Package ‘GenomicFeatures’

January 30, 2026

Title Query the gene models of a given organism/assembly

Description Extract the genomic locations of genes, transcripts, exons,
introns, and CDS, for the gene models stored in a TxDb object.
A TxDb object is a small database that contains the gene models of
a given organism/assembly. Bioconductor provides a small collection
of TxDDb objects in the form of ready-to-install TxDb packages for
the most commonly studied organisms. Additionally, the user can
easily make a TxDb object (or package) for the organism/assembly
of their choice by using the tools from the txdbmaker package.

biocViews Genetics, Infrastructure, Annotation, Sequencing,
GenomeAnnotation

URL https://bioconductor.org/packages/GenomicFeatures

BugReports https://github.com/Bioconductor/GenomicFeatures/issues
Version 1.62.0

License Artistic-2.0

Encoding UTF-8

Depends R (>= 3.5.0), BiocGenerics (>= 0.51.2), S4Vectors (>= 0.47.6),
IRanges (>= 2.37.1), Seqinfo (>=0.99.2), GenomicRanges (>=
1.61.1), AnnotationDbi (>= 1.41.4)

Imports methods, utils, stats, DBI, XVector, Biostrings (>= 2.77.2),
rtracklayer (>= 1.69.1)

Suggests GenomelnfoDb, txdbmaker, org.Mm.eg.db, org.Hs.eg.db,
BSgenome, BSgenome.Hsapiens.UCSC.hg19 (>= 1.3.17),
BSgenome.Celegans.UCSC.cell, BSgenome.Dmelanogaster. UCSC.dm3
(>=1.3.17), FDb.UCSC.tRNAs, TxDb.Hsapiens.UCSC.hg19.knownGene,
TxDb.Celegans.UCSC.cel1.ensGene,

TxDb.Dmelanogaster. UCSC.dm3.ensGene (>= 2.7.1),
TxDb.Mmusculus.UCSC.mm10.knownGene (>= 3.4.7),
TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts,
TxDb.Hsapiens.UCSC.hg38.knownGene (>= 3.4.6),
SNPlocs.Hsapiens.dbSNP144.GRCh38, Rsamtools, pasillaBamSubset
(>=0.0.5), GenomicAlignments (>= 1.15.7), ensembldb,
AnnotationFilter, RUnit, BiocStyle, knitr, markdown

VignetteBuilder knitr

https://bioconductor.org/packages/GenomicFeatures
https://github.com/Bioconductor/GenomicFeatures/issues

2 Contents

Collate utils.R TxDb-schema.R TxDb-SELECT-helpers.R TxDb-class.R
FeatureDb-class.R mapldsToRanges.R id2name.R transcripts.R
transcriptsBy.R transcriptsByOverlaps.R transcriptLengths.R
exonicParts.R extendExonsIntoIntrons.R features.R tRNAs.R
extractTranscriptSeqs.R extractUpstreamSeqs.R
getPromoterSeq-methods.R select-methods.R nearest-methods.R
transcriptLocs2refLocs.R coordinate-mapping-methods.R
proteinToGenome.R coverageByTranscript.R makeTxDb.R
makeTxDbFromUCSC.R makeTxDbFromBiomart.R makeTxDbFromEnsembl.R
makeTxDbFromGRanges.R makeTxDbFromGFF.R makeFeatureDbFromUCSC.R
makeTxDbPackage.R zzz.R

git_url https://git.bioconductor.org/packages/GenomicFeatures
git_branch RELEASE_3_22

git_last_commit f4dfd41

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author H. Pages [aut, cre],
M. Carlson [aut],
P. Aboyoun [aut],
S. Falcon [aut],
M. Morgan [aut],
D. Sarkar [aut],
M. Lawrence [aut],
V. Obenchain [aut],
S. Arora [ctb],
J. MacDonald [ctb],
M. Ramos [ctb],
S. Saini [ctb],
P. Shannon [ctb],
L. Shepherd [ctb],
D. Tenenbaum [ctb],
D. Van Twisk [ctb]

Maintainer H. Pages <hpages.on.github@gmail.com>

Contents
as-format-methods 3
coverageByTranscript 4
exonicParts L. e e 8
extendExonsIntolntrons 11
extractTranscriptSeqs 13
extractUpstreamSeqs e e e e 16
FeatureDb-class e 19
features L e e e e 20
getPromoterSeq oL e e e e e e 20
d2name e 22
makeFeatureDbFromUCSC e 23

makeTxXDb e 24

as-format-methods 3

makeTxDbFromBiomart 24
makeTxDbFromEnsembl 24
makeTxDbFromGFF 25
makeTxDbFromGRanges 25
makeTxDbFromUCSC 25
makeTxDbPackage 26
mapldsToRanges e 26
mapRangesTolds 27
mapToTranscripts o o e e e e 28
nearest-methods L 34
proteinToGenome 35
select-methods L 38
transcriptLengths 39
transcriptLocs2reflLocs oL Lo 41
transcripts e 43
transcriptsBy L 47
transcriptsByOverlaps L 50
tRNAS . . . e 52
TxDb-class e 52
Index 55
as-format-methods Coerce to file format structures
Description

These functions coerce a TxDb object to a GRanges object with metadata columns encoding tran-
script structures according to the model of a standard file format. Currently, BED and GFF models
are supported. If a TxDb is passed to export, when targeting a BED or GFF file, this coercion
occurs automatically.

Usage

S4 method for signature 'TxDb'
asBED(x)
S4 method for signature 'TxDb'
asGFF (x)

Arguments

X A TxDb object to coerce to a GRanges, structured as BED or GFF.

Value

For asBED, a GRanges, with the columns name, thickStart, thickEnd, blockStarts, blockSizes
added. The thick regions correspond to the CDS regions, and the blocks represent the exons. The
transcript IDs are stored in the name column. The ranges are the transcript bounds.

For asGFF, a GRanges, with columns type, Name, ID,, and Parent. The gene structures are ex-
pressed according to the conventions defined by the GFF3 spec. There are elements of each type
of feature: “gene”, “mRNA” “exon” and “cds”. The Name column contains the gene_id for genes,
tx_name for transcripts, and exons and cds regions are NA. The ID column uses gene_id and tx_id,

coverageByTranscript

with the prefixes “GenelD” and “TxID” to ensure uniqueness across types. The exons and cds re-
gions have NA for ID. The Parent column contains the IDs of the parent features. A feature may
have multiple parents (the column is a CharacterList). Each exon belongs to one or more mRNAs,
and mRNAs belong to a gene.

Author(s)

Michael Lawrence

Examples

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,

package="GenomicFeatures")

txdb <- loadDb(txdb_file)

asBED(txdb)
asGFF (txdb)

coverageByTranscript Compute coverage by transcript (or CDS) of a set of ranges

Description

coverageByTranscript computes the transcript (or CDS) coverage of a set of ranges.

pcoverageByTranscript is a version of coverageByTranscript that operates element-wise.

Usage

coverageByTranscript(x, transcripts, ignore.strand=FALSE)

pcoverageByTranscript(x, transcripts, ignore.strand=FALSE, ...)
Arguments
X An object representing a set of ranges (typically aligned reads). GRanges,

transcripts

GRangesList, GAlignments, GAlignmentPairs, and GAlignmentsList objects
are supported.

More generally, for coverageByTranscript x can be any object for which
seqinfo() and coverage() are supported (e.g. a BamFile object). Note that,
for such objects, coverage() is expected to return an RleList object whose
names are seqlevels(x)).

More generally, for pcoverageByTranscript x can be any object for which
grglist() is supported. It should have the length of transcripts or length 1.
If the latter, it is recycled to the length of transcripts.

A GRangesList object representing the exons of each transcript for which to
compute coverage. For each transcript, the exons must be ordered by ascending
rank, that is, by their position in the transcript. This means that, for a transcript
located on the minus strand, the exons should typically be ordered by descending
position on the reference genome. If transcripts was obtained with exonsBy,
then the exons are guaranteed to be ordered by ascending rank. See ?exonsBy
for more information.

coverageByTranscript 5

Alternatively, transcripts can be a TxDb object, or any TxDb-like object
that supports the exonsBy() extractor (e.g. an EnsDb object). In this case it
is replaced with the GRangesList object returned by exonsBy(transcripts,
by="tx", use.names=TRUE).

For pcoverageByTranscript, transcripts should have the length of x or
length 1. If the latter, it is recycled to the length of x.

ignore.strand TRUE or FALSE. If FALSE (the default) then the strand of a range in x and exon

Value

in transcripts must be the same in order for the range to contribute coverage
to the exon. If TRUE then the strand is ignored.

Additional arguments passed to the internal call to grglist(). More precisely,
when x is not a GRanges or GRangesList object, pcoverageByTranscript re-
place it with the GRangesList object returned by grglist(x, ...).

An RleList object parallel to transcripts, that is, the i-th element in it is an integer-Rle represent-
ing the coverage of the i-th transcript in transcripts. Its lengths() is guaranteed to be identical
to sum(width(transcripts)). The names and metadata columns on transcripts are propagated

to it.

Author(s)

Hervé Pages

See Also

transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosome se-
quences.

The RleList class defined and documented in the IRanges package.

The GRangesList class defined and documented in the GenomicRanges package.
The coverage methods defined in the GenomicRanges package.

The exonsBy function for extracting exon ranges grouped by transcript.

findCompatibleOverlaps in the GenomicAlignments package for finding which reads are
compatible with the splicing of which transcript.

Examples

Bt e

1.

A SIMPLE ARTIFICIAL EXAMPLE WITH ONLY ONE TRANSCRIPT

Bt = e

Get some transcripts:
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb

<- TxDb.Dmelanogaster.UCSC.dm3.ensGene

dm3_transcripts <- exonsBy(txdb, by="tx", use.names=TRUE)
dm3_transcripts

coverageByTranscript

Let's pick up the 1st transcript: FBtr@300689. It as 2 exons and 1
intron:
my_transcript <- dm3_transcripts["FBtre300689"]

Let's create 3 artificial aligned reads. We represent them as a
GRanges object of length 3 that contains the genomic positions of
the 3 reads. Note that these reads are simple alignments i.e. each
of them can be represented with a single range. This would not be
the case if they were junction reads.
my_reads <- GRanges(c("chr2L:7531-7630",

"chr2L:8101-8200",

"chr2L:8141-8240"))

The coverage of the 3 reads on the reference genome is:
coverage(my_reads)

As you can see, all the genomic positions in the 3 ranges participate
to the coverage. This can be confirmed by comparing:
sum(coverage(my_reads))

with:

sum(width(my_reads))

They should always be the same.

