
Package ‘Mfuzz’
January 30, 2026

Version 2.70.0

Date 2022-07-13

Title Soft clustering of omics time series data

Author Matthias Futschik <matthias.futschik@sysbiolab.eu>

Maintainer Matthias Futschik <matthias.futschik@sysbiolab.eu>

Depends R (>= 2.5.0), Biobase (>= 2.5.5), e1071

Imports tcltk, tkWidgets

Suggests marray

Description The Mfuzz package implements noise-robust soft clustering of omics time-
series data, including transcriptomic, proteomic or metabolomic data. It is based on the use of c-
means clustering. For convenience, it includes a graphical user interface.

biocViews Microarray, Clustering, TimeCourse, Preprocessing,
Visualization

License GPL-2

URL http://mfuzz.sysbiolab.eu/

git_url https://git.bioconductor.org/packages/Mfuzz

git_branch RELEASE_3_22

git_last_commit 8b2e1eb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Contents
acore . 2
cselection . 3
Dmin . 4
fill.NA . 6
filter.NA . 7
filter.std . 8
kmeans2 . 8
kmeans2.plot . 9
membership . 10
mestimate . 11

1

http://mfuzz.sysbiolab.eu/

2 acore

mfuzz . 12
mfuzz.plot . 14
mfuzz.plot2 . 15
mfuzzColorBar . 17
Mfuzzgui . 18
overlap . 19
overlap.plot . 20
partcoef . 21
randomise . 22
standardise . 23
standardise2 . 24
table2eset . 25
top.count . 25
yeast . 26
yeast.table . 27
yeast.table2 . 27

Index 28

acore Extraction of alpha cores for soft clusters

Description

This function extracts genes forming the alpha cores of soft clusters

Usage

acore(eset,cl,min.acore=0.5)

Arguments

eset object of the class ExpressionSet.

cl An object of class flcust as produced by mfuzz.

min.acore minimum membership values of gene belonging to the cluster core.

Value

The function produces an list of alpha cores including genes and their membership values for the
corresponding cluster.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu/matthias.html)

http://www.sysbiolab.eu/matthias.html

cselection 3

Examples

if (interactive()){
Data loaing and pre-processing
data(yeast) # data set includes 17 measurements
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
acore.list <- acore(yeastF,cl=cl,min.acore=0.7)
}

cselection Repeated soft clustering for detection of empty clusters for estimation
of optimised number of clusters

Description

This function performs repeated soft clustering for a range of cluster numbers c and reports the
number of empty clusters detected.

Usage

cselection(eset,m,crange=seq(4,32,4),repeats=5,visu=TRUE,...)

Arguments

eset object of class ExpressionSet.
m value of fuzzy c-means parameter m.
crange range of number of clusters c.
repeats number of repeated clusterings.
visu If visu=TRUE plot of number of empty clusters is produced.
... additional arguments for underlying mfuzz.

Details

A soft cluster is considered as empty, if none of the genes has a corresponding membership value
larger than 0.5

Value

A matrix with the number of empty clusters detected is generated.

Note

The cselection function may help to determine an accurate cluster number. However, it should be
used with care, as the determination remains difficult especially for short time series and overlap-
ping clusters. Alternatively, the Dmin function can be used to select an optimal number of clusters
based on the distances between centroids. Another way to select the cluster number is to use ex-
ternal annotation. For instance, one might perform clustering with a range of cluster numbers and
subsequently assess their biological relevance e.g. by GO analyses.

4 Dmin

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

References

M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course data, Journal
of Bioinformatics and Computational Biology, 3 (4), 965-988, 2005

L. Kumar and M. Futschik, Mfuzz: a software package for soft clustering of microarray data,
Bioinformation, 2(1) 5-7,2007

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

parameter selection
Empty clusters should not appear
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))

Note: The following calculation might take some time

tmp <- cselection(yeastF,m=1.25,crange=seq(5,40,5),repeats=5,visu=TRUE)
derivation of number of non-empty clusters (crosses) from diagnonal
line indicate appearance of empty clusters

Empty clusters might appear
cl <- mfuzz(yeastF,c=40,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))
}

Dmin Calculation of minimum centroid distance for a range of cluster num-
bers for estimation of optimised number of clusters

Description

This function performs repeated soft clustering for a range of cluster numbers c and reports the
minimum centroid distance.

