Package ‘PMScanR’

January 30, 2026

Title Protein motifs analysis and visualisation
Version 1.0.1

Description Provides tools for large-scale protein motif analysis and visualization in R. PMScanR fa-
cilitates the identification of motifs using external tools like PROSITE's ps_scan (handling neces-
sary file downloads and execution) and enables downstream analysis of results. Key features in-
clude parsing scan outputs, converting formats (e.g., to GFF-like structures), generating mo-
tif occurrence matrices, and creating informative visualizations such as heatmaps, sequence lo-
gos (via seqLogo/ggseqlogo). The package also offers an optional Shiny-based graphical user in-
terface for interactive analysis, aiming to streamline the process of exploring motif pat-
terns across multiple protein sequences.

URL https://github.com/prodakt/PMScanR

BugReports https://github.com/prodakt/PMScanR/issues
License GPL-3

Encoding UTF-8

LazyData false

RoxygenNote 7.3.3

VignetteBuilder knitr

biocViews MotifDiscovery, Visualization

Imports dplyr (>= 1.1.0), shiny, bslib, shinyFiles, plotly,
rtracklayer, reshape2, ggseqlogo, ggplot2, seqinr, magrittr,
rlang, utils, stringr, BiocFileCache

Suggests BiocStyle, knitr, seqLogo, rmarkdown, testthat (>= 3.0.0)
SystemRequirements Perl

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/PMScanR
git_branch RELEASE_3_22

git_last_commit c6ffc74

git_last_commit_date 2025-11-28

Repository Bioconductor 3.22

Date/Publication 2026-01-29

https://github.com/prodakt/PMScanR
https://github.com/prodakt/PMScanR/issues

2 PMScanR-package

Author Jan Pawel Jastrzebski [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8699-7742>),
Monika Gawronska [ctb] (ORCID: <https://orcid.org/0009-0001-2677-6371>),
Wiktor Babis [ctb] (ORCID: <https://orcid.org/0009-0006-3648-3413>),
Miriana Quaranta [ctb] (ORCID: <https://orcid.org/0009-0003-0855-485X>),
Damian Czopek [ctb, aut] (ORCID:
<https://orcid.org/0009-0005-3471-4866>)

Maintainer Jan Pawel Jastrzebski <bioinformatyka@gmail.com>

Contents
PMScanR-package 2
extractProteinMotifs L oL 3
extractSegments L. e 4
freqPie L 4
eff2matriX e e e e 5
matrix20P e 6
matrix2SquareOP oL 6
readProsite L 7
readPsa L 8
runPMScanRShinyo 8
runPsScan L 9

Index 10

PMScanR-package PMScanR: Protein motifs analysis and visualisation
Description

Provides tools for large-scale protein motif analysis and visualization in R. PMScanR facilitates the
identification of motifs using external tools like PROSITE’s ps_scan (handling necessary file down-
loads and execution) and enables downstream analysis of results. Key features include parsing scan
outputs, converting formats (e.g., to GFF-like structures), generating motif occurrence matrices,
and creating informative visualizations such as heatmaps, sequence logos (via seqLogo/ggseqlogo).
The package also offers an optional Shiny-based graphical user interface for interactive analysis,
aiming to streamline the process of exploring motif patterns across multiple protein sequences.

Author(s)

Maintainer: Jan Pawel Jastrzebski <bioinformatyka@gmail.com> (ORCID)
Authors:

* Damian Czopek <dcwmpl@gmail.com> (ORCID) [contributor]
Other contributors:

¢ Monika Gawronska <gawronska572@gmail . com> (ORCID) [contributor]
¢ Wiktor Babis <wiktorbabis@gmail.com> (ORCID) [contributor]

e Miriana Quaranta <miriana.quaranta@uniromal.it> (ORCID) [contributor]

https://orcid.org/0000-0001-8699-7742
https://orcid.org/0009-0001-2677-6371
https://orcid.org/0009-0006-3648-3413
https://orcid.org/0009-0003-0855-485X
https://orcid.org/0009-0005-3471-4866
https://orcid.org/0000-0001-8699-7742
https://orcid.org/0009-0005-3471-4866
https://orcid.org/0009-0001-2677-6371
https://orcid.org/0009-0006-3648-3413
https://orcid.org/0009-0003-0855-485X

extractProteinMotits 3

See Also

Useful links:

* https://github.com/prodakt/PMScanR

* Report bugs at https://github.com/prodakt/PMScanR/issues

extractProteinMotifs Extract protein motifs from GFF, PSA, or PROSITE text files

Description

This function extracts protein motif sequences from various file formats output by PROSITE anal-
ysis tools. It automatically detects the format (GFF, PSA, or standard PROSITE scan output) and
returns a list of sequences grouped by motif identifier.