When computing the coverage on a transcript, only the part of the
read that overlaps with the transcript participates to the coverage.
Let's look at the individual coverage of each read on transcript

#i# FBtro300689:

The 1st read is fully contained within the 1st exon:
coverageByTranscript(my_reads[1], my_transcript)

Note that the length of the Rle (1880@) is the length of the transcript.

The 2nd and 3rd reads overlap the 2 exons and the intron. Only the
parts that overlap the exons participate to coverage:
coverageByTranscript(my_reads[2], my_transcript)
coverageByTranscript(my_reads[3], my_transcript)

The coverage of the 3 reads together is:
coverageByTranscript(my_reads, my_transcript)

Note that this is the sum of the individual coverages. This can be
checked with:
stopifnot(all(

coverageByTranscript(my_reads, my_transcript)

Reduce("+", lapply(seq_along(my_reads),
function(i) coverageByTranscript(my_reads[i], my_transcript)), 0oL)

))

2. COMPUTE THE FULL TRANSCRIPTOME COVERAGE OF A SET OF ALIGNED READS
T

Load the aligned reads:
library(pasillaBamSubset)
library(GenomicAlignments)

coverageByTranscript

reads <- readGAlignments(untreatedl_chr4())

Compute the full transcriptome coverage by calling

coverageByTranscript() on 'dm3_transcripts':

tx_cvg <- coverageByTranscript(reads, dm3_transcripts, ignore.strand=TRUE)
tx_cvg

A sanity check:
stopifnot(identical (lengths(tx_cvg), sum(width(dm3_transcripts))))

We can also use pcoverageByTranscript() to compute 'tx_cvg'.

For this we first create a GAlignmentsList object "parallel” to

'dm3_transcripts' where the i-th list element contains the aligned
reads that overlap with the i-th transcript:

hits <- findOverlaps(reads, dm3_transcripts, ignore.strand=TRUE)
tx2reads <- setNames(as(t(hits), "List"), names(dm3_transcripts))
reads_by_tx <- extractList(reads, tx2reads) # GAlignmentsList object
reads_by_tx

Call pcoverageByTranscript():

tx_cvg2 <- pcoverageByTranscript(reads_by_tx, dm3_transcripts,
ignore.strand=TRUE)

stopifnot(identical(tx_cvg, tx_cvg2))

A more meaningful coverage is obtained by counting for each

transcript only the reads that are *compatiblex with its splicing:
compat_hits <- findCompatibleOverlaps(reads, dm3_transcripts)

tx2reads <- setNames(as(t(compat_hits), "List"), names(dm3_transcripts))
compat_reads_by_tx <- extractList(reads, tx2reads)

tx_compat_cvg <- pcoverageByTranscript(compat_reads_by_tx,
dm3_transcripts,
ignore.strand=TRUE)

A sanity check:

stopifnot(all(all(tx_compat_cvg <= tx_cvg)))

Bt = e
3. COMPUTE CDS COVERAGE OF A SET OF ALIGNED READS
B =

coverageByTranscript() can also be used to compute CDS coverage:
cds <- cdsBy(txdb, by="tx", use.names=TRUE)

cds_cvg <- coverageByTranscript(reads, cds, ignore.strand=TRUE)
cds_cvg

A sanity check:
stopifnot(identical (lengths(cds_cvg), sum(width(cds))))

#H -
4. ALTERNATIVELY, THE CDS COVERAGE CAN BE OBTAINED FROM THE

TRANSCRIPT COVERAGE BY TRIMMING THE 5' AND 3' UTRS

#H -

tx_lens <- transcriptLengths(txdb, with.utr5_len=TRUE, with.utr3_len=TRUE)
stopifnot(identical (tx_lens$tx_name, names(tx_cvg))) # sanity

Keep the rows in 'tx_lens' that correspond to a list element in

8 exonicParts

'cds_cvg' and put them in the same order as in 'cds_cvg':

m <- match(names(cds_cvg), names(tx_cvg))

tx_lens <- tx_lens[m,]

utr5_width <- tx_lens$utr5_len

utr3_width <- tx_lens$utr3_len

cds_cvg2 <- windows(tx_cvg[m], start=1L+utr5_width, end=-1L-utr3_width)

A sanity check:
stopifnot(identical(cds_cvg2, cds_cvg))

exonicParts Extract non-overlapping exonic or intronic parts from a TxDb-like ob-
ject

Description

exonicParts and intronicParts extract the non-overlapping (a.k.a. disjoint) exonic or intronic
parts from a TxDb-like object.

Usage

exonicParts(txdb, linked.to.single.gene.only=FALSE)
intronicParts(txdb, linked.to.single.gene.only=FALSE)

3 helper functions used internally by exonicParts() and intronicParts():
tidyTranscripts(txdb, drop.geneless=FALSE)

tidyExons(txdb, drop.geneless=FALSE)

tidyIntrons(txdb, drop.geneless=FALSE)

Arguments

txdb A TxDb object, or any TxDb-like object that supports the transcripts() and
exonsBy () extractors (e.g. an EnsDb object).

linked.to.single.gene.only
TRUE or FALSE.
If FALSE (the default), then the disjoint parts are obtained by calling disjoin()
on all the exons (or introns) in txdb, including on exons (or introns) not linked
to a gene or linked to more than one gene.

If TRUE, then the disjoint parts are obtained in 2 steps:

1. call disjoin() on the exons (or introns) linked to at least one gene,
2. then drop the parts linked to more than one gene from the set of exonic (or
intronic) parts obtained previously.
drop.geneless If FALSE (the default), then all the transcripts (or exons, or introns) get extracted
from the TxDb object.
If TRUE, then only the transcripts (or exons, or introns) that are linked to a gene
get extracted from the TxDb object.

Note that drop.geneless also impacts the order in which the features are re-
turned:

exonicParts 9

 Transcripts: If drop.geneless is FALSE then transcripts are returned in
the same order as with transcripts, which is expected to be by internal
transcript id (tx_id). Otherwise they are ordered first by gene id (gene_id),
then by internal transcript id.

* Exons: If drop.geneless is FALSE then exons are ordered first by internal
transcript id (tx_id), then by exon rank (exon_rank). Otherwise they are
ordered first by gene id (gene_id), then by internal transcript id, and then
by exon rank.

* Introns: If drop.geneless is FALSE then introns are ordered by internal
transcript id (tx_id). Otherwise they are ordered first by gene id (gene_id),
then by internal transcript id.

Value

exonicParts returns a disjoint and strictly sorted GRanges object with 1 range per exonic part
and with metadata columns tx_id, tx_name, gene_id, exon_id, exon_name, and exon_rank. If
linked.to.single.gene.only was set to TRUE, an additional exonic_part metadata column is
added that indicates the rank of each exonic part within all the exonic parts linked to the same gene.

intronicParts returns a disjoint and strictly sorted GRanges object with 1 range per intronic part
and with metadata columns tx_id, tx_name, and gene_id. If linked.to.single.gene.only was
set to TRUE, an additional intronic_part metadata column is added that indicates the rank of each
intronic part within all the intronic parts linked to the same gene.

tidyTranscripts returns a GRanges object with 1 range per transcript and with metadata columns
tx_id, tx_name, and gene_id.

tidyExons returns a GRanges object with 1 range per exon and with metadata columns tx_id,
tx_name, gene_id, exon_id, exon_name, and exon_rank.

tidyIntrons returns a GRanges object with 1 range per intron and with metadata columns tx_id,
tx_name, and gene_id.

Author(s)

Hervé Pages

See Also
* disjoin in the IRanges package.

* transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

* transcriptLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* extendExonsIntoIntrons for extending exons into their adjacent introns.

* extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

¢ The TxDb class.

10 exonicParts

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

B m o o
exonicParts()
B m o

exonic_parts] <- exonicParts(txdb)
exonic_partsi

Mapping from exonic parts to genes is many-to-many:

gene_id1 <- mcols(exonic_partsi1)$gene_id

gene_id1 # CharacterList object

table(lengths(gene_id1))

The number of known genes a Human exonic part can be linked to
varies from @ to 22!

exonic_parts2 <- exonicParts(txdb, linked.to.single.gene.only=TRUE)
exonic_parts2

Mapping from exonic parts to genes now is many-to-one:
gene_id2 <- mcols(exonic_parts2)$gene_id
gene_id2[1:20] # character vector

Select exonic parts for a given gene:
exonic_parts2[gene_id2 %in% "643837"]

Sanity checks:
stopifnot(isDisjoint(exonic_partsl), isStrictlySorted(exonic_parts1))
stopifnot(isDisjoint(exonic_parts2), isStrictlySorted(exonic_parts2))
stopifnot(all(exonic_parts2 %within% reduce(exonic_partsl1)))
stopifnot(identical(

lengths(gene_id1) == 1L,

exonic_parts1 %within% exonic_parts2

)

B — o
intronicParts()
B m o

intronic_partsl <- intronicParts(txdb)
intronic_partsi

Mapping from intronic parts to genes is many-to-many:
mcols(intronic_parts1)$gene_id
table(lengths(mcols(intronic_partsi1)$gene_id))

A Human intronic part can be linked to @ to 22 known genes!

intronic_parts2 <- intronicParts(txdb, linked.to.single.gene.only=TRUE)
intronic_parts2

Mapping from intronic parts to genes now is many-to-one:
class(mcols(intronic_parts2)$gene_id) # character vector

Sanity checks:

extendExonsIntolntrons 11

stopifnot(isDisjoint(intronic_partsl1), isStrictlySorted(intronic_partsi))
stopifnot(isDisjoint(intronic_parts2), isStrictlySorted(intronic_parts2))
stopifnot(all(intronic_parts2 %within% reduce(intronic_parts1)))
stopifnot(identical(

lengths(mcols(intronic_parts1)$gene_id) == 1L,

intronic_partsl %within% intronic_parts2

)

B o m o mmm
Helper functions
R

tidyTranscripts(txdb) # Ordered by 'tx_id'.
tidyTranscripts(txdb, drop.geneless=TRUE) # Ordered first by 'gene_id',
then by 'tx_id'.
tidyExons(txdb) Ordered first by 'tx_id',
then by 'exon_rank'.
Ordered first by 'gene_id',
then by 'tx_id',
then by 'exon_rank'.

tidyExons(txdb, drop.geneless=TRUE)

T

tidyIntrons(txdb) Ordered by 'tx_id'.
tidyIntrons(txdb, drop.geneless=TRUE) # Ordered first by 'gene_id',
then by 'tx_id'.

