Package ‘RUVnormalize’

January 30, 2026

Title RUV for normalization of expression array data

Version 1.44.0

Date 2013-11-10

Author Laurent Jacob

Maintainer Laurent Jacob <laurent. jacob@univ-lyon1.fr>

Description RUVnormalize is meant to remove unwanted variation from
gene expression data when the factor of interest is not
defined, e.g., to clean up a dataset for general use or to do
any kind of unsupervised analysis.

License GPL-3

LazyLoad yes

Imports RUVnormalizeData, Biobase
Enhances spams

Depends R (>=2.10.0)

NeedsCompilation no

biocViews StatisticalMethod, Normalization
BuildVignettes true

git_url https://git.bioconductor.org/packages/RUVnormalize
git_branch RELEASE_3_22
git_last_commit fOc7f18
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-29

Contents

clIScore e e e
iterativeRUV e e
naiveRandRUV e
naiveReplicateRUV o
svdPlot L e

Index

2 clScore

clScore Computes a distance between two partitions of the same data

Description
The function takes as input two partitions of a dataset into clusters, and returns a number which is
small if the two partitions are close, large otherwise.

Usage

clScore(cl, c2)

Arguments
cl A vector giving the assignment of the samples to cluster for the first partition
c2 A vector giving the assignment of the samples to cluster for the second partition
Value

A number corresponding to the distance between cl and c2

Examples

if(require('RUVnormalizeData')){

Load the data
data('gender', package='RUVnormalizeData')

Y <- t(exprs(gender))

X <- as.numeric(phenoData(gender)$gender == 'M')
X <= X - mean(X)

X <= cbind(X/(sqgrt(sum(X*2))))

chip <- annotation(gender)

Extract regions and labs for plotting purposes
lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')L[1]11[2])
1labs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_")C[111[31)

Dimension of the factors
m <- nrow(Y)
n <- ncol(Y)
p <- ncol(X)

Y <- scale(Y, scale=FALSE) # Center gene expressions
cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes

Prepare plots

annot <- cbind(as.character(sign(X)))

colnames(annot) <- 'gender'

plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, 1llabs),2,FUN=function(v) paste(v,collapse='_"))
gender.col <- c('-1' = "deeppink3”, '1' = "blue")

clScore

Remove platform effect by centering.

Y[chip=="hgu95a.db',] <- scale(Y[chip=="hgu95a.db',], scale=FALSE)
Y[chip=="hgu95av2.db',] <- scale(Y[chip=="hgu95av2.db',], scale=FALSE)

Number of genes kept for clustering, based on their variance
nKeep <- 1260

k <- 20
nu <- 0@

Correction
nsY <- naiveRandRUV(Y, cIdx, nu.coeff=0, k=k)

Clustering of the corrected data

sdY <- apply(nsY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix

kmres2ns <- kmeans(nsY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2ns <- kmres2ns$cluster

nsScore <- clScore(vclust2ns, X)

Plot of the corrected data

svdRes2ns <- NULL

svdRes2ns <- svdPlot(nsY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=1lab.and.region,
svdRes=svdRes2ns,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

e
Naive RUV-2 + shrinkage
e
k <=m

nu.coeff <- le-2

Correction
nY <- naiveRandRUV(Y, cIdx, nu.coeff=nu.coeff, k=k)

Clustering of the corrected data

sdY <- apply(nY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix

kmres2 <- kmeans(nY[,ssd[1:nKeep],drop=FALSE], centers=2,nstart=200)
vclust2 <- kmres2$cluster

nScore <- clScore(vclust2,X)

Plot of the corrected data

svdRes2 <- NULL

svdRes2 <- svdPlot(nY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=1lab.and.region,
svdRes=svdRes2,

iterativeRUV

plAnnots=plAnnots,
kColors=gender.col, file=NULL)

3
iterativeRUV Remove unwanted variation from a gene expression matrix using con-
trol genes, optionally replicate samples, and iterative estimates of the
factor of interest
Description

The function takes as input a gene expression matrix as well as the index of negative control genes
and replicate samples. It estimates and remove unwanted variation from the gene expression. The
major difference with naiveRandRUV and naiveReplicateRUV is that iterativeRUV jointly esti-
mates the factor of interest and the unwanted variation term. It does so iteratively, by estimating
each term using the current estimate of the other one.

