=version", e.g., "samtools=1.3".

recipeMake 13

Details

For parameter types, more details can be found here: "https://www.commonwl.org/v1.2/CommandLineTool.htmI#CWLT

recipeMake is a convenient function for wrapping a shell script into a data recipe (in cwlProcess
S4 class). Please use Rcwl: : cwlProcess for more options and functionalities, especially when the
recipe gets complicated, e.g., needs a docker image for a command-line tool, or one parameter takes
multiple types, etc. Refer to this recipe as an example: https://github.com/rworkflow/ReUseDataRecipe/blob/master/refer

Value

adatarecipe in cwlProcess S4 class with all details about the shell script for data processing/curation,
inputs, outputs, required tools and corresponding docker files. It is readily taken by getData() to
evaluate the shell scripts included and generate the data locally. Find more details with ?Rcwl: : cwlProcess.

Examples

Not run:
library(Rcwl)
HHHHHHEEEE
#i## example 1
HHHHEHHHHEH
script <- "
input=%$1
outfile=$2
echo \"Print the input: $input\” > $outfile.txt
rcp <- recipeMake(shscript = script,
paramID = c("input”, "outfile"),
paramType = c("string”, "string"),
outputID = "echoout”,
outputGlob = "x.txt")
inputs(rcp)
outputs(rcp)
rcp$input <- "Hello World!”
rcp$outfile <- "outfile”
res <- getData(rcp, outdir = tempdir(),

notes = c("echo”, "hello”, "world", "txt"),
showLog = TRUE)
readLines(res$out)
HHHHHHEEEE
example 2
HHHHHHAEEE
shfile <- system.file("extdata”, "gencode_transcripts.sh”, package = "ReUseData")
readLines(shfile)
rcp <- recipeMake(shscript = shfile,
paramID = c("species”, "version"),
paramType = c("string”, "string"),
outputID = "transcripts”,
outputGlob = "*.transcripts.fa*",
requireTools = c("wget"”, "gzip"”, "samtools")
)

Rewl: :inputs(rcp)
rcp$species <- "human”

14 recipeUpdate

rcp$version <- "42"
res <- getData(rcp,
outdir = tempdir(),

notes = c("gencode”, "transcripts”, "human", "42"),
showLog = TRUE)

res$output

dir(tempdir())

End(Not run)

recipeSearch recipeSearch

Description

Search existing data recipes.

Usage
recipeSearch(keywords = character(), cachePath = "ReUseDataRecipe")
Arguments
keywords character vector of keywords to be matched to the recipe names. If not specified,
function returns the full recipe list.
cachePath A character string for the recipe cache. Must match the one specified in recipeUpdate().
Default is "ReUseDataRecipe".
Value

A recipeHub object.

Examples

recipeSearch()
recipeSearch(”gencode"”)
recipeSearch(c("STAR", "index"))

recipeUpdate recipeUpdate

Description

Function to sync and get the most updated and newly added data recipes through the pubic "rwork-
flow/ReUseDataRecipe" GitHub repository or user-specified private GitHub repository.

ReUseData 15

Usage

recipeUpdate(
cachePath = "ReUseDataRecipe”,
force = FALSE,
remote = FALSE,

repos = "rworkflow/ReUseDataRecipe”
)
Arguments
cachePath A character string specifying the name for the BiocFileCache object to store
the ReUseData recipes. Once specified here, must use the same for cachePath
argument in recipeSearch, and recipeload. Default is "ReUseDataRecipe".
force Whether to remove existing and regenerate recipes cache. Default is FALSE.
Only use if any old recipes that have been previously cached locally are updated
remotely (on GitHub repos).
remote Whether to download the data recipes directly from a GitHub repository. Default
is FALSE.
repos The GitHub repository containing data recipes that are to be synced to local
cache. Only works when remote=TRUE. Default is "rworkflow/ReUseDataRecipe"
GitHub repository where public data recipes are saved, which might be more up-
to-date than the recipes contained inReUseData package. It can also be a private
GitHub repository where users save their own data recipes.
Value

a recipeHub object.

Examples

recipeUpdate()
recipeUpdate(force=TRUE)
recipeUpdate(force = TRUE, remote = TRUE)

ReUseData ReUseData

Description

ReUseData is an R/Bioconductor software tool to provide a systematic and versatile approach for
standardized and reproducible data management. ReUseData facilitates transformation of shell or
other ad hoc scripts for data preprocessing into workflow-based data recipes. Evaluation of data
recipes generate curated data files in their generic formats (e.g., VCF, bed). Both recipes and data
are cached using database infrastructure for easy data management and reuse. Prebuilt data recipes
are available through ReUseData portal ("https://rcwl.org/dataRecipes/") with full annotation and
user instructions. Pregenerated data are available through ReUseData cloud bucket that is directly
downloadable through "getCloudData()".

Index

[,dataHub, ANY,ANY,ANY-method (dataHub),

3
[,recipeHub, ANY,ANY, ANY-method
(recipeHub), 10
[<-,dataHub,ANY,ANY,ANY-method
(dataHub), 3

annData, 2
c,dataHub-method (dataHub), 3

dataHub, 3

dataNames (dataHub), 3

dataNotes (dataHub), 3

dataParams (dataHub), 3

dataPaths (dataHub), 3

dataSearch, 5

dataTags (dataHub), 3
dataTags,dataHub-method (dataHub), 3
dataTags<- (dataHub), 3
dataTags<-,dataHub-method (dataHub), 3
dataUpdate, 5

data¥Yml (dataHub), 3

getCloudData, 7
getData, 8

meta_data, 9

recipeHub, 10
recipeload, 11
recipeMake, 12

recipeNames (recipeHub), 10
recipeSearch, 14
recipeUpdate, 14
ReUseData, 15

show, dataHub-method (dataHub), 3
show, recipeHub-method (recipeHub), 10

toList (dataHub), 3

16

	annData
	dataHub
	dataSearch
	dataUpdate
	getCloudData
	getData
	meta_data
	recipeHub
	recipeLoad
	recipeMake
	recipeSearch
	recipeUpdate
	ReUseData
	Index