+*

extendExonsIntoIntrons
Extend exons by a given number of bases into their adjacent introns

Description

extendExonsIntoIntrons extends the supplied exons by a given number of bases into their adja-
cent introns.

Usage

extendExonsIntoIntrons(ex_by_tx, extent=2)

Arguments

ex_by_tx A GRangesList object containing exons grouped by transcript. This must be an
object as returned by exonsBy (txdb, by="tx"), that is:

* cach list element in ex_by_tx must be a GRanges object representing the
exons of a given transcript;

* the exons in each list element must be ordered by ascending rank with re-
spect to their transcript.

extent Size of the extent in number of bases. 2 by default.

The first exon in a transcript will be extended by that amount on its 3’ side only.
The last exon in a transcript will be extended by that amount on its 5’ side only.
All other exons (i.e. intermediate exons) will be extended by that amount on
each side.

12 extendExonsIntolntrons

Note that exons that belong to a single-exon transcript don’t get extended.

The default value of 2 corresponds to inclusion of the donor/acceptor intronic
regions (typically GT/AG).

Value

A copy of GRangesList object ex_by_tx where the original exon ranges have been extended.

Names and metadata columns on ex_by_tx are propagated to the result.

Author(s)

Hervé Pages

See Also

* transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

* exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

» extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosome se-
quences.

e The TxDb class.

Examples

With toy transcripts:
ex_by_tx <- GRangesList(
TX1="chr1:10-20:+",
TX2=c("chr1:10-20:+", "chr1:50-75:+"),
TX3=c("chr1:10-20:+", "chr1:50-75:+", "chr1:100-120:+"),
TX4="chr1:10-20:-",
TX5=c("chr1:10-20:-", "chr1:50-75:-"),
TX6=c("chr1:10-20:-", "chr1:50-75:-", "chr1:100-120:-")
)

extended <- extendExonsIntoIntrons(ex_by_tx, extent=2)
extended[1:3]
extended[4:6]

With real-world transcripts:
library(TxDb.Celegans.UCSC.ce11.ensGene)
txdb <- TxDb.Celegans.UCSC.ce11.ensGene
ex_by_tx <- exonsBy(txdb, by="tx")
ex_by_tx

extendExonsIntoIntrons(ex_by_tx, extent=2)

Sanity check:
stopifnot(identical (extendExonsIntoIntrons(ex_by_tx, extent=0), ex_by_tx))

extractTranscriptSeqs 13

extractTranscriptSeqs Extract transcript (or CDS) sequences from chromosome sequences

Description

extractTranscriptSeqs extracts transcript (or CDS) sequences from an object representing a
single chromosome or a collection of chromosomes.

Usage
extractTranscriptSeqs(x, transcripts, ...)

S4 method for signature 'DNAString'
extractTranscriptSeqs(x, transcripts, strand="+")

S4 method for signature 'ANY'

extractTranscriptSeqs(x, transcripts, ...)
Arguments
X An object representing a single chromosome or a collection of chromosomes.

More precisely, x can be a DNAString object (single chromosome), or a BSgenome
object (collection of chromosomes).

Other objects representing a collection of chromosomes are supported (e.g. FaFile
objects in the Rsamtools package) as long as seqinfo and getSeq work on
them.

transcripts An object representing the exon ranges of each transcript to extract.
More precisely:

* If x is a DNAString object, then transcripts must be an IntegerRanges-
List object.
 If xis a BSgenome object or any object representing a collection of chromo-
somes, then transcripts must be a GRangesList object or any object for
which exonsBy is implemented (e.g. a TxDb or EnsDb object). If the latter,
then it’s first turned into a GRangesList object with exonsBy (transcripts,
by="tx", ...).
Note that, for each transcript, the exons must be ordered by ascending rank, that
is, by ascending position in the transcript (when going in the 5’ to 3’ direction).
This generally means (but not always) that they are also ordered from 5’ to 3’
on the reference genome. More precisely:
* For a transcript located on the plus strand, the exons will typically (but not
necessarily) be ordered by ascending position on the reference genome.
¢ For a transcript located on the minus strand, the exons will typically (but not
necessarily) be ordered by descending position on the reference genome.
If transcripts was obtained with exonsBy (see above), then the exons are
guaranteed to be ordered by ascending rank. See ?exonsBy for more informa-
tion.
Additional arguments, for use in specific methods.
For the default method, additional arguments are allowed only when transcripts

is not a GRangesList object, in which case they are passed to the internal call to
exonsBy (see above).

14 extractTranscriptSeqs

strand Only supported when x is a DNAString object.

Can be an atomic vector, a factor, or an Rle object, in which case it indicates the
strand of each transcript (i.e. all the exons in a transcript are considered to be
on the same strand). More precisely: it’s turned into a factor (or factor-Rle) that
has the "standard strand levels" (this is done by calling the strand function on
it). Then it’s recycled to the length of IntegerRangesList object transcripts if
needed. In the resulting object, the i-th element is interpreted as the strand of all
the exons in the i-th transcript.

strand can also be a list-like object, in which case it indicates the strand of
each exon, individually. Thus it must have the same shape as IntegerRangesList
object transcripts (i.e. same length plus strand[[i]] must have the same
length as transcripts[[i]] for all i).

strand can only contain "+" and/or "-" values. "*" is not allowed.

Value

A DNAStringSet object parallel to transcripts, that is, the i-th element in it is the sequence of
the i-th transcript in transcripts.

Author(s)

Hervé Pages

See Also

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

* transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* extendExonsIntoIntrons for extending exons into their adjacent introns.

* The transcriptlLocs2reflLocs function for converting transcript-based locations into reference-
based locations.

* The available.genomes function in the BSgenome package for checking avaibility of BSgenome
data packages (and installing the desired one).

* The DNAString and DNAStringSet classes defined and documented in the Biostrings pack-
age.

* The translate function in the Biostrings package for translating DNA or RNA sequences
into amino acid sequences.

* The GRangesList class defined and documented in the GenomicRanges package.
* The IntegerRangesList class defined and documented in the IRanges package.
» The exonsBy function for extracting exon ranges grouped by transcript.

¢ The TxDb class.

library(Biostrings)

extractTranscriptSeqs

A chromosome of length 30:
X <= DNAString("ATTTAGGACACTCCCTGAGGACAAGACCCC")

[

2 transcripts on 'x':

tx1 <- IRanges(1, 8) # 1 exon

tx2 <- c(tx1, IRanges(12, 30)) # 2 exons
transcripts <- IRangesList(tx1=tx1, tx2=tx2)
extractTranscriptSeqs(x, transcripts)

By default, all the exons are considered to be on the plus strand.
We can use the 'strand' argument to tell extractTranscriptSeqs()
to extract them from the minus strand.

Extract all the exons from the minus strand:
extractTranscriptSeqs(x, transcripts, strand="-")

Note that, for a transcript located on the minus strand, the exons
should typically be ordered by descending position on the reference
genome in order to reflect their rank in the transcript:
extractTranscriptSeqs(x, IRangesList(tx1=tx1, tx2=rev(tx2)), strand="-")

Extract the exon of the 1st transcript from the minus strand:
extractTranscriptSeqs(x, transcripts, strand=c("-", "+"))

Extract the 2nd exon of the 2nd transcript from the minus strand:

extractTranscriptSeqs(x, transcripts, strand=list("-", c("+", "=")))

Bt —
2. A REAL EXAMPLE

B —m o

Load a genome:
library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19

Load a TxDb object:

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

Check that 'txdb' is based on the hgl9 assembly:
txdb

Extract the exon ranges grouped by transcript from 'txdb':
transcripts <- exonsBy(txdb, by="tx", use.names=TRUE)

Extract the transcript sequences from the genome:
tx_seqs <- extractTranscriptSeqgs(genome, transcripts)
tx_seqs

A sanity check:
stopifnot(identical(width(tx_seqs), unname(sum(width(transcripts)))))

Note that 'tx_seqs' can also be obtained with:
extractTranscriptSeqs(genome, txdb, use.names=TRUE)

15

16 extractUpstreamSeqs

3. USING extractTranscriptSeqs() TO EXTRACT CDS SEQUENCES
e G e

cds <- cdsBy(txdb, by="tx", use.names=TRUE)
cds_seqs <- extractTranscriptSeqs(genome, cds)
cds_seqs

A sanity check:
stopifnot(identical(width(cds_seqgs), unname(sum(width(cds)))))

Note that, alternatively, the CDS sequences can be obtained from the
transcript sequences by removing the 5' and 3' UTRs:
tx_lens <- transcriptLengths(txdb, with.utr5_len=TRUE, with.utr3_len=TRUE)
stopifnot(identical (tx_lens$tx_name, names(tx_seqs))) # sanity
Keep the rows in 'tx_lens' that correspond to a sequence in 'cds_seqs'
and put them in the same order as in 'cds_seqgs':
m <- match(names(cds_seqs), names(tx_seqs))
tx_lens <- tx_lens[m,]
utr5_width <- tx_lens$utr5_len
utr3_width <- tx_lens$utr3_len
cds_seqs2 <- narrow(tx_seqs[m],

start=utr5_width+1L, end=-(utr3_width+1L))
stopifnot(identical(as.character(cds_seqs2), as.character(cds_seqs)))

B e
4. TRANSLATE THE CDS SEQUENCES
B =

prot_seqs <- translate(cds_seqs, if.fuzzy.codon="solve")

Note that, by default, translate() uses The Standard Genetic Code to

translate codons into amino acids. However, depending on the organism,

a different genetic code might be needed to translate CDS sequences

located on the mitochodrial chromosome. For example, for vertebrates,

the following code could be used to correct 'prot_seqgs':

SGC1 <- getGeneticCode("SGC1")

chrM_idx <- which(all(segnames(cds) == "chrM"))

prot_seqs[chrM_idx] <- translate(cds_seqs[chrM_idx], genetic.code=SGC1,
if.fuzzy.codon="solve")

extractUpstreamSeqs Extract sequences upstream of a set of genes or transcripts

Description

extractUpstreamSeqgs is a generic function for extracting sequences upstream of a supplied set of
genes or transcripts.