Usage

iterativeRUV(Y, cIdx, scIdx=NULL, paramXb, k, nu.coeff=0, cEps=1e-08, maxIter=30,
Wmethod="svd", Winit=NULL, wUpdate=maxIter + 1, tol=1e-6)

Arguments

Y

cIdx

scldx

paramXb

nu.coeff

cEps

maxIter
Wmethod

Winit

Expression matrix where the rows are the samples and the columns are the
genes.

Column index of the negative control genes in Y, for estimation of unwanted
variation.

Matrix giving the set of replicates. Each row is a set of arrays corresponding to
replicates of the same sample. The number of columns is the size of the largest
set of replicates, and the smaller sets are padded with -1 values. For example if
the sets of replicates are (1,11,21), (2,3), (4,5), (6,7,8), the scIdx should be 1 11
2123-145-1678

A list containing parameters for the estimation of the term of interest: K corre-
sponds to the rank of X. lambda is the regularization parameter. Large values of
lambda lead to sparser, more shrunk estimates of beta. D, batch, iter and mode
should not be modified unless you are familiar with sparse dictionary learning
algorithms.

Desired rank for the estimated unwanted variation term. The returned rank may

be lower if the replicate arrays and control genes did not contain a signal of rank
k.

Regularization parameter for the unwanted variation.

tolerance for relative changes of Wa and Xb estimators at each step. When both
get smaller than cEps, the iterations stop.

Maximum number of iterations.

’svd’ or ‘rep’, depending whether W is estimated from control genes or replicate
samples.

Optionally provides an initial value for W.

iterativeRUV 5

wUpdate Number of iterations between two updates of W. By default, W is never updated.
Make sure that enough iterations are done after the last update of W. E.g, setting
W to maxIter will only allow for one iteration of estimating alpha given (Xb, W)
and no re-estimation of Xb.

tol Smallest ratio allowed between a squared singular value of Y[, cldx] and the
largest of these squared singular values. All smaller singular values are dis-
carded.
Details

In terms of model, the rank k can be thought of as the number of independent sources of unwanted
variation in the data (i.e., if one source is a linear combination of other sources, it does not increase
the rank). The ridge nu.coeff should be inversely proportional to the (expected) magnitude of the
unwanted variation.

In practice, even if the real number of independent sources of unwanted variation (resp. their
magnitude) is known, using a smaller k (resp., larger ridge) could yield better corrections because
one may not have enough samples to effectively estimate all the effects.

More intuition and guidance on the practical choice of these parameters are available in the paper
(http://biostatistics.oxfordjournals.org/content/17/1/16.full) andits supplement (http:
//biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv@026.DC1/kxv@26supp.
pdf). In particular: - Equation 2.3 in the manuscript gives an interpretation of the ridge parameter

in terms of a probabilistic model. - Section 5.1 of the manuscript provides guidelines to select both
parameters on real data. - Section 3 of the supplement compares the effect of reducing the rank and
increasing the ridge. - Section 4 of the supplement gives a detailed discussion of how to select the
ridge parameter on a real example.

Value

A list containing the following terms:

X, b if p is not NULL, contains an estimate of the factor of interest (X) and its effect
(beta) obtained using rank-p restriction of the SVD of Y - W alpha.
W, a Estimates of the unwanted variation factors (W) and their effect (alpha).
cY The corrected expression matrix Y - W alpha.
Examples

if(require('RUVnormalizeData') && require('spams')){
Load the spams library
library(spams)

Load the data
data('gender', package='RUVnormalizeData')

Y <- t(exprs(gender))

X <- as.numeric(phenoData(gender)$gender == 'M"')
X <= X - mean(X)

X <= cbind(X/(sgrt(sum(X*2))))

chip <- annotation(gender)

Extract regions and labs for plotting purposes
lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')L[[111[2])
llabs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')L[1]I1[3])

http://biostatistics.oxfordjournals.org/content/17/1/16.full
http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf
http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf
http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf

iterativeRUV

Dimension of the factors
m <- nrow(Y)
n <- ncol(Y)
p <- ncol(X)

Y <- scale(Y, scale=FALSE) # Center gene expressions
cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes

Prepare plots
annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'
plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, 1llabs),2,FUN=function(v) paste(v,collapse='_"))
gender.col <- c¢('-1' = "deeppink3”, '1' = "blue")

Remove platform effect by centering.