Usage

Dmin(eset,m,crange=seq(4,40,4),repeats=3,visu=TRUE)

http://www.sysbiolab.eu

Dmin 5

Arguments

eset object of class ExpressionSet.

m value of fuzzy c-means parameter m.

crange range of number of clusters c.

repeats number of repeated clusterings.

visu If visu=TRUE plot of average minimum centroid distance is produced

Details

The minimum centroid distance is defined as the minimum distance between two cluster centers
produced by the c-means clusterings.

Value

The average minimum centroid distance for the given range of cluster number is returned.

Note

The minimum centroid distance can be used as cluster validity index. For an optimal cluster number,
we may see a ‘drop’ of minimum centroid distance wh plotted versus a range of cluster number and
a slower decrease of the minimum centroid distance for higher cluster number. More information
and some examples can be found in the study of Schwaemmle and Jensen (2010). However, it
should be used with care, as the determination remains difficult especially for short time series and
overlapping clusters. Alternatively, the function cselection can be used or functional enrichment
analysis (e.g. using Gene Ontology) can help to adjust the cluster number.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu/matthias.html)

References

M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course data, Journal
of Bioinformatics and Computational Biology, 3 (4), 965-988, 2005

L. Kumar and M. Futschik, Mfuzz: a software package for soft clustering of microarray data,
Bioinformation, 2(1) 5-7,2007

Schwaemmle and Jensen, Bioinformatics,Vol. 26 (22), 2841-2848, 2010

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

parameter selection
For fuzzifier m, we could use mestimate
m1 <- mestimate(yeastF)
m1 # 1.15

http://www.sysbiolab.eu/matthias.html

6 fill.NA

or the function partcoef (see example there)

For selection of c, either cselection (see example there)
or

tmp <- Dmin(yeastF,m=m1,crange=seq(4,40,4),repeats=3,visu=TRUE)# Note: This calculation might take some time

It seems that the decrease for c ~ 20 - 25 24 and thus 20 might be
a suitable number of clusters

}

fill.NA Replacement of missing values

Description

Methods for replacement of missing values. Missing values should be indicated by NA in the
expression matrix.

Usage

fill.NA(eset,mode="mean",k=10)

Arguments

eset object of the class ExpressionSet.

mode method for replacement of missing values:

• mean- missing values will be replaced by the mean expression value of the
gene,

• median- missing values will be replaced by the median expression value of
the gene,

• knn- missing values will be replaced by the averging over the corresponding
expression values of the k-nearest neighbours,

• knnw-same replacement method as knn, but the expression values averaged
are weighted by the distance to the corresponding neighbour

k Number of neighbours, if one of the knn method for replacement is chosen
(knn,knnw).

Value

The function produces an object of the ExpressionSet class with missing values replaced.

Note

The replacement methods knn and knnw can computationally intensive for large gene expression
data sets. It may be a good idea to run these methods as a ‘lunchtime’ or ‘overnight’ job.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik) and Lokesh Kumar

http://itb.biologie.hu-berlin.de/~futschik

filter.NA 7

Examples

if (interactive()){
data(yeast) # data set includes 17 measurements
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
}

filter.NA Filtering of genes based on number of non-available expression val-
ues.

Description

This function can be used to exclude genes with a large number of expression values not available.

Usage

filter.NA(eset,thres=0.25)

Arguments

eset object of the class “ExpressionSet”.

thres threshold for excluding genes. If the percentage of missing values (indicated by
NA in the expression matrix) is larger than thres, the corresponding gene will
be excluded.

Value

The function produces an object of the ExpressionSet class. It is the same as the input eset object,
except for the genes excluded.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

Examples

if (interactive()){
data(yeast) # data set includes 17 measurements
yeastF <- filter.NA(yeast) # genes are excluded if more than 4 measurements are missing
}

http://www.sysbiolab.eu

8 kmeans2

filter.std Filtering of genes based on their standard deviation.

Description

This function can be used to exclude genes with low standard deviation.

Usage

filter.std(eset,min.std,visu=TRUE)

Arguments

eset object of the class ExpressionSet.

min.std threshold for minimum standard deviation. If the standard deviation of a gene’s
expression is smaller than min.std the corresponding gene will be excluded.

visu If visu is set to TRUE, the ordered standard deviations of genes’ expression val-
ues will be plotted.