Usage

extractUpstreamSeqs(x, genes, width=1000, ...)

Dispatch is on the 2nd argument!

extractUpstreamSeqs 17

S4 method for signature 'GenomicRanges'
extractUpstreamSeqs(x, genes, width=1000)

S4 method for signature 'TxDb'
extractUpstreamSeqs(x, genes, width=1000, exclude.seqlevels=NULL)

Arguments

X An object containing the chromosome sequences from which to extract the up-
stream sequences. It can be a BSgenome, TwoBitFile, or FaFile object, or any
genome sequence container. More formally, x must be an object for which
seqginfo and getSeq are defined.

genes An object containing the locations (i.e. chromosome name, start, end, and
strand) of the genes or transcripts with respect to the reference genome. Only
GenomicRanges and TxDb objects are supported at the moment. If the latter, the
gene locations are obtained by calling the genes function on the TxDb object
internally.

width How many bases to extract upstream of each TSS (transcription start site).

.. Additional arguments, for use in specific methods.
exclude.seqglevels

A character vector containing the chromosome names (a.k.a. sequence levels)
to exclude when the genes are obtained from a TxDb object.

Value

A DNAStringSet object containing one upstream sequence per gene (or per transcript if genes is a
GenomicRanges object containing transcript ranges).

More precisely, if genes is a GenomicRanges object, the returned object is parallel to it, that is,
the i-th element in the returned object is the upstream sequence corresponding to the i-th gene (or
transcript) in genes. Also the names on the GenomicRanges object are propagated to the returned
object.

If genes is a TxDb object, the names on the returned object are the gene IDs found in the TxDb
object. To see the type of gene IDs (i.e. Entrez gene ID or Ensembl gene ID or ...), you can display
genes with show(genes).

In addition, the returned object has the following metadata columns (accessible with mcols) that
provide some information about the gene (or transcript) corresponding to each upstream sequence:
* gene_segnames: the chromosome name of the gene (or transcript);
e gene_strand: the strand of the gene (or transcript);

* gene_TSS: the transcription start site of the gene (or transcript).

Note

IMPORTANT: Always make sure to use a TxDb package (or TxDb object) that contains a gene
model compatible with the genome sequence container x, that is, a gene model based on the exact
same reference genome as x.

See http://bioconductor.org/packages/release/BiocViews.html#___TxDb for the list of
TxDb packages available in the current release of Bioconductor. Note that you can make your
own custom TxDb object from various annotation resources by using one of the makeTxDbF rom= ()
functions defined in the txdbmaker package and listed in the "See also" section below.

http://bioconductor.org/packages/release/BiocViews.html#___TxDb

18 extractUpstreamSeqs

Author(s)

Hervé Pages

See Also

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl in the txdbmaker
package for making a TxDb object from online resources.

» makeTxDbFromGRanges and makeTxDbFromGFF in the txdbmaker package for making a TxDb
object from a GRanges object, or from a GFF or GTF file.

* The available.genomes function in the BSgenome package for checking avaibility of BSgenome
data packages (and installing the desired one).

* The BSgenome, TwoBitFile, and FaFile classes, defined and documented in the BSgenome,
rtracklayer, and Rsamtools packages, respectively.

* The TxDb class.

* The genes function for extracting gene ranges from a TxDb object.

* The GenomicRanges class defined and documented in the GenomicRanges package.
* The DNAStringSet class defined and documented in the Biostrings package.

* The seqinfo getter defined and documented in the Seqinfo package.

* The getSeq function for extracting subsequences from a sequence container.

Examples

Load a genome:
library(BSgenome.Dmelanogaster.UCSC.dm3)
genome <- BSgenome.Dmelanogaster.UCSC.dm3
genome

Use a TxDb object:
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
txdb # contains Ensembl gene IDs

Because the chrU and chrUextra sequences are made of concatenated

scaffolds (see https://genome.ucsc.edu/cgi-bin/hgGateway?db=dm3),

extracting the upstream sequences for genes located on these

scaffolds is not reliable. So we exclude them:

exclude <- c("chrU”, "chrUextra")

up1000seqs <- extractUpstreamSeqs(genome, txdb, width=1000,
exclude.seqglevels=exclude)

up1000seqs # the names are Ensembl gene IDs

mcols(up1000seqs)

Upstream sequences for genes close to the chromosome bounds can be
shorter than 1000 (note that this does not happen for circular

chromosomes like chrM):

table(width(up1000seqs))

mcols(up1000seqs) [width(up1000@seqs) != 1000, 1]

FeatureDb-class 19

FeatureDb-class FeatureDb objects

Description

WARNING: The FeatureDb/makeFeatureDbFromUCSC/features code base is no longer actively
maintained and FeatureDb-related functionalities might get deprecated in the near future. Please
use makeFeatureDbFromUCSC for a convenient way to import transcript annotations from UCSC
online resources into Bioconductor.

The FeatureDb class is a generic container for storing genomic locations of an arbitrary type of
genomic features.

See ?TxDb for a container for storing transcript annotations.

See ?makeFeatureDbFromUCSC for a convenient way to make FeatureDb objects from BioMart
online resources.

Methods

In the code snippets below, x is a FeatureDb object.

metadata(x): Return x’s metadata in a data frame.

Author(s)

Marc Carlson

See Also

* The TxDb class for storing transcript annotations.

* makeFeatureDbFromUCSC for a convenient way to make a FeatureDb object from UCSC on-
line resources.

* saveDb and loadDb in the AnnotationDbi package for saving and loading a FeatureDb object
as an SQLite file.

» features for how to extract genomic features from a FeatureDb object.

Examples

fdb_file <- system.file("extdata”, "FeatureDb.sqlite",
package="GenomicFeatures")

fdb <- loadDb(fdb_file)

fdb

20 getPromoterSeq

features Extract simple features from a FeatureDb object

Description

WARNING: The FeatureDb/makeFeatureDbFromUCSC/features code base is no longer actively
maintained and FeatureDb-related functionalities might get deprecated in the near future. Please
use makeFeatureDbFromUCSC for a convenient way to import transcript annotations from UCSC
online resources into Bioconductor.

Generic function to extract genomic features from a FeatureDb object.

Usage

features(x)
S4 method for signature 'FeatureDb'
features(x)

Arguments

X A FeatureDb object.

Value

a GRanges object

Author(s)
M. Carlson

See Also
FeatureDb

Examples

fdb <- loadDb(system.file("extdata"”, "FeatureDb.sqlite",
package="GenomicFeatures"))
features(fdb)

getPromotersSeq Get gene promoter or terminator sequences

Description

Extract promoter or terminator sequences for the genes or transcripts specified in the query (a
GRanges or GRangesList object) from a BSgenome or FaFile object.

getPromoterSeq 21

Usage

S4 method for signature 'GRanges'

getPromoterSeq(query, subject, upstream=2000, downstream=200)
S4 method for signature 'GRanges'

getTerminatorSeq(query, subject, upstream=2000, downstream=200)

S4 method for signature 'GRangeslList'

getPromoterSeq(query, subject, upstream=2000, downstream=200)
S4 method for signature 'GRangeslList'
getTerminatorSeq(query, subject, upstream=2000, downstream=200)

Arguments
query A GRanges or GRangesList object containing genes grouped by transcript.
subject A BSgenome or FaFile object from which the sequences will be taken.
upstream The number of DNA bases to include upstream of the TSS (transcription start
site)
downstream The number of DNA bases to include downstream of the TSS (transcription start
site)
Details

getPromoterSeq and getTerminatorSeq are generic functions dispatching on query, which is
either a GRanges or a GRangesList object. They are convenience wrappers for the promoters,
terminators, and getSeq functions. The purpose is to allow sequence extraction from either a
BSgenome or FaFile object.

Default values for upstream and downstream were chosen based on our current understanding of
gene regulation. On average, promoter regions in the mammalian genome are 5000 bp upstream
and downstream of the transcription start site.

Value
A DNAStringSet or DNAStringSetList instance corresponding to the GRanges or a GRangesList
object supplied in the query.

Author(s)

Paul Shannon

See Also

* The promoters man page in the GenomicRanges package for the promoters() and terminators()
methods for GenomicRanges objects.

* getSeq in the Biostrings package for extracting a set of sequences from a sequence container
like a BSgenome or FaFile object.

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)

22 id2name

A GRangesList object describing all the known Human transcripts grouped
by gene:

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

tx_by_gene <- transcriptsBy(txdb, by="gene")

e2f3 <- "1871" # entrez genelD for a cell cycle control transcription
factor, chr6é on the plus strand

A GRanges object describing the three transcripts for gene 1871:
e2f3_tx <- tx_by_gene[[e2f3]]

Promoter sequences for gene 1871:
e2f3_promoter_seqs <- getPromoterSeq(e2f3_tx, Hsapiens,
upstream=40, downstream=15)
e2f3_promoter_seqs
mcols(e2f3_promoter_seqs)
Terminator sequences for gene 1871:
e2f3_terminator_seqs <- getTerminatorSeq(e2f3_tx, Hsapiens,
upstream=25, downstream=10)
e2f3_terminator_seqgs

mcols(e2f3_terminator_seqs) # same as 'mcols(e2f3_promoter_seqs)'

All Human promoter sequences grouped by gene:
getPromoterSeq(tx_by_gene, Hsapiens, upstream=6, downstream=4)

id2name Map internal ids to external names for a given feature type

Description
Utility function for retrieving the mapping from the internal ids to the external names of a given
feature type.