Y[chip=="hgu95a.db',] <- scale(Y[chip=='hgu95a.db',], scale=FALSE)
Y[chip=="hgu95av2.db',] <- scale(Y[chip=="hgu95av2.db',], scale=FALSE)

Number of genes kept for clustering, based on their variance
nKeep <- 1260

Prepare control samples

scldx <- matrix(-1,84,3)
rny <- rownames(Y)

added <- c()

c<-0

Replicates by lab
for(r in 1:(length(rny) - 1)){
if(r %in% added)
next
c <- c+l
scldx[c,1] <-r
cc <- 2
for(rr in seq(along=rny[(r+1):length(rny)1)){
if(all(strsplit(rny[r],'_")CL1]1[-3] == strsplit(rnylr+rr],'_")LL111[-31)){
scIdx[c,cc] <- r+rr
cc <- cc+l
added <- c(added,r+rr)

3
3

scldxLab <- scIdx

scIdx <- matrix(-1,84,3)
rny <- rownames(Y)

added <- c()

c<-0

Replicates by region
for(r in 1:(length(rny) - 1)){
if(r %in% added)

iterativeRUV 7

next
c <- ctl
scldx[c,1] <-r
cc <- 2
for(rr in seq(along=rny[(r+1):length(rny)1)){
if(all(strsplit(rnylrl,'_")LL1]11[-2] == strsplit(rny[r+rr],'_")L[111[-21)){
scIdx[c,cc] <- r+rr
cc <- cc+l
added <- c(added,r+rr)

3
scIdx <- rbind(scIdxLab,scIdx)

Number of genes kept for clustering, based on their variance
nKeep <- 1260

Prepare plots
annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'
plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, 1llabs),2,FUN=function(v) paste(v,collapse='_"))

gender.col <- c¢('-1' = "deeppink3”, '1' = "blue")
#H -

Iterative replicate-based

#Hh-————

cEps <- 1e-6

maxIter <- 30

p <- 20

paramXb <- list()

paramXb$K <- p

paramXb$D <- matrix(c(@.),nrow = 0,ncol=0)
paramXb$batch <- TRUE

paramXb$iter <- 1

paramXb$mode <- 'PENALTY'

paramXb$lambda <- 0.25

Correction

iRes <- iterativeRUV(Y, cIdx, scIdx, paramXb, k=20, nu.coeff=0,
cEps, maxIter,
Wmethod="rep', wUpdate=11)

ucY <- iRes$cY

Cluster the corrected data

sdY <- apply(ucY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix
kmresIter <- kmeans(ucY[,ssd[1:nKeep]],centers=2,nstart=200)
vclustIter <- kmresIter$cluster

IterScore <- clScore(vclustIter,X)

Plot the corrected data
svdResIter <- NULL
svdResIter <- svdPlot(ucY[, ssd[1:nKeep], drop=FALSE],

8 naiveRandRUV

annot=annot,
labels=1lab.and.region,
svdRes=svdResIter,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

paramXb <- list()

paramXb$K <- p

paramXb$D <- matrix(c(@.),nrow = @,ncol=0)
paramXb$batch <- TRUE

paramXb$iter <- 1

paramXb$mode <- 'PENALTY' #2
paramXb$lambda <- 1

paramXb$lambda2 <- @

Correction

iRes <- iterativeRUV(Y, cIdx, scIdx=NULL, paramXb, k=nrow(Y), nu.coeff=1e-2/2,
cEps, maxIter,
Wmethod="svd', wUpdate=11)

nrcY <- iRes$cY

Cluster the corrected data

sdY <- apply(nrcY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE) $ix
kmresIter <- kmeans(nrcY[,ssd[1:nKeepl],centers=2,nstart=200)
vclustIter <- kmresIter$cluster

IterRandScore <- clScore(vclustIter,X)

Plot the corrected data

svdResIterRand <- NULL

svdResIterRand <- svdPlot(nrcY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=1lab.and.region,
svdRes=svdResIterRand,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

3
naiveRandRUV Remove unwanted variation from a gene expression matrix using neg-
ative control genes
Description

The function takes as input a gene expression matrix as well as the index of negative control genes.
It estimates unwanted variation from these control genes, and removes them by regression, using
ridge and/or rank regularization.

Usage
naiveRandRUV(Y, cIdx, nu.coeff=0.001, k=min(nrow(Y), length(cIdx)), tol=1e-6)

naiveRandRUV 9

Arguments
Y Expression matrix where the rows are the samples and the columns are the
genes.
cIdx Column index of the negative control genes in Y, for estimation of unwanted
variation.
nu.coeff Regularization parameter for the unwanted variation.
k Desired rank for the estimated unwanted variation term.
tol Smallest ratio allowed between a squared singular value of Y[, cldx] and the
largest of these squared singular values. All smaller singular values are dis-
carded.
Details

In terms of model, the rank k can be thought of as the number of independent sources of unwanted
variation in the data (i.e., if one source is a linear combination of other sources, it does not increase
the rank). The ridge nu.coeff should be inversely proportional to the (expected) magnitude of the
unwanted variation.