Value

The function produces an object of the ExpressionSet class. It is the same as the input eset object,
except for the genes excluded.

Note

As soft clustering is noise robust, pre-filtering can usually be avoided. However, if the number of
genes with small expression changes is large, such pre-filtering may be necessary to reduce noise.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

Examples

data(yeast) # data set includes 17 measurements
yeastF <- filter.NA(yeast) # filtering of genes based on missing values
yeastF <- filter.std(yeastF,min.std=0.3) # filtering of genes based on standard deviation

kmeans2 K-means clustering for gene expression data

Description

This function is a wrapper function for kmeans of the e1071 package. It performs hard clustering
of genes based on their expression values using the k-means algorithm.

Usage

kmeans2(eset,k,iter.max=100)

http://itb.biologie.hu-berlin.de/~futschik

kmeans2.plot 9

Arguments

eset object of the class ExpressionSet.

k number of clusters.

iter.max maximal number of iterations.

Value

An list of clustering components (see kmeans).

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

See Also

kmeans

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

K-means clustering and visualisation
kl <- kmeans2(yeastF,k=20)
kmeans2.plot(yeastF,kl=kl,mfrow=c(2,2))
}

kmeans2.plot Plotting results for k-means clustering

Description

This function visualises the clusters produced by kmeans2.

Usage

kmeans2.plot(eset,kl,mfrow=c(1,1))

Arguments

eset object of the class“ExpressionSet”.

kl list produced by kmeans2.

mfrow determines splitting of graphic window.

Value

The function displays the temporal profiles of clusters detected by k-means.

http://itb.biologie.hu-berlin.de/~futschik

10 membership

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

K-means clustering and visualisation
kl <- kmeans2(yeastF,k=20)
kmeans2.plot(yeastF,kl=kl,mfrow=c(2,2))
}

membership Calculating of membership values for new data based on existing clus-
tering

Description

Function that calculates the membership values of genes based on provided data and existing clus-
tering

Usage

membership(x,clusters,m)

Arguments

x expression vector or expression matrix

clusters cluster centroids from existing clustering

m fuzzification parameter

Value

Matrix of membership values for new genes

Note

This function calculates membership values for new data based on existing cluster centroids and
fuzzification parameter. It can be useful, for instance, when comparing two time series, to assess
whether the same gene in the different time series changes its cluster association.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

http://itb.biologie.hu-berlin.de/~futschik
http://www.sysbiolab.eu)

mestimate 11

Examples

if (interactive()){
data(yeast)
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF) # for illustration only; rather use knn method
yeastF <- standardise(yeastF)

cl <- mfuzz(yeastF,c=20,m=1.25)

m <- 1.25
clusters <- cl[[1]]
x <- matrix(rnorm(2*17),nrow=2) # new expression matrix with two genes
mem.tmp <- membership(x,clusters=clusters,m=m) #membership values

}

mestimate Estimate for optimal fuzzifier m

Description

This function estimates an optimal setting of fuzzifier m

Usage

mestimate(eset)

Arguments

eset object of class “ExpressionSet”

Details

Schwaemmle and Jensen proposed an method to estimate of m, which was motivated by the evalua-
tion of fuzzy clustering applied to randomized datasets. The estimated m should give the minimum
fuzzifier value which prevents clustering of randomized data.

Value

Estimate for optimal fuzzifier.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

References

Schwaemmle and Jensen, Bioinformatics,Vol. 26 (22), 2841-2848, 2010

http://itb.biologie.hu-berlin.de/~futschik

12 mfuzz

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

parameter selection

parameter selection
For fuzzifier m, we could use mestimate
m1 <- mestimate(yeastF)
m1 # 1.15

cl <- mfuzz(yeastF,c=20,m=m1)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))
}

mfuzz Function for soft clustering based on fuzzy c-means.

Description

This function is a wrapper function for cmeans of the e1071 package. It performs soft clustering of
genes based on their expression values using the fuzzy c-means algorithm.

Usage

mfuzz(eset,centers,m,...)

Arguments

eset object of the class “ExpressionSet”.

centers number of clusters.

m fuzzification parameter.

... additional parameters for cmeans.