Usage
extractProteinMotifs(file_path, format = "auto”)
Arguments
file_path A character string specifying the path to the input file.
format A character string specifying the format: "auto" (default), "gff", "psa", or "scan"
(for PROSITE text output).
Value

A list where keys are motif identifiers (e.g., "PS00001") and values are character vectors of the
corresponding motif sequences found. Returns an empty list if no motifs/sequences are found.

Examples

Example with PSA file
psa_file <- system.file("extdata”, "out_Hb_psa.txt"”, package = "PMScanR")
if (nzchar(psa_file)) {
motifs <- extractProteinMotifs(psa_file)
head(motifs$PS00005)
3

https://github.com/prodakt/PMScanR
https://github.com/prodakt/PMScanR/issues

4 freqPie

extractSegments Extract sequence fragments from a list of sequences

Description
This function iterates over a list of sequences and extracts a sub-sequence from each based on a
specified start and end position.

Usage

extractSegments(sequences, from, to)

Arguments
sequences A list of sequences, where each element is a vector of single characters. This is
typically the output of ‘seqinr::read.fasta‘.
from An integer specifying the starting position for the extraction.
to An integer specifying the ending position for the extraction.
Value

A list representing the extracted sub-sequences. Sequences that were too short to have a fragment
extracted are omitted from the list.
Examples

Get the path to the example FASTA file
fasta_file <- system.file("extdata”, "hemoglobins.fasta”, package = "PMScanR")

if (nzchar(fasta_file)) {

sequences <- seqinr::read.fasta(fasta_file, seqtype = "AA")
segments <- extractSegments(sequences, from = 10, to = 20)
3
fregPie Create a pie chart showing protein motif distribution
Description

This function calculates the occurrences and percentages for each protein motif in the "Name’ col-

umn of a GFF-like data frame. It then creates a pie chart using ‘ggplot2° to visualize the distribution.
Usage

fregPie(data)

Arguments

data A data frame in GFF format containing a column named *'Name’ with the names
of each protein motif.

gff2matrix 5

Value

A ggplot object representing the pie chart.

Examples

Create sample data frame similar to parsed GFF output
sample_data <- data.frame(

seqgid = rep(c("Seql"”, "Seq2"), each = 5),

source = rep("PROSITE", 10),

type = rep("MOTIF", 10),

start = sample(1:100, 10),

end = sample(101:200, 10),

score = runif(10),

strand = sample(c("+", "-"), 10, replace = TRUE),
phase = sample(@:2, 10, replace = TRUE),
Name = sample(c(”"Zinc_finger", "EGF_domain”, "Kinase_domain"”), 10, replace = TRUE)

)

Generate the pie chart
motif_pie_chart <- fregPie(sample_data)
print(motif_pie_chart)

gff2matrix Convert GFF to a binary occurrence matrix

Description

This function takes a GFF data frame and converts it into a binary matrix, indicating the presence
(1) or absence (0) of a feature in a sequence.

Usage
gff2matrix(input)
Arguments
input A data frame containing GFF data, typically generated by ‘rtracklayer::import.gff*
and converted to a data frame. It must have ’type’, ’start’, ’end’, and ’seqnames’
columns.
Value

A matrix, where values are binary: ‘1° indicates the presence of a feature, and ‘O‘ indicates its
absence.

Examples

gff_file <- system.file("extdata/out_Hb_gff.txt"”, package = "PMScanR")
if (nzchar(gff_file)) {
gff_data <- as.data.frame(rtracklayer::import.gff(gff_file))
motif_matrix <- gff2matrix(gff_data)
print(head(motif_matrix))
3

6 matrix2SquareOP

matrix20P Generate a occurrence plot from a matrix

Description

This function generates a occurrence plot using the ‘plotly‘ package. The occurrence plot highlights
specific rows and columns provided by the user, while the rest of the matrix is dimmed. The function
also adds grid lines to the occurrence plot for better readability.

Usage
matrix20P(input, x = NULL, y = NULL)

Arguments
input A matrix containing the data to be visualized in the occurrence plot
X A character vector specifying the columns to highlight in the occurrence plot
y A character vector specifying the rows to highlight in the occurrence plot
Value

A occurrence plot with highlighted specified rows and columns

Examples

Create a sample matrix with row and column names

mat <- matrix(c(1, 0, 1, @), 2, 2)

colnames(mat) <- c("Col1"”, "Col2")

rownames(mat) <- c(”"Row1"”, "Row2")

occurrence_plot <- matrix20P(input = mat, x = "Col1", y = "Rowl")
occurrence_plot

matrix2SquareOP Generate a square occurrence plot from a matrix

Description
This function generates a occurrence plot using ‘plotly‘, ensuring the plot has a square aspect ratio.
It highlights user-specified rows and columns.