In practice, even if the real number of independent sources of unwanted variation (resp. their
magnitude) is known, using a smaller k (resp., larger ridge) could yield better corrections because
one may not have enough samples to effectively estimate all the effects.

More intuition and guidance on the practical choice of these parameters are available in the paper
(http://biostatistics.oxfordjournals.org/content/17/1/16.full) andits supplement (http:
//biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv@26supp.
pdf). In particular: - Equation 2.3 in the manuscript gives an interpretation of the ridge parameter

in terms of a probabilistic model. - Section 5.1 of the manuscript provides guidelines to select both
parameters on real data. - Section 3 of the supplement compares the effect of reducing the rank and
increasing the ridge. - Section 4 of the supplement gives a detailed discussion of how to select the
ridge parameter on a real example.

Value

A matrix corresponding to the gene expression after substraction of the estimated unwanted varia-
tion term.

Examples

if(require('RUVnormalizeData')){

Load the data
data('gender', package='RUVnormalizeData')

Y <- t(exprs(gender))

X <- as.numeric(phenoData(gender)$gender == 'M")
X <= X - mean(X)

X <- cbind(X/(sqrt(sum(X*2))))

chip <- annotation(gender)

Extract regions and labs for plotting purposes
lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[111[2]1)
1llabs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')L[111[31)

Dimension of the factors

http://biostatistics.oxfordjournals.org/content/17/1/16.full
http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf
http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf
http://biostatistics.oxfordjournals.org/content/suppl/2015/08/17/kxv026.DC1/kxv026supp.pdf

naiveRandRUV

m <- nrow(Y)
n <- ncol(Y)
p <- ncol(X)

Y <- scale(Y, scale=FALSE) # Center gene expressions
cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes

Prepare plots
annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'
plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, 1llabs),2,FUN=function(v) paste(v,collapse='_"))
gender.col <- c('-1' = "deeppink3”, '1' = "blue")

Remove platform effect by centering.

Y[chip=="hgu95a.db',] <- scale(Y[chip=="hgu95a.db',], scale=FALSE)
Y[chip=="hgu95av2.db',] <- scale(Y[chip=="hgu95av2.db',], scale=FALSE)

Number of genes kept for clustering, based on their variance
nKeep <- 1260

k <- 20
nu <- @

Correction
nsY <- naiveRandRUV(Y, cIdx, nu.coeff=0, k=k)

Clustering of the corrected data
sdY <- apply(nsY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmres2ns <- kmeans(nsY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2ns <- kmres2ns$cluster
nsScore <- clScore(vclust2ns, X)

Plot of the corrected data

svdRes2ns <- NULL

svdRes2ns <- svdPlot(nsY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdRes2ns,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

oo
Naive RUV-2 + shrinkage
e
k <= m

nu.coeff <- le-2

Correction

naiveReplicateRUV 11

nY <- naiveRandRUV(Y, cIdx, nu.coeff=nu.coeff, k=k)

Clustering of the corrected data

sdY <- apply(nY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix

kmres2 <- kmeans(nY[,ssd[1:nKeep],drop=FALSE], centers=2,nstart=200)
vclust2 <- kmres2$cluster

nScore <- clScore(vclust2,X)

Plot of the corrected data

svdRes2 <- NULL

svdRes2 <- svdPlot(nY[, ssd[1:nKeepl, drop=FALSE],
annot=annot,
labels=1ab.and.region,
svdRes=svdRes2,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

}
naiveReplicateRUV Remove unwanted variation from a gene expression matrix using repli-
cate samples
Description

The function takes as input a gene expression matrix as well as the index of negative control genes
and replicate samples. It estimates and remove unwanted variation from the gene expression.

Usage

naiveReplicateRUV(Y, cIdx, scIdx, k, rrem=NULL, p=NULL, tol=1e-6)

Arguments

Y

cIdx

scldx

rrem

Expression matrix where the rows are the samples and the columns are the
genes.

Column index of the negative control genes in Y, for estimation of unwanted
variation.

Matrix giving the set of replicates. Each row is a set of arrays corresponding to
replicates of the same sample. The number of columns is the size of the largest
set of replicates, and the smaller sets are padded with -1 values. For example if
the sets of replicates are (1,11,21), (2,3), (4,5), (6,7,8), the scldx should be 1 11
2123-145-1678

Desired rank for the estimated unwanted variation term. The returned rank may

be lower if the replicate arrays and control genes did not contain a signal of rank
k.