Usage

id2name(txdb, feature.type=c("tx", "exon", "cds"))

Arguments

txdb A TxDb object.

feature. type The feature type for which the mapping must be retrieved.

Details

Transcripts, exons and CDS parts in a TxDb object are stored in seperate tables where the primary
key is an integer called feature internal id. This id is stored in the "tx_id" column for transcripts,
in the "exon_id" column for exons, and in the "cds_id" column for CDS parts. Unlike other
commonly used ids like Entrez Gene IDs or Ensembl IDs, this internal id was generated at the time
the TxDDb object was created and has no meaning outside the scope of this object.

makeFeature DbFromUCSC 23

The id2name function can be used to translate this internal id into a more informative id or name
called feature external name. This name is stored in the "tx_name"” column for transcripts, in the
"exon_name" column for exons, and in the "cds_name” column for CDS parts.

Note that, unlike the feature internal id, the feature external name is not guaranteed to be unique or
even defined (the column can contain NAs).

Value

A named character vector where the names are the internal ids and the values the external names.

Author(s)

Hervé Pages

See Also

e transcripts, transcriptsBy, and transcriptsByOverlaps, for how to extract genomic
features from a TxDb object.

¢ The TxDb class.

Examples

txdb1_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")

txdb1 <- loadDb(txdb1_file)

id2name(txdb1, feature.type="tx")[1:4]

id2name(txdb1, feature.type="exon")[1:4]

id2name(txdb1, feature.type="cds")[1:4]

txdb2_file <- system.file("extdata”, "Biomart_Ensembl_sample.sqlite”,
package="GenomicFeatures")

txdb2 <- loadDb(txdb2_file)

id2name(txdb2, feature.type="tx")[1:4]

id2name(txdb2, feature.type="exon")[1:4]

id2name(txdb2, feature.type="cds")[1:4]

makeFeatureDbFromUCSC [Moved to txdbmaker] Make a FeatureDb object from annotations
available at the UCSC Genome Browser

Description

IMPORTANT NOTE: Starting with BioC 3.19, functions supportedUCSCFeatureDbTracks(),
supportedUCSCFeatureDbTables(), UCSCFeatureDbTableSchema(), and makeFeatureDbFromUCSC()
are defined in the txdbmaker package.

See Also

txdbmaker: : supportedUCSCFeatureDbTracks, txdbmaker: : supportedUCSCFeatureDbTables,
txdbmaker: :UCSCFeatureDbTableSchema, and txdbmaker : :makeFeatureDbFromUCSC in the txdb-
maker package.

24 makeTxDbFromEnsembl

makeTxDb [Moved to txdbmaker] Make a TxDb object from user supplied anno-
tations

Description
IMPORTANT NOTE: Starting with BioC 3.19, the makeTxDb function is defined in the txdbmaker
package.

See Also

txdbmaker: :makeTxDb in the txdbmaker package.

makeTxDbFromBiomart [Moved to txdbmaker] Make a TxDb object from annotations available
on a BioMart database

Description
IMPORTANT NOTE: Starting with BioC 3.19, functions makeTxDbFromBiomart () and getChromInfoFromBiomart()
are defined in the txdbmaker package.

See Also

txdbmaker: :makeTxDbFromBiomart and txdbmaker: :getChromInfoFromBiomart in the txdb-
maker package.

makeTxDbFromEnsembl [Moved to txdbmaker] Make a TxDb object from an Ensembl database

Description

IMPORTANT NOTE: Starting with BioC 3.19, the makeTxDbFromEnsembl function is defined in
the txdbmaker package.

See Also

txdbmaker: :makeTxDbFromEnsembl in the txdbmaker package.

makeTxDbFromGFF 25

makeTxDbF romGFF [Moved to txdbmaker] Make a TxDb object from annotations available
as a GFF3 or GTF file

Description
IMPORTANT NOTE: Starting with BioC 3.19, the makeTxDbFromGFF function is defined in the
txdbmaker package.

See Also

txdbmaker: : makeTxDbFromGFF in the txdbmaker package.

makeTxDbFromGRanges [Moved to txdbmaker] Make a TxDb object from a GRanges object

Description

IMPORTANT NOTE: Starting with BioC 3.19, the makeTxDbFromGRanges function is defined in
the txdbmaker package.

See Also

txdbmaker: : makeTxDbFromGRanges in the txdbmaker package.

makeTxDbFromUCSC [Moved to txdbmaker] Make a TxDb object from annotations available
at the UCSC Genome Browser

Description

IMPORTANT NOTE: Starting with BioC 3.19, functions makeTxDbFromUCSC(), supportedUCSCtables(),
and browseUCSCtrack() are defined in the txdbmaker package.

See Also

txdbmaker: :makeTxDbFromUCSC, txdbmaker: : supportedUCSCtables, and txdbmaker: :browseUCSCtrack
in the txdbmaker package.

26 mapldsToRanges

makeTxDbPackage [Moved to txdbmaker] Making a TxDb package from annotations
available at the UCSC Genome Browser, biomaRt or from another
source.
Description

IMPORTANT NOTE: Starting with BioC 3.19, functions makeTxDbPackageFromUCSC(), makeFDbPackageFromUCSC(),
makeTxDbPackageFromBiomart (), makeTxDbPackage () supportedMiRBaseBuildValues() and
makePackageName () are defined in the txdbmaker package.

See Also

txdbmaker: :makeTxDbPackageFromUCSC, txdbmaker : :makeFDbPackageFromUCSC, txdbmaker : :makeTxDbPackageF
txdbmaker: :makeTxDbPackage, txdbmaker: : supportedMiRBaseBuildValues, and txdbmaker: :makePackageName
in the txdbmaker package.

mapIldsToRanges Map IDs to Genomic Ranges

Description

Map IDs to Genomic Ranges

Usage
mapIdsToRanges(x, ...)
S4 method for signature 'TxDb'

mapIdsToRanges(x, keys, type = c("cds”, "exon"”, "tx",
"gene"), columns = NULL)

Arguments
X Database to use for mapping
keys Values to lookup, passed to transcripts et. al.
type Types of feature to return
columns Additional metadata columns to include in the output
Additional arguments passed to methods
Value

GRangesList corresponding to the keys

Methods (by class)
e TxDb: TxDb method

mapRangesTolds

Examples

library(txdbmaker) # for makeTxDbFromGRanges()
fl <- system.file(package = "GenomicFeatures”, "extdata”, "sample_ranges.rds")
txdb <- makeTxDbFromGRanges(readRDS(f1))

keys <- list(tx_name = c("ENSTQ0Q00371582", "ENSTQ0000371588",
"ENSTQ0000494752", "ENSTQ0000614008", "ENSTQQ000496771"))
mapIldsToRanges(txdb, keys = keys, type = "tx")

mapRangesTolds Map Genomic Ranges to IDs

Description

Map Genomic Ranges to IDs

Usage

mapRangesTolds(x, ...)

S4 method for signature 'TxDb'

mapRangesTolds(x, ranges, type = c("cds”, "exon", "tx",
"gene"), columns = NULL, ...)
Arguments
X Database to use for mapping
ranges range object used to subset
type of feature to return
columns additional metadata columns to include in the output.

Additional arguments passed to findOverlaps

Value

DataFrame of mcols from the database.

Methods (by class)
e TxDb: TxDb method

Examples

library(txdbmaker) # for makeTxDbFromGRanges()
fl <- system.file(package = "GenomicFeatures”, "extdata”, "sample_ranges.rds")
txdb <- makeTxDbFromGRanges(readRDS(f1))

keys <- list(tx_name = c(”ENSTQ0000371582", "ENST00000371588",

"ENSTQ0000494752", "ENSTQ0000614008", "ENSTQQ000496771"))
res <- mapIldsToRanges(txdb, keys = keys, type = "tx")
mapRangesTolds(txdb, res, "tx")

28

mapToTranscripts

mapToTranscripts

Map range coordinates between transcripts and genome space

Description

Map range coordinates between features in the transcriptome and genome (reference) space.

See ?mapToAlignments in the GenomicAlignments package for mapping coordinates between
reads (local) and genome (reference) space using a CIGAR alignment.

Usage

mapping to transcripts
S4 method for signature 'GenomicRanges,GenomicRanges'
mapToTranscripts(x, transcripts,

ignore.strand = FALSE)
S4 method for signature 'GenomicRanges,GRangesList'
mapToTranscripts(x, transcripts,

ignore.strand = FALSE, intronJunctions=FALSE)
S4 method for signature 'ANY,TxDb'
mapToTranscripts(x, transcripts, ignore.strand = FALSE,

extractor.fun = GenomicFeatures::transcripts, ...)
S4 method for signature 'GenomicRanges,GRangesList'
pmapToTranscripts(x, transcripts,

ignore.strand = FALSE)

mapping from transcripts
S4 method for signature 'GenomicRanges,GRangesList'
mapFromTranscripts(x, transcripts,

ignore.strand = FALSE)
S4 method for signature 'GenomicRanges,GRangesList'
pmapFromTranscripts(x, transcripts,

ignore.strand = FALSE)
S4 method for signature 'IntegerRanges,GRangesList'
pmapFromTranscripts(x, transcripts)

Arguments

X

transcripts

ignore.strand

GenomicRanges object of positions to be mapped. The seqnames of x are used
inmapFromTranscripts, i.e., when mapping from transcripts to the genome. In
the case of pmapFromTranscripts, x can be an IntegerRanges object.

A named GenomicRanges or GRangesList object used to map between x and the
result. The ranges can be any feature in the transcriptome extracted from a TxDb
(e.g., introns, exons, CDS parts). See ?transcripts and ?transcriptsBy for
a list of extractor functions.

The transcripts object must have names. When mapping from transcripts to

the genome, they are used to determine mapping pairs; in the reverse direction
they become the seqlevels of the output object.

When ignore.strand is TRUE, strand is ignored in overlaps operations (i.e.,
all strands are considered "+") and the strand in the output is **’.

mapToTranscripts

intronJunctions

extractor.fun

Details

29

When ignore. strand is FALSE strand in the output is taken from the transcripts

argument. When transcripts is a GRangesList, all inner list elements of a
common list element must have the same strand or an error is thrown.

Mapped position is computed by counting from the transcription start site (T'SS)
and is not affected by the value of ignore. strand.