Details

This function is the core function for soft clustering. It groups genes based on the Euclidean distance
and the c-means objective function which is a weighted square error function. Each gene is assigned
a membership value between 0 and 1 for each cluster. Hence, genes can be assigned to different
clusters in a gradual manner. This contrasts hard clustering where each gene can belongs to a single
cluster.

mfuzz 13

Value

An object of class flcust (see cmeans) which is a list with components:

centers the final cluster centers.

size the number of data points in each cluster of the closest hard clustering.

cluster a vector of integers containing the indices of the clusters where the data points
are assigned to for the closest hard clustering, as obtained by assigning points to
the (first) class with maximal membership.

iter the number of iterations performed.

membership a matrix with the membership values of the data points to the clusters.

withinerror the value of the objective function.

call the call used to create the object.

Note

Note that the clustering is based soley on the exprs matrix and no information is used from the
phenoData. In particular, the ordering of samples (arrays) is the same as the ordering of the columns
in the exprs matrix. Also, replicated arrays in the exprs matrix are treated as independent by the
mfuzz function i.e. they should be averagered prior to clustering or placed into different distinct
“ExpressionSet” objects.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

References

M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course data, Journal
of Bioinformatics and Computational Biology, 3 (4), 965-988, 2005

L. Kumar and M. Futschik, Mfuzz: a software package for soft clustering of microarray data,
Bioinformation, 2(1) 5-7,2007

See Also

cmeans

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF) # for illustration only; rather use knn method
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(2,2))

Plotting center of cluster 1
X11(); plot(cl[[1]][1,],type="l",ylab="Expression")

http://www.sysbiolab.eu

14 mfuzz.plot

Getting the membership values for the first 10 genes in cluster 1
cl[[4]][1:10,1]
}

mfuzz.plot Plotting results for soft clustering

Description

This function visualises the clusters produced by mfuzz.

Usage

mfuzz.plot(eset,cl,mfrow=c(1,1),colo,min.mem=0,time.labels,new.window=TRUE)

Arguments

eset object of the classExpressionSet.
cl object of class flclust.
mfrow determines splitting of graphic window.
colo color palette to be used for plotting. If the color argument remains empty, the

default palette is used.
min.mem Genes with membership values below min.mem will not be displayed.
time.labels labels can be given for the time axis.
new.window should a new window be opened for graphics.

Value

The function generates plots where the membership of genes is color-encoded.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu/matthias)

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(2,2))

display of cluster cores with alpha = 0.5
mfuzz.plot(yeastF,cl=cl,mfrow=c(2,2),min.mem=0.5)

display of cluster cores with alpha = 0.7
mfuzz.plot(yeastF,cl=cl,mfrow=c(2,2),min.mem=0.7)
}

http://www.sysbiolab.eu/matthias

mfuzz.plot2 15

mfuzz.plot2 Plotting results for soft clustering with additional options

Description

This function visualises the clusters produced by mfuzz. it is similar to mfuzz.plot, but offers
more options for adjusting the plots.

Usage

mfuzz.plot2(eset,cl,mfrow=c(1,1),colo,min.mem=0,time.labels,time.points,
ylim.set=c(0,0), xlab="Time",ylab="Expression changes",x11=TRUE,

ax.col="black",bg = "white",col.axis="black",col.lab="black",
col.main="black",col.sub="black",col="black",centre=FALSE,

centre.col="black",centre.lwd=2,
Xwidth=5,Xheight=5,single=FALSE,...)

Arguments

eset object of the classExpressionSet.

cl object of class flclust.

mfrow determines splitting of graphic window. Use mfrow=NA if layout is used (see
example).

colo color palette to be used for plotting. If the color argument remains empty, the
default palette is used. If the colo = "fancy", an alternative (fancier) palette
will be used.

min.mem Genes with membership values below min.mem will not be displayed.

time.labels labels for ticks on x axis.

time.points numerical values for the ticks on x axis. These can be used if the measured time
points are not equidistant.

ylim.set Vector of min. and max. y-value set for plotting. If ylim.set=c(0,0), min.
and max. value will be determined automatically.

xlab label for x axis

ylab label for y axis

x11 If TRUE, a new window will be open for plotting.

ax.col Color of axis line.

bg Background color.

col.axis Color for axis annotation.

col.lab Color for axis labels.

col.main Color for main titles.

col.sub Color for sub-titles.

col Default plotting color.

centre If TRUE, a line for the cluster centre will be drawn.

centre.col Color of the line for the cluster centre

centre.lwd Width of the line for the cluster centre

16 mfuzz.plot2

Xwidth Width of window.