Usage

matrix2SquareOP(input, x = NULL, y = NULL)

Arguments
input A matrix containing the data to be visualized.
X A character vector specifying the columns to highlight.

y A character vector specifying the rows to highlight.

readProsite 7

Value

A plotly heatmap object with a square layout.

Examples

Create a sample matrix

mat <- matrix(c(1, o0, 1, @), 2, 2)

colnames(mat) <- c(”"Col1”, "Col2")

rownames(mat) <- c("Rowl"”, "Row2")

square_occurrence_plot <- matrix2SquareOP(input = mat, x = "Col1”, y = "Rowl")
To display in an interactive session:

sq_heatmap

readProsite Convert PROSITE format to a GFF-like Data Frame

Description

This function parses a file from a PROSITE scan (standard output format) into a data frame. It
handles multi-line sequence outputs and extracts information into a GFF-like structure compatible
with rtracklayer imports.

Usage

readProsite(prosite_input)

Arguments

prosite_input Path to the PROSITE scan output file.

Value

A data frame with columns approximating GFF fields plus additional PROSITE-specific informa-
tion.

Examples

Get path to example file
prosite_file <- system.file("extdata”, "out_Hb_PROSITE.txt"”, package = "PMScanR")

if (nzchar(prosite_file) && file.exists(prosite_file)) {
prosite_data <- readProsite(prosite_file)
head(prosite_data)

3

8 runPMScanRShiny

readPsa Parse a PSA (PROSITE Scan ASCII) File

Description

This function reads a file in PSA format and converts it into a standardized, GFF-like data frame for
downstream analysis. It ensures compatibility with data frames generated by rtracklayer::import.gff
by matching column types and order.

Usage

readPsa(psa_file)

Arguments

psa_file A character string specifying the path to the input PSA file.

Value

A data frame with a GFF-like structure.

Examples

Get path to example file
psa_file <- system.file("extdata”, "out_Hb_psa.txt", package = "PMScanR")

if (nzchar(psa_file) && file.exists(psa_file)) {
psa_data <- readPsa(psa_file)
head(psa_data)

3

runPMScanRShiny Launch the PMScanR Shiny Application

Description

Calling this function will launch the interactive graphical user interface for the PMScanR package.

Usage
runPMScanRShiny ()

Details
This function sets a higher file upload size limit for Shiny and then launches the application, which
is built using an internal Ul function (‘buildUi‘) and server function (‘buildServer®).

Value

This function is called for its side effect of launching the Shiny application and does not return a
value.

runPsScan

Examples

if (interactive()) {
To run the app, simply call the function
runPMScanRShiny ()

}

runPsScan

Run PS-Scan with Flexible Configuration

Description

This function runs the PROSITE ps_scan tool. It allows users to provide their own paths to required
files (database, script, executable). If paths are not provided, it handles the downloading and caching
of required executables and databases using BiocFileCache.

Usage

runPsScan(
in_file,
out_file,

out_format =

"scan",

database_path = NULL,
ps_scan_path = NULL,

pfscan_path =

os = NULL

Arguments
in_file
out_file
out_format

database_path

ps_scan_path

pfscan_path

os

Value

NULL,

Path to the input file containing protein sequences.
Path for the output file where results will be saved.
The output format for ps_scan (e.g., *gff’, "psa’, ’scan’).

(Optional) Path to the PROSITE database file (‘prosite.dat‘). If NULL, the file
is retrieved from the internal cache.

(Optional) Path to the ‘ps_scan.pl‘ script. If NULL, the file is retrieved from the
internal cache.

(Optional) Path to the ‘pfscan‘ executable (or ‘pfscan.exe‘). If NULL, the file is
retrieved from the internal cache (except on Mac, where it is optional).

The operating system " WIN’, 'LINUX’, "MAC”). If NULL, it is detected auto-
matically.

Invisibly returns the exit status of the ps_scan command. The primary output is the result file created

at ‘out_file“.

Index

* internal
PMScanR-package, 2

extractProteinMotifs, 3
extractSegments, 4

fregPie, 4
gff2matrix, 5

matrix20P, 6
matrix2SquareOP, 6

PMScanR (PMScanR-package), 2
PMScanR-package, 2

readProsite, 7
readPsa, 8
runPMScanRShiny, 8
runPsScan, 9

10

	PMScanR-package
	extractProteinMotifs
	extractSegments
	freqPie
	gff2matrix
	matrix2OP
	matrix2SquareOP
	readProsite
	readPsa
	runPMScanRShiny
	runPsScan
	Index