Logical to indicate if intronic ranges in x should be reported.

This argument is only supported in mapToTranscripts when transcripts is
a GRangesList. When transcripts is a GRangesList, individual ranges can be
thought of as exons and the spaces between the ranges as introns.

When intronJunctions=TRUE, ranges that fall completely "within" an intron
are reported as a zero-width range (start and end are taken from the ranges they
fall between). A metadata column called "intronic" is returned with the GRanges
and marked as TRUE for these ranges. By default, intronJunctions=FALSE and
these ranges are not mapped.

Ranges that have either the start or end in an intron are considered "non hits"
and are never mapped. Ranges that span introns are always mapped. Neither of
these range types are controlled by the intronJunctions argument.

Function to extract genomic features from a TxDb object.

This argument is only applicable to mapToTranscripts when transcriptsisa
TxDb object. The extractor should be the name of a function (not a character())
described in the ?transcripts, or ?transcriptsBy man page.

Valid extractor functions:
* transcripts ## default
* exons
* cds
* genes
* promoters
* exonicParts
* intronicParts
* transcriptsBy
* exonsBy
* cdsBy
* intronsByTranscript
¢ fiveUTRsByTranscript
¢ threeUTRsByTranscript
* tRNAs

Additional arguments passed to extractor. fun functions.

In GenomicFeatures >= 1.21.10, the default for ignore.strand was changed to FALSE for consis-
tency with other methods in the GenomicRanges and GenomicAlignments packages. Addition-
ally, the mapped position is computed from the TSS and does not depend on the ignore.strand
argument. See the section on ignore.strand for details.

mapToTranscripts, pmapToTranscripts: The genomic range in x is mapped to the local position
in the transcripts ranges. A successful mapping occurs when x is completely within the
transcripts range, equivalent to:

30

mapToTranscripts

findOverlaps(..., type="within")

Transcriptome-based coordinates start counting at 1 at the beginning of the transcripts
range and return positions where x was aligned. The seqlevels of the return object are taken
from the transcripts object and should be transcript names. In this direction, mapping is
attempted between all elements of x and all elements of transcripts.

mapToTranscripts uses findOverlaps to map ranges in x to ranges in transcripts. This
method does not return unmapped ranges.

pmapToTranscripts maps the i-th range in x to the i-th range in transcripts. Recycling
is supported for both x and transcripts when either is length == 1L; otherwise the lengths
must match. Ranges in x that do not map (out of bounds or strand mismatch) are returned as
zero-width ranges starting at 0. These ranges are given the seqname of "UNMAPPED".

mapFromTranscripts, pmapFromTranscripts: The transcript-based position in x is mapped to
genomic coordinates using the ranges in transcripts. A successful mapping occurs when
the following is TRUE:

width(transcripts) >= start(x) + width(x)

x is aligned to transcripts by moving in start(x) positions in from the beginning of the
transcripts range. The seqlevels of the return object are chromosome names.
mapFromTranscripts uses the seqname of x and the names of transcripts to determine
mapping pairs (vs attempting to match all possible pairs). Name matching is motivated by use
cases such as differentially expressed regions where the expressed regions in x would only be
related to a subset of regions in transcripts. This method does not return unmapped ranges.
pmapFromTranscripts maps the i-th range in x to the i-th range in transcripts and therefore
does not use name matching. Recycling is supported in pmapFromTranscripts when either
x or transcripts is length == 1L; otherwise the lengths must match. Ranges in x that do not
map (out of bounds or strand mismatch) are returned as zero-width ranges starting at 0. These
ranges are given the seqname of "UNMAPPED".

Value

pmapToTranscripts returns a GRanges the same length as x.

pmapFromTranscripts returns a GRanges when transcripts is a GRanges and a GRangesList
when transcripts is a GRangesList. In both cases the return object is the same length as x. The
rational for returning the GRangesList is to preserve exon structure; ranges in a list element that
are not overlapped by x are returned as a zero-width range. The GRangesList return object will
have no seqlevels called "UNMAPPED"; those will only occur when a GRanges is returned.

mapToTranscripts and mapFromTranscripts return GRanges objects that vary in length similar to
a Hits object. The result contains mapped records only; strand mismatch and out of bound ranges
are not returned. xHits and transcriptsHits metadata columns (similar to the queryHits and
subjectHits of a Hits object) indicate elements of x and transcripts used in the mapping.

When intronJunctions is TRUE, mapToTranscripts returns an extra metdata column named
intronic to identify the intron ranges.

When mapping to transcript coordinates, seqlevels of the output are the names on the transcripts
object and most often these will be transcript names. When mapping to the genome, seqlevels of
the output are the seqlevels of transcripts which are usually chromosome names.

Author(s)

V. Obenchain, M. Lawrence and H. Pages

mapToTranscripts 31

See Also

e ?mapToAlignments in the GenomicAlignments package for methods mapping between reads
and genome space using a CIGAR alignment.

Examples
e
A. Basic Use: Conversion between CDS and Exon coordinates and the
genome
e

Gene "Dgkb" has ENTREZID "217480":
library(org.Mm.eg.db)
Dgkb_geneid <- get("Dgkb"”, org.Mm.egSYMBOL2EG)

The gene is on the positive strand, chromosome 12:
library(TxDb.Mmusculus.UCSC.mm1@.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm1@.knownGene

tx_by_gene <- transcriptsBy(txdb, by="gene")

Dgkb_transcripts <- tx_by_gene[[Dgkb_geneid]]

Dgkb_transcripts # all 7 Dgkb transcripts are on chri12, positive strand

To map coordinates from local CDS or exon space to genome
space use mapFromTranscripts().

When mapping CDS coordinates to genome space the 'transcripts'

argument is the collection of CDS parts by transcript.

coord <- GRanges("chr12", IRanges(4, width=1))

Get the names of the transcripts in the gene:

Dgkb_tx_names <- mcols(Dgkb_transcripts)$tx_name

Dgkb_tx_names

Use these names to isolate the region of interest:

cds_by_tx <- cdsBy(txdb, "tx", use.names=TRUE)

Dgkb_cds_by_tx <- cds_by_tx[intersect(Dgkb_tx_names, names(cds_by_tx))]
Dgkb CDS parts grouped by transcript (no-CDS transcripts omitted):
Dgkb_cds_by_tx

lengths(Dgkb_cds_by_tx) # nb of CDS parts per transcript

A requirement for mapping from transcript space to genome space
is that segnames in 'x' match the names in 'transcripts'.

names (Dgkb_cds_by_tx) <- rep(segnames(coord), length(Dgkb_cds_by_tx))
There are 6 results, one for each transcript.
mapFromTranscripts(coord, Dgkb_cds_by_tx)

To map exon coordinates to genome space the 'transcripts'

argument is the collection of exon regions by transcript.

coord <- GRanges("chr12", IRanges(100, width=1))

ex_by_tx <- exonsBy(txdb, "tx", use.names=TRUE)

Dgkb_ex_by_tx <- ex_by_tx[Dgkb_tx_names]

names (Dgkb_ex_by_tx) <- rep(segnames(coord), length(Dgkb_ex_by_tx))
Again the output has 6 results, one for each transcript.
mapFromTranscripts(coord, Dgkb_ex_by_tx)

To go the reverse direction and map from genome space to
local CDS or exon space, use mapToTranscripts().

Genomic position 37981944 maps to CDS position 4:

32

mapToTranscripts

coord <- GRanges("chr12", IRanges(37981944, width=1))
mapToTranscripts(coord, Dgkb_cds_by_tx)

Genomic position 37880273 maps to exon position 100:
coord <- GRanges("chri12", IRanges(37880273, width=1))
mapToTranscripts(coord, Dgkb_ex_by_tx)

The following examples use more than 2GB of memory, which is more
than what 32-bit Windows can handle:

is_32bit_windows <- .Platform$0S.type == "windows" &&
.Platform$r_arch == "i386"
if ('is_32bit_windows) {
B m o o
B. Map sequence locations in exons to the genome
B m oo

NAGNAG alternative splicing plays an essential role in biological
processes and represents a highly adaptable system for

posttranslational regulation of gene function. The majority of
NAGNAG studies largely focus on messenger RNA. A study by Sun,

Lin, and Yan (http://www.hindawi.com/journals/bmri/2014/736798/)
demonstrated that NAGNAG splicing is also operative in large

intergenic noncoding RNA (1lincRNA). One finding of interest was
that 1inc-POLR3G-10 exhibited two NAGNAG acceptors located in two
distinct transcripts: TCONS_00010012 and TCONS_00010010.

Extract the exon coordinates of TCONS_00010012 and TCONS_00010010:
lincrna <- c("TCONS_00010012", "TCONS_00010010")
library(TxDb.Hsapiens.UCSC.hg19.1lincRNAsTranscripts)

txdb <- TxDb.Hsapiens.UCSC.hg19.1lincRNAsTranscripts

exons <- exonsBy(txdb, by="tx", use.names=TRUE)[lincrna]

exons

The two NAGNAG acceptors were identified in the upstream region of
the fourth and fifth exons located in TCONS_00010012.

Extract the sequences for transcript TCONS_00010012:
library(BSgenome.Hsapiens.UCSC.hg19)

genome <- BSgenome.Hsapiens.UCSC.hg19

exons_seq <- getSeq(genome, exons[[1]])

TCONS_00010012 has 4 exons:
exons_seq

The most common triplet among the 1incRNA sequences was CAG. Identify
the location of this pattern in all exons.
cag_loc <- vmatchPattern(”CAG", exons_seq)

Convert the first occurance of CAG in each exon back to genome
coordinates.

first_loc <- do.call(c, sapply(cag_loc, "[", 1, simplify=TRUE))
pmapFromTranscripts(first_loc, exons[[1]])

e
C. Map dbSNP variants to CDS or cDNA coordinates
B — oo

mapToTranscripts

The GIPR gene encodes a G-protein coupled receptor for gastric

inhibitory polypeptide (GIP). Originally GIP was identified to

inhibited gastric acid secretion and gastrin release but was later

demonstrated to stimulate insulin release in the presence of elevated
glucose.