Xheight Height of window.

single Integer if a specific cluster is to be plotted, otherwise it should be set to FALSE.

... Additional, optional plotting arguments passed to plot.default and axes functions
such as cex.lab,cex.main,cex.axis

Value

The function generates plots where the membership of genes is color-encoded.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu/matthias)

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot2(yeastF,cl=cl,mfrow=c(2,2)) # same output as mfuzz.plot
mfuzz.plot2(yeastF, cl=cl,mfrow=c(2,2),centre=TRUE) # lines for cluster centres will be included

More fancy choice of colors
mfuzz.plot2(yeastF,cl=cl,mfrow=c(2,2),colo="fancy",
ax.col="red",bg = "black",col.axis="red",col.lab="white",
col.main="green",col.sub="blue",col="blue",cex.main=1.3,cex.lab=1.1)

Single cluster with colorbar (cluster # 3)
X11(width=12)
mat <- matrix(1:2,ncol=2,nrow=1,byrow=TRUE)
l <- layout(mat,width=c(5,1))
mfuzz.plot2(yeastF,cl=cl,mfrow=NA,colo="fancy", ax.col="red",bg = "black",col.axis="red",col.lab="white",
col.main="green",col.sub="blue",col="blue",cex.main=2, single=3,x11=FALSE)

mfuzzColorBar(col="fancy",main="Membership",cex.main=1)

Single cluster with colorbar (cluster # 3
X11(width=14)
mat <- matrix(1:2,ncol=2,nrow=1,byrow=TRUE)
l <- layout(mat,width=c(5,1))
mfuzz.plot2(yeastF,cl=cl,mfrow=NA,colo="fancy", ax.col="red",bg =
"black",col.axis="red",col.lab="white",time.labels = c(paste(seq(0,160,10),"min")),
col.main="green",col.sub="blue",col="blue",cex.main=2, single=3,x11=FALSE)

mfuzzColorBar(col="fancy",main="Membership",cex.main=1)

http://www.sysbiolab.eu/matthias

mfuzzColorBar 17

}

mfuzzColorBar Plots a colour bar

Description

This function produces a (separate) colour bar for graphs produced by mfuzz.plot

Usage

mfuzzColorBar(col, horizontal=FALSE,...)

Arguments

col vector of colours used. If missing, the same vector as the default vector for
mfuzz.plot is used. If col="fancy", an alternative color palette is used (see
mfuzz.plot2.

horizontal If TRUE, a horizontal colour bar is generated, otherwise a vertical one will be
produced.

... additional parameter passed to maColorBar (see also example in mfuzz.plot2)

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu/matthias.html)

References

M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course data, Journal
of Bioinformatics and Computational Biology, 3 (4), 965-988, 2005

L. Kumar and M. Futschik, Mfuzz: a software package for soft clustering of microarray data,
Bioinformation, 2(1) 5-7,2007

See Also

maColorBar

Examples

if (interactive()){
X11(w=1.5,h=5);
par(mar=c(1,1,1,5))
mfuzzColorBar()
mfuzzColorBar(col="fancy",main="Membership value")
mfuzzColorBar(rev(heat.colors(100))) # example of using heat colors with red indicating high membership values

}

http://www.sysbiolab.eu/matthias.html

18 Mfuzzgui

Mfuzzgui Graphical user interface for Mfuzz package

Description

The function Mfuzzgui provides a graphical user interface for clustering of microarray data and
visualisation of results. It is based on the functions of the Mfuzz package.

Usage

Mfuzzgui()

Details

The function Mfuzzgui launches a graphical user interface for the Mfuzz package. It is based on
Tk widgets using the R TclTk interface by Peter Dalgaard. It also employs some pre-made widgets
from the tkWidgets Bioconductor-package by Jianhua Zhang for the selection of objects/files to be
loaded.

Mfuzzgui provides a convenient interface to most functions of the Mfuzz package without restric-
tion of flexibility. An exception is the batch processes such as partcoeff and cselection routines
which are used for parameter selection in fuzzy c-means clustering of microarray data. These rou-
tines are not included in Mfuzzgui. To select various parameters, the underlying Mfuzz routines
may be applied.