Optional, indicates which arrays should be removed from the returned result.
Useful if the replicate arrays were not actual samples but mixtures of RNA
which are only useful to estimate UV but which should not be included in the
analysis.

12 naiveReplicateRUV

p Optional. If given, the function returns an estimate of the term of interest using
rank-p restriction of the SVD of the corrected matrix.
tol Directions of variance lower than this value in the replicate samples are dropped
(which may result in an estimated unwanted variation term of rank smaller than
k).
Details

In terms of model, the rank k can be thought of as the number of independent sources of unwanted
variation in the data (i.e., if one source is a linear combination of other sources, it does not increase
the rank).

In practice, even if the real number of independent sources of unwanted variation is known, using
a smaller k (resp., larger ridge) could yield better corrections because one may not have enough
samples to effectively estimate all the effects.

Value

A list containing the following terms:

X, b if p is not NULL, contains an estimate of the factor of interest (X) and its effect
(beta) obtained using rank-p restriction of the SVD of Y - W alpha.
W, a Estimates of the unwanted variation factors (W) and their effect (alpha).
cY The corrected expression matrix Y - W alpha
Yctls The differences of replicate arrays which were used to estimate W and alpha.
Examples

if(require('RUVnormalizeData')){

Load the data
data('gender', package='RUVnormalizeData')

Y <- t(exprs(gender))

X <- as.numeric(phenoData(gender)$gender == 'M")
X <= X - mean(X)

X <= cbind(X/(sqrt(sum(X*2))))

chip <- annotation(gender)

Extract regions and labs for plotting purposes
lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')LL[111[2])
llabs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[111[31)

Dimension of the factors
m <- nrow(Y)
n <- ncol(Y)
p <- ncol(X)

Y <- scale(Y, scale=FALSE) # Center gene expressions
cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes
Prepare plots

annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'

naiveReplicateRUV 13

plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, 1llabs),2,FUN=function(v) paste(v,collapse='_"))
gender.col <- c('-1' = "deeppink3”, '1' = "blue")

Remove platform effect by centering.

Y[chip=="hgu95a.db',] <- scale(Y[chip=="hgu95a.db',], scale=FALSE)
Y[chip=="hgu95av2.db',] <- scale(Y[chip=="hgu95av2.db',], scale=FALSE)

Prepare control samples

scldx <- matrix(-1,84,3)
rny <- rownames(Y)

added <- c()

c<-0

Replicates by lab
for(r in 1:(length(rny) - 1)){
if(r %in% added)
next
c <- c+l
scldx[c,1] <-r
cc <- 2
for(rr in seq(along=rny[(r+1):length(rny)1)){
if(all(strsplit(rny[r],'_')CLL111[-3] == strsplit(rny[r+rr],'_")LL111[-31)){
scldx[c,cc] <- r+rr
cc <- cc+l
added <- c(added,r+rr)

3

3
scldxLab <- scIdx

scldx <- matrix(-1,84,3)
rny <- rownames(Y)

added <- c()

c<-0

Replicates by region
for(r in 1:(length(rny) - 1)){
if(r %in% added)
next
c <- ctl
scldx[c,1] <-r
cc <- 2
for(rr in seq(along=rny[(r+1):length(rny)1)){
if(all(strsplit(rnylrl,'_")L[111[-2] == strsplit(rnylr+rr],'_")LL11I[-21)){
scldx[c,cc] <- r+rr
cc <- cctl
added <- c(added,r+rr)

}

}
scIdx <- rbind(scIdxLab,scIdx)

Number of genes kept for clustering, based on their variance
nKeep <- 1260

14 svdPlot

Prepare plots
annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'
plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, 1labs),2,FUN=function(v) paste(v,collapse='_"))
gender.col <- c('-1' = "deeppink3”, '1' = "blue")

Remove platform effect by centering.

Correction
sRes <- naiveReplicateRUV(Y, cIdx, scIdx, k=20)

Clustering on the corrected data

sdY <- apply(sRes$cY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix

kmresRep <- kmeans(sRes$cY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclustRep <- kmresRep$cluster

RepScore <- clScore(vclustRep,X)

Plot of the corrected data

svdResRep <- NULL

svdResRep <- svdPlot(sRes$cY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=1lab.and.region,
svdRes=svdResRep,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

}
svdPlot Plot the data projected into the space spanned by their first two prin-
cipal components
Description

The function takes as input a gene expression matrix and plots the data projected into the space
spanned by their first two principal components.