In this example 5 SNPs located in the GIPR gene are mapped to cDNA

coordinates. A list of SNPs in GIPR can be downloaded from dbSNP or

NCBI.

rsids <- c("rs4803846", "rs139322374", "rs7250736", "rs7250754",
"rs9749185")

Extract genomic coordinates with a SNPlocs package.
library(SNPlocs.Hsapiens.dbSNP144.GRCh38)
snps <- snpsById(SNPlocs.Hsapiens.dbSNP144.GRCh38, rsids)

Gene regions of GIPR can be extracted from a TxDb package of

compatible build. The TxDb package uses Entrez gene identifiers
and GIPR is a gene symbol. Let's first lookup its Entrez gene ID.
library(org.Hs.eg.db)

GIPR_geneid <- get("GIPR", org.Hs.egSYMBOL2EG)

The transcriptsBy() extractor returns a range for each transcript that
includes the UTR and exon regions (i.e., cDNA).
library(TxDb.Hsapiens.UCSC.hg38.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene

tx_by_gene <- transcriptsBy(txdb, "gene")

GIPR_transcripts <- tx_by_gene[GIPR_geneid]

GIPR_transcripts # all 8 GIPR transcripts are on chr19, positive strand

Before mapping, the chromosome names (seqlevels) in the two
objects must be harmonized. The style is NCBI for 'snps' and
UCSC for 'GIPR_transcripts'.

library(GenomeInfoDb)

seqlevelsStyle(snps)

seqlevelsStyle(GIPR_transcripts)

Modify the style (and genome) in 'snps' to match 'GIPR_transcripts'.
seqlevelsStyle(snps) <- seqlevelsStyle(GIPR_transcripts)

The 'GIPR_transcripts' object is a GRangesList of length 1. This single
list element contains the cDNA range for 8 different transcripts. To

map to each transcript individually 'GIPR_transcripts' must be unlisted
before mapping.

Map all 5 SNPS to all 8 transcripts:
mapToTranscripts(snps, unlist(GIPR_transcripts))

Map the first SNP to transcript "ENST@0000590918.5" and the second to
"ENSTQ0000263281.7".
pmapToTranscripts(snps[1:2], unlist(GIPR_transcripts)[1:2])

The cdsBy() extractor returns CDS parts by gene or by transcript.
Extract the CDS parts for transcript "ENST00000263281.7".

cds <- cdsBy(txdb, "tx", use.names=TRUE)["ENST00000263281.7"]

cds

33

34 nearest-methods

The 'cds' object is a GRangesList of length 1 containing the ranges of
all CDS parts for single transcript "ENST00000263281.7".

To map to the concatenated group of ranges leave 'cds' as a GRangesList.
mapToTranscripts(snps, cds)

Only the second SNP could be mapped. Unlisting the 'cds' object maps
the SNPs to the individual cds ranges (vs the concatenated range).
mapToTranscripts(snps[2], unlist(cds))

The location is the same because the SNP hit the first CDS part. If
the transcript were on the "-" strand the difference in concatenated
vs non-concatenated position would be more obvious.

Change strand:

strand(cds) <- strand(snps) <-
mapToTranscripts(snps[2], unlist(cds))
3

n_n

nearest-methods Finding the nearest genomic range neighbor in a TxDb

Description

A distance() method for TxDb objects.

Usage

S4 method for signature 'GenomicRanges,TxDb'
distance(x, y, ignore.strand=FALSE,
., id, type=c("gene"”, "tx", "exon", "cds"))

Arguments
X The query as a GRanges object or other GenomicRanges derivative.
y A TxDb object. The id is used to extract ranges from the TxDb which are then
used to compute the distance from x.
id A character vector the same length as x. The id must be identifiers in the
TxDb object. type indicates what type of identifier id is.
type A character (1) describing the id. Must be one of ‘gene’, ‘tx’, ‘exon’ or ‘cds’.

ignore.strand A logical indicating if the strand of the ranges should be ignored. When TRUE,
strand is setto '+'.

Additional arguments for methods.

Details

This distance() method returns the distance for each range in x to the range extracted from the
TxDb object y. Values in id are matched to one of ‘gene_id’, ‘tx_id’, ‘exon_id’ or ‘cds_id’ identi-
fiers in the TxDb and the corresponding ranges are extracted. The type argument specifies which
identifier is represented in id. The extracted ranges are used in the distance calculation with the
ranges in Xx.

proteinToGenome 35

The method returns NA values when the genomic region defined by id cannot be collapsed into a
single range (e.g., when a gene spans multiple chromosomes) or if the id is not found in y.

The behavior of distance() with respect to zero-width ranges has changed in Bioconductor 2.12.
See the man page ?distance in the IRanges for details.

Value

An integer vector of distances between the ranges in x and y.

Author(s)

Valerie Obenchain <vobencha@thcrc.org>

See Also

* nearest-methods in the IRanges package.
* nearest-methods in the GenomicRanges package.

Examples

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
gr <- GRanges(c("chr2L", "chr2rR"),
IRanges(c (100000, 200000), width=100))
distance(gr, txdb, id=c("FBgn0259717", "FBgn@261501"), type="gene")
distance(gr, txdb, id=c("10000", "23000"), type="cds")
The id's must be in the appropriate order with respect to 'x'.
distance(gr, txdb, id=c("4", "4097"), type="tx")

'id' "4" is on chr2L and "4097" is on chr2R.
transcripts(txdb, filter=list(tx_id=c("4", "4097")))

If we reverse the 'id' the chromosomes are incompatable with gr.
distance(gr, txdb, id=c("4@97", "4"), type="tx")

distance() compares each 'x' to the corresponding 'y'.

If an 'id' is not found in the TxDb 'y' will not

be the same lenth as 'x' and an error is thrown.

Not run:

distance(gr, txdb, id=c("FBgn0000008", "INVALID"), type="gene") ## will fail

End(Not run)

proteinToGenome Map protein-relative coordinates to genomic coordinates

Description

proteinToGenome is a generic function for mapping ranges of protein-relative positions to the
genome.
NOTE: This man page is for the proteinToGenome S4 generic function and methods defined in the

GenomicFeatures package, which are (loosely) modeled on the proteinToGenome function from
the ensembldb package. See ?ensembldb: :proteinToGenome for the latter.

36

proteinToGenome

Usage

S4 generic function:
proteinToGenome(x, db, ...) # dispatch is on 2nd argument 'db'

S4 method for signature 'ANY'
proteinToGenome(x, db)

S4 method for signature 'GRangeslList'
proteinToGenome(x, db)

Arguments

X A named IRanges object (or derivative) containing ranges of protein-relative
positions (protein-relative positions are positions relative to a protein sequence).

The names on x must be transcript names present in db. More precisely, for the
default proteinToGenome () method, names(x) must be a subset of:

mcols(transcripts(db, columns="tx_name"))$tx_name

And for the method for GRangesList objects, names(x) must be a subset of:
names (db)

db For the default proteinToGenome () method: A TxDb object or any object that
supports transcripts() and cdsBy() (e.g. an EnsDb object from the ensem-
bldb package).
For the method for GRangesList objects: A named GRangesList object (or
derivative) where each list element is a GRanges object representing a CDS
(the ranges in the GRanges object must represent the CDS parts ordered by as-
cending exon rank).

Further arguments to be passed to specific methods.

Details

The proteinToGenome() method for GRangesList objects is the workhorse behind the default
method. Note that the latter is a thin wrapper around the former, which simply does the follow-
ing:

1. Use cdsBy() to extract the CDS parts from db. The CDS parts are returned in a GRangesList
object that has the names of the transcript on it (one transcript name per list element).

2. Call proteinToGenome () on x and the GRangesList object returned by cdsBy ().

Value

A named GRangesList object parallel to x (the transcript names on x are propagated). The i-th list
element in the returned object is the result of mapping the range of protein-relative positions x[1i]
to the genome.

Note that a given range in x can only be mapped to the genome if the name on it is the name of a
coding transcript. If it’s not (i.e. if it’s the name of a non-coding transcript), then an empty GRanges
object is placed in the returned object to indicate the impossible mapping, and a warning is issued.

Otherwise, if a given range in x can be mapped to the genome, then the result of the mapping is
represented by a non-empty GRanges object. Note that this object represents the original CDS

proteinToGenome 37

associated to x, trimmed on its 5° end or 3’ end, or on both. Furthermore, this object will have the
same metadata columns as the GRanges object representing the original CDS, plus the 2 following
ones:

» protein_start: The protein-relative start of the mapping.

* protein_end: The protein-relative end of the mapping.

Note

Unlike ensembldb: :proteinToGenome () which can work either with Ensembl protein IDs or En-
sembl transcript IDs on x, the default proteinToGenome () method described above only accepts
transcript names on X.

This means that, if the user is in possession of protein IDs, they must first replace them with the
corresponding transcript IDs (referred to as transcript names in the context of TxDb objects). How
to do this exactly depends on the origin of those IDs (UCSC, Ensembl, GTF/GFF3 file, FlyBase,
etc...)

Author(s)

H. Pages, using ensembldb: :proteinToGenome () for inspiration and design.

See Also

* The proteinToGenome function in the ensembldb package, which the proteinToGenome ()
generic and methods documented in this man page are (loosely) modeled on.

» TxDb objects.

* EnsDb objects (TxDb-like objects) in the ensembldb package.

* transcripts for extracting transcripts from a TxDb-like object.

* cdsBy for extracting CDS parts from a TxDb-like object.

» [Ranges objects in the IRanges package.

* GRanges and GRangesList objects in the GenomicRanges package.

Examples

e
USING TOY CDS
HHE = m e

CDS1 has 2 CDS parts:
CDS1 <- GRanges(c("chrX:11-60:+", "chrX:101-125:+"))

CDS2 has 3 CDS parts:
CDS2 <- GRanges(c("chrY:201-230:-", "chrY:101-125:-", "chrY:11-60:-"))

Put them in a GRangesList object:
cds_by_tx <- GRangesList(TX1=CDS1, TX2=CDS2)
cds_by_tx

x1 <- IRanges(start=8, end=20, names="TX1")
proteinToGenome(x1, cds_by_tx)

x2 <- IRanges(start=c(1, 18), end=c(25, 20), names=c("TX1", "TX1"))
x2

38 select-methods

proteinToGenome(x2, cds_by_tx)

x3 <- IRanges(start=8, end=15, names="TX2")
proteinToGenome(x3, cds_by_tx)

x4 <- c(x3, x2)
x4
proteinToGenome (x4, cds_by_tx)

B m o
USING A TxDb OBJECT

B m o
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

The first transcript (FBtr@309810) is non-coding:

x <- IRanges(c(FBtre309810="11-55", FBtr0306539="90-300"))
res <- proteinToGenome(x, txdb)

res

select-methods Using the "select" interface on TxDb objects

Description

select, columns and keys can be used together to extract data from a TxDb object.