Usage of Mfuzzgui does not require assumes an pre-built exprSet object but can be used with tab-
delimited text files containing the gene expression data. Note, however, that the clustering is based
on the the ordering of samples (arrays) as of the columns in the expression matrix of the exprSet
object or in the uploaded table, respectively. Also, replicated arrays in the expression matrix (or
table) are treated as independent by the mfuzz function and, thus, should be averagered prior to
clustering.

For a overview of the functionality of Mfuzzgui, please refer to the package vignette. For a descrip-
tion of the underlying functions, please refer to the Mfuzz package.

Value

Mfuzzgui returns a tclObj object.

Note

The newest versions of Mfuzzgui can be found at the Mfuzz webpage (http://itb.biologie.
hu-berlin.de/~futschik/software/R/Mfuzz).

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)and Lokesh Kumar

References

1. M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course data,
Journal of Bioinformatics and Computational Biology, Vol. 3, No. 4, 965-988, 2005.

http://itb.biologie.hu-berlin.de/~futschik/software/R/Mfuzz
http://itb.biologie.hu-berlin.de/~futschik/software/R/Mfuzz
http://itb.biologie.hu-berlin.de/~futschik

overlap 19

2. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG,
Gabrielian AE, Landsman D, Lockhart DJ, Davis RW, A genome-wide transcriptional analysis
of the mitotic cell cycle, Mol Cell,(2):65-73, 1998.

3. Mfuzz web-page: http://itb.biologie.hu-berlin.de/~futschik/software/R/Mfuzz

See Also

mfuzz

overlap Calculation of the overlap of soft clusters

Description

This function calculates the overlap of clusters produced by mfuzz.

Usage

overlap(cl)

Arguments

cl object of class flclust

Value

The function generates a matrix of the normalised overlap of soft clusters. The overlap indicates
the extent of “shared” genes between clusters. For a mathematical definiton of the overlap, see the
vignette of the package or the reference below.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

References

M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course data, Journal
of Bioinformatics and Computational Biology, 3 (4), 965-988, 2005

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))

Calculation of cluster overlap and visualisation

http://itb.biologie.hu-berlin.de/~futschik/software/R/Mfuzz
http://itb.biologie.hu-berlin.de/~futschik

20 overlap.plot

O <- overlap(cl)
X11()
Ptmp <- overlap.plot(cl,over=O,thres=0.05)
}

overlap.plot Visualisation of cluster overlap and global clustering structure

Description

This function visualises the cluster overlap produced by overlap.

Usage

overlap.plot(cl,overlap,thres=0.1,scale=TRUE,magni=30,P=NULL)

Arguments

cl object of class “flclust”

overlap matrix of cluster overlap produced by overlap

thres threshold for visualisation. Cluster overlaps below the threshold will not be
visualised.

scale Scale parameter for principal component analysis by prcomp

magni Factor for increase the line width for cluster overlap.

P Projection matrix produced by principal component analysis.

Value

A plot is genererated based on a prinicpal component analysis of the cluster centers. The overlap
is visualised by lines with variable width indicating the strength of the overlap. Additonally, the
matrix of principal components is returned. This matrix can be re-used for other projections to
compare the overlap and global cluster structure of different clusterings.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

See Also

prcomp

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering

http://itb.biologie.hu-berlin.de/~futschik

partcoef 21

cl <- mfuzz(yeastF,c=20,m=1.25)
X11();mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))
O <- overlap(cl)
X11();Ptmp <- overlap.plot(cl,over=O,thres=0.05)

Alternative clustering
cl <- mfuzz(yeastF,c=10,m=1.25)
X11();mfuzz.plot(yeastF,cl=cl,mfrow=c(3,4))
O <- overlap(cl)

X11();overlap.plot(cl,over=O,P=Ptmp,thres=0.05)
visualisation based on principal compents from previous projection
}

partcoef Calculation of the partition coefficient matrix for soft clustering

Description

This function calculates partition coefficient for clusters within a range of cluster parameters. It can
be used to determine the parameters which lead to uniform clustering.

Usage

partcoef(eset,crange=seq(4,32,4),mrange=seq(1.05,2,0.1),...)

Arguments

eset object of class “ExpressionSet”.

crange range of number of clusters c.

mrange range of clustering paramter m.

... additional arguments for underlying mfuzz.

Details

Introduced by Bezdek (1981), the partition coefficient F is defined as the sum of squares of values
of the partition matrix divided by the number of values. It is maximal if the partition is hard and
reaches a minimum for U=1/c when every gene is equally assigned to every cluster.