Usage

svdPlot (Y, annot=NULL, labels=NULL, svdRes=NULL, plAnnots=NULL, kColors=NULL, file=NULL)

Arguments
Y Expression matrix where the rows are the samples and the columns are the
genes.
annot A matrix containing the annotation to be plotted. Each row must correspond to
a sample (row) of argument Y, each column must be a categorical or continuous
descriptor for the sample. Optional.
labels A vector with one element per sample (row) of argument Y. If this argument is

specified, each sample is represented by its label. Otherwise, it is represented by
a dot (if no annotation is provided) or by the value of the annotation. Optional.

svdPlot

svdRes

plAnnots

kColors

file

Value

15

A list containing the result of svd(Y), possibly restricted to the first few singular
values. Optional: if not provided, the function computes the SVD.

A list specifiying whether each column of the annot argument corresponds to
a categorical or continuous factor. Each element of the list is named after a
column of annot, and contains a string ’categorical’ or ’continuous’. For each
element of this list, a plot is produced where the samples are represented by
colors corresponding to their annotation. Optional.

A vector of colors to be used to represent categorical factors. Optional: a default
value is provided. If a categorical factors has more levels than the number of
colors provided, colors are not used and the factor is represented in black.

A string giving the path to a pdf file for the plot. Optional.

A list containing the result of svd(Y, nu=2, nv=0).

Examples

if(require('RUVnormalizeData')){

Load the data

data(

Y <-
X <-
X <-
X <-
chip

Ex
lregi
1llabs

Di
m <-
n <-
p <~

Y <-

cldx

'gender', package='RUVnormalizeData')

t(exprs(gender))
as.numeric(phenoData(gender)$gender == 'M")
X - mean(X)

cbind(X/(sgrt(sum(X*2))))

<- annotation(gender)

tract regions and labs for plotting purposes
ons <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]1[2])
<- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')L[1]11[3])

mension of the factors
nrow(Y)
ncol(Y)
ncol (X)

scale(Y, scale=FALSE) # Center gene expressions

<- which(featureData(gender)$isNegativeControl) # Negative control genes

Prepare plots

annot
colna
plAnn

<- cbind(as.character(sign(X)))
mes(annot) <- 'gender'
ots <- list('gender'='categorical')

lab.and.region <- apply(rbind(lregions, 1llabs),2,FUN=function(v) paste(v,collapse='_"))

gende
Re

Y[chi
Y[chi

Nu

r.col <- c('-1"'" = "deeppink3”, '1' = "blue")
move platform effect by centering.

p=="hgu95a.db',] <- scale(Y[chip=='hgu95a.db',], scale=FALSE)
p=="hgu95av2.db',] <- scale(Y[chip=="hgu95av2.db',], scale=FALSE)

mber of genes kept for clustering, based on their variance

16

nKeep <- 1260

k <- 20
nu <- 0

Correction
nsY <- naiveRandRUV(Y, cIdx, nu.coeff=0, k=k)

Clustering of the corrected data

sdY <- apply(nsY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix

kmres2ns <- kmeans(nsY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2ns <- kmres2ns$cluster

nsScore <- clScore(vclust2ns, X)

Plot of the corrected data

svdRes2ns <- NULL

svdRes2ns <- svdPlot(nsY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=1lab.and.region,
svdRes=svdRes2ns,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

e
Naive RUV-2 + shrinkage
e
k <=m

nu.coeff <- le-2

Correction
nY <- naiveRandRUV(Y, cIdx, nu.coeff=nu.coeff, k=k)

Clustering of the corrected data

sdY <- apply(nY, 2, sd)

ssd <- sort(sdY,decreasing=TRUE, index.return=TRUE)$ix

kmres2 <- kmeans(nY[,ssd[1:nKeep],drop=FALSE], centers=2,nstart=200)
vclust2 <- kmres2$cluster

nScore <- clScore(vclust2,X)

Plot of the corrected data

svdRes2 <- NULL

svdRes2 <- svdPlot(nY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=1lab.and.region,
svdRes=svdRes2,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)

svdPlot

Index

clScore, 2
iterativeRUV, 4
list, 4, 5,12, 15
matrix, 9

naiveRandRUV, 8
naiveReplicateRUV, 11

svdPlot, 14

vector, 2

17

	clScore
	iterativeRUV
	naiveRandRUV
	naiveReplicateRUV
	svdPlot
	Index