It is well-known that the partition coefficient tends to decrease monotonically with increasing n. To
reduce this tendency we defined a normalized partition coefficient where the partition for uniform
partitions are subtracted from the actual partition coefficients (Futschik and Kasabov,2002).

Value

The function generates the matrix of partition coefficients for a range of c and m values. It also
produces a matrix of normalised partition coefficients as well as a matrix with partition coefficient
for uniform partitions.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

http://itb.biologie.hu-berlin.de/~futschik

22 randomise

References

1. J.C.Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum, 1981

2. M.E. Futschik and N.K. Kasabov. Fuzzy clustering of gene expression data, Proceedings of
World Congress of Computational Intelligence WCCI 2002, Hawaii, IEEE Press, 2002

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

parameter selection
yeastFR <- randomise(yeastF)
cl <- mfuzz(yeastFR,c=20,m=1.1)
mfuzz.plot(yeastFR,cl=cl,mfrow=c(4,5)) # shows cluster structures (non-uniform partition)

tmp <- partcoef(yeastFR) # This might take some time.
F <- tmp[[1]];F.n <- tmp[[2]];F.min <- tmp[[3]]

Which clustering parameters result in a uniform partition?
F > 1.01 * F.min

cl <- mfuzz(yeastFR,c=20,m=1.25) # produces uniform partion

mfuzz.plot(yeastFR,cl=cl,mfrow=c(4,5))
uniform coloring of temporal profiles indicates uniform partition
}

randomise Randomisation of data

Description

This function randomise the time order for each gene separately.

Usage

randomise(eset)

Arguments

eset object of the class ExpressionSet.

Value

The function produces an object of the ExpressionSet class with randomised expression data.

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

http://itb.biologie.hu-berlin.de/~futschik

standardise 23

Examples

data(yeast) # data set includes 17 measurements
yeastR <- randomise(yeast)

standardise Standardization of expression data for clustering.

Description

Standardisation of the expression values of every gene/transcript/protein is carried out, so that the
average expression value for each gene/transcript/protein is zero and the standard deviation of its
expression profile is one.

Usage

standardise(eset)

Arguments

eset object of the classe ExpressionSet.

Value

The function produces an object of the ExpressionSet class with standardised expression values.

Note

Mfuzz assumes that the given expression data are preprocessed (including the normalisation). The
function standardise does not replace the normalisation step. Note the difference: Normalisation
is carried out to make different samples comparable, while standardisation (in Mfuzz) is carried out
to make transcripts (genes) comparable.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))
}

http://www.sysbiolab.eu

24 standardise2

standardise2 Standardization in regards to selected time-point

Description

Standardisation of the expression values of every gene is performed, so that the expression val-
ues at a chosen time point are zero and the standard deviation of expression profiles of individual
genes/transcripts/proteins is one.

Usage

standardise2(eset,timepoint=1)

Arguments

eset object of the class ExpressionSet.

timepoint integer: which time point should have expression values of zero.

Value

The function produces an object of the ExpressionSet class with standardised expression values.

Note

Mfuzz assumes that the given expression data are preprocessed (including the normalisation). The
function standardise2 does not replace the normalisation step. Note the difference: Normalisation
is carried out to make different samples comparable, while standardisation (in Mfuzz) is carried out
to make transcripts (genes) comparable.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise2(yeastF,timepoint=1)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))
}

http://www.sysbiolab.eu

table2eset 25

table2eset Conversion of table to Expression set object.

Description

A expression matrix stored as a table (in a defined format) is read and converted to Expression Set
object.

Usage

table2eset(filename)

Arguments

filename name of file to be scanned in

Details

The expression matrix stored as table in the file has to follow some conventions in order to be able
to be converted to an Expression Set object: The first row of the file contains sample labels and
optionally, the second column can contains the time points. If the second row is used for the input
the time, the first field in the second row must contain “Time”. Similarly, the first column contains
unique gene IDs and optionally second row can contain gene names. If the second row contains gene
names, the second field in the first row must contain “Gene.Name”. The rest of the file contains
expression data. As example, two tables with expression data are provided. These examples can be
viewed by inputing data(yeast.table) and data(yeast.table2) in the R console.

Value

An Expression Set object is generated.

Author(s)

Matthias E. Futschik (http://www.sysbiolab.eu)

top.count Determines the number for which each gene has highest membership
value in all cluster

Description

This function calculates the number,for which each gene appears to have the top membership score
in the partition matrix of clusters produced by mfuzz.

Usage

top.count(cl)

Arguments

cl object of class “flclust”

http://www.sysbiolab.eu

26 yeast

Value

The function generates a vector containing a count for each gene, which is just the number of times
that particular gene has acquired the top membership score.

Author(s)

Lokesh Kumar and Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

Examples

if (interactive()){
data(yeast)
Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

Soft clustering and visualisation
cl <- mfuzz(yeastF,c=20,m=1.25)
top.count(cl)
}

yeast Gene expression data of the yeast cell cycle

Description

The data contains gene expression measurements for 3000 randomly chosen genes of the yeast
mutant cdc28 as performed and described by Cho et al. For details, see the reference.

Usage

data(yeast)

Format

An object of class “ExpressionSet”.

Source

The data was downloaded from Yeast Cell Cylce Analysis Project webside and converted to an
ExpressionSet object.

References

Cho et al., A genome-wide transcriptional analysis of the mitotic cell cycle, Mol Cell. 1998
Jul;2(1):65-73.

http://itb.biologie.hu-berlin.de/~futschik

yeast.table 27

yeast.table Gene expression data of the yeast cell cycle as table

Description

The data serves as an example for the format required for uploading tables with expression data into
Mfuzzgui. The first row contains the names of the samples, the second row contains the measured
time points. Note that “TIME” has to placed in the first field of the second row.

The first column contains unique identifiers for genes; optionally the second row can contain gene
names if “GENE.NAMES” is in the second field in the first row.

An example for an table without optional fields is the dataset yeast.table2.

The exemplary tables can be found in the data sub-folder of the Mfuzzgui package.

References

Cho et al., A genome-wide transcriptional analysis of the mitotic cell cycle, Mol Cell. 1998
Jul;2(1):65-73.

See Also

yeast.table2

yeast.table2 Gene expression data of the yeast cell cycle as table

Description

The data serves as an example for the format required to upload tables with expression data into
Mfuzzgui. The first row contains the names of the samples and the first column contains unique
identifiers for genes. To input measurement time and gene names, refer to yeast.table.

The exemplary tables can be found in the data sub-folder of the Mfuzzgui package.

References

Cho et al., A genome-wide transcriptional analysis of the mitotic cell cycle, Mol Cell. 1998
Jul;2(1):65-73.

See Also

yeast.table

Index

∗ cluster
cselection, 3
Dmin, 4
kmeans2, 8
mestimate, 11
mfuzz, 12
Mfuzzgui, 18
overlap, 19
partcoef, 21
top.count, 25

∗ datasets
yeast, 26
yeast.table, 27
yeast.table2, 27

∗ hplot
kmeans2.plot, 9
mfuzz.plot, 14
mfuzz.plot2, 15
overlap.plot, 20

∗ misc
Mfuzzgui, 18

∗ ts
Mfuzzgui, 18

∗ utilities
acore, 2
fill.NA, 6
filter.NA, 7
filter.std, 8
membership, 10
mfuzzColorBar, 17
randomise, 22
standardise, 23
standardise2, 24
table2eset, 25

acore, 2

cmeans, 12, 13
cselection, 3

Dmin, 3, 4

fill.NA, 6
filter.NA, 7

filter.std, 8

kmeans, 8, 9
kmeans2, 8
kmeans2.plot, 9

maColorBar, 17
membership, 10
mestimate, 11
mfuzz, 12, 19
mfuzz.plot, 14
mfuzz.plot2, 15
mfuzzColorBar, 17
Mfuzzgui, 18

overlap, 19
overlap.plot, 20

partcoef, 21
prcomp, 20

randomise, 22

standardise, 23
standardise2, 24

table2eset, 25
top.count, 25

yeast, 26
yeast.table, 27, 27
yeast.table2, 27, 27

28

	acore
	cselection
	Dmin
	fill.NA
	filter.NA
	filter.std
	kmeans2
	kmeans2.plot
	membership
	mestimate
	mfuzz
	mfuzz.plot
	mfuzz.plot2
	mfuzzColorBar
	Mfuzzgui
	overlap
	overlap.plot
	partcoef
	randomise
	standardise
	standardise2
	table2eset
	top.count
	yeast
	yeast.table
	yeast.table2
	Index