Details

In the code snippets below, x is a TxDb object.

keytypes(x): allows the user to discover which keytypes can be passed in to select or keys and
the keytype argument.

keys(x, keytype, pattern, column, fuzzy): Returnkeys for the database contained in the TxDb
object .

The keytype argument specifies the kind of keys that will be returned. By default keys will
return the "GENEID" keys for the database.

If keys is used with pattern, it will pattern match on the keytype.

But if the column argument is also provided along with the pattern argument, then pattern
will be matched against the values in column instead.

And if keys is called with column and no pattern argument, then it will return all keys that
have corresponding values in the column argument.

Thus, the behavior of keys all depends on how many arguments are specified.
Use of the fuzzy argument will toggle fuzzy matching to TRUE or FALSE. If pattern is not
used, fuzzy is ignored.

columns(x): Show which kinds of data can be returned for the TxDb object.

select(x, keys, columns, keytype): When all the appropriate arguments are specified select
will retrieve the matching data as a data.frame based on parameters for selected keys and
columns and keytype arguments.

transcriptLengths 39

Author(s)

Marc Carlson

See Also

* AnnotationDb-class for more descriptsion of methods select,keytypes,keys and columns.

* transcripts, transcriptsBy, and transcriptsByOverlaps, for other ways to extract ge-
nomic features from a TxDb object.

e The TxDb class.

Examples

txdb_file <- system.file("extdata”, "Biomart_Ensembl_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

txdb

find key types
keytypes(txdb)

list IDs that can be used to filter
head(keys(txdb, "GENEID"))
head(keys(txdb, "TXID"))
head(keys(txdb, "TXNAME"))

list columns that can be returned by select
columns(txdb)

call select

res <- select(txdb, head(keys(txdb, "GENEID")),
columns=c("GENEID", "TXNAME"),
keytype="GENEID")

head(res)

transcriptlLengths Extract the transcript lengths (and other metrics) from a TxDb object

Description

The transcriptLengths function extracts the transcript lengths from a TxDb object. It also returns
the CDS and UTR lengths for each transcript if the user requested them.

Usage
transcriptlLengths(txdb, with.cds_len=FALSE,
with.utr5_len=FALSE, with.utr3_len=FALSE, ...)
Arguments
txdb A TxDb object.

with.cds_len,with.utr5_len,with.utr3_len
TRUE or FALSE. Whether or not to also extract and return the CDS, 5 UTR, and
3’ UTR lengths for each transcript.
Additional arguments used by transcripts and other accessor functions.

40 transcriptLengths

Details

All the lengths are counted in number of nucleotides.

The length of a processed transcript is just the sum of the lengths of its exons. This should not be
confounded with the length of the stretch of DNA transcribed into RNA (a.k.a. transcription unit),
which can be obtained with width(transcripts(txdb)).

Value

A data frame with 1 row per transcript. The rows are guaranteed to be in the same order as the
elements of the GRanges object returned by transcripts(txdb). The data frame has between 5
and 8 columns, depending on what the user requested via the with.cds_len, with.utr5_len, and
with.utr3_len arguments.

The first 3 columns are the same as the metadata columns of the object returned by
transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id"))

that is:

* tx_id: The internal transcript ID. This ID is unique within the scope of the TxDb object.
It is not an official or public ID (like an Ensembl or FlyBase ID) or an Accession number,
so it cannot be used to lookup the transcript in public data bases or in other TxDb objects.
Furthermore, this ID could change when re-running the code that was used to make the TxDb
object.

* tx_name: An official/public transcript name or ID that can be used to lookup the transcript in
public data bases or in other TxDb objects. This column is not guaranteed to contain unique
values and it can contain NAs.

» gene_id: The official/public ID of the gene that the transcript belongs to. Can be NA if the
gene is unknown or if the transcript is not considered to belong to a gene.

The other columns are quantitative:

* nexon: The number of exons in the transcript.

* tx_len: The length of the processed transcript.

* cds_len: [optional] The length of the CDS region of the processed transcript.

* utr5_len: [optional] The length of the 5 UTR region of the processed transcript.
* utr3_len: [optional] The length of the 3’ UTR region of the processed transcript.

Author(s)

Hervé Pages

See Also
* transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

* exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

* extractTranscriptSeqgs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

transcriptLocs2refLocs 41

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl in the txdbmaker
package for making a TxDb object from online resources.

* makeTxDbFromGRanges and makeTxDbFromGFF in the txdbmaker package for making a TxDb
object from a GRanges object, or from a GFF or GTF file.

e The TxDb class.

Examples

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
dm3_txlens <- transcriptLengths(txdb)
head(dm3_txlens)

dm3_txlens <- transcriptLengths(txdb, with.cds_len=TRUE,
with.utr5_len=TRUE,
with.utr3_len=TRUE)
head(dm3_txlens)

When cds_len is @ (non-coding transcript), utr5_len and utr3_len
must also be 0:

non_coding <- dm3_txlens[dm3_txlens$cds_len == 0,]
stopifnot(all(non_coding[6:8] == 0))

When cds_len is not @ (coding transcript), cds_len + utr5_len +
utr3_len must be equal to tx_len:

coding <- dm3_txlens[dm3_txlens$cds_len != 0,]
stopifnot(all(rowSums(coding[6:8]) == coding[[5]11))

A sanity check:
stopifnot(identical(dm3_txlens$tx_id, mcols(transcripts(txdb))$tx_id))

transcriptlLocs2reflocs
Converting transcript-based locations into reference-based locations

Description

transcriptlLocs2reflLocs converts transcript-based locations into reference-based (aka chromosome-
based or genomic) locations.

transcriptWidths computes the lengths of the transcripts (called the "widths" in this context)
based on the boundaries of their exons.

Usage

transcriptlLocs2reflocs(tlocs,
exonStarts=list(), exonEnds=list(), strand=character(0),
decreasing.rank.on.minus.strand=FALSE, error.if.out.of.bounds=TRUE)

transcriptWidths(exonStarts=1list(), exonEnds=1list())

transcriptLocs2refLocs

Arguments

tlocs A list of integer vectors of the same length as exonStarts and exonEnds. Each
element in tlocs must contain transcript-based locations.
exonStarts, exonEnds
The starts and ends of the exons, respectively.
Each argument can be a list of integer vectors, an IntegerList object, or a charac-
ter vector where each element is a comma-separated list of integers. In addition,
the lists represented by exonStarts and exonEnds must have the same shape
i.e. have the same lengths and have elements of the same lengths. The length of
exonStarts and exonEnds is the number of transcripts.
strand A character vector of the same length as exonStarts and exonEnds specifying
the strand ("+"” or "~-") from which the transcript is coming.
decreasing.rank.on.minus.strand
TRUE or FALSE. Describes the order of exons in transcripts located on the minus
strand: are they ordered by increasing (default) or decreasing rank?
error.if.out.of.bounds
TRUE or FALSE. Controls how out of bound tlocs are handled: an error is thrown
(default) or NA is returned.

Value

For transcriptlLocs2reflLocs: A list of integer vectors of the same shape as tlocs.

For transcriptWidths: An integer vector with one element per transcript.

Author(s)

Hervé Pages

See Also

* extractTranscriptSeqs for extracting transcript (or CDS) sequences from chromosomes.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

Examples

WITH A SMALL SET OF HUMAN TRANSCRIPTS

HH -

txdb_file <- system.file("extdata”, "hgl9_knownGene_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

ex_by_tx <- exonsBy(txdb, by="tx", use.names=TRUE)

genome <- BSgenome::getBSgenome("hgl19"”) # load the hgl9 genome

tx_seqs <- extractTranscriptSegs(genome, ex_by_tx)

Get the reference-based locations of the first 4 (5' end)
and last 4 (3' end) nucleotides in each transcript:

tlocs <- lapply(width(tx_segs), function(w) c(1:4, (w-3):w))
tx_strand <- sapply(strand(ex_by_tx), runValue)

Note that, because of how we made them, 'tlocs', 'start(ex_by_tx)',
'end(ex_by_tx)' and 'tx_strand' are "parallel” objects i.e. they
have the same length, and, for any valid positional index, elements

transcripts

at this position are corresponding to each other. This is how
transcriptlLocs2reflLocs() expects them to be!
rlocs <- transcriptLocs2reflLocs(tlocs,

start(ex_by_tx), end(ex_by_tx),

tx_strand, decreasing.rank.on.minus.strand=TRUE)

#H# -
WITH TWO WORM TRANSCRIPTS: ZC101.3.1 AND F37B1.1.1

-
library(TxDb.Celegans.UCSC.ce11.ensGene)

txdb <- TxDb.Celegans.UCSC.ce11.ensGene

my_tx_names <- c("zZC101.3.1", "F37B1.1.1")

Both transcripts are on chromosome II, the first one on its positive
strand and the second one on its negative strand:

my_tx <- transcripts(txdb, filter=list(tx_name=my_tx_names))

my_tx

Using transcripts stored in a GRangesList object:
ex_by_tx <- exonsBy(txdb, use.names=TRUE)[my_tx_names]
genome <- getBSgenome("cel1”) # load the cell genome
tx_seqs <- extractTranscriptSeqgs(genome, ex_by_tx)
tx_seqs

Since the 2 transcripts are on the same chromosome, an alternative

is to store them in an IRangesList object and use that object with

extractTranscriptSeqs():

ex_by_tx2 <- ranges(ex_by_tx)

tx_seqs2 <- extractTranscriptSeqs(genome$chrlil, ex_by_tx2,
strand=strand(my_tx))

stopifnot(identical(as.character(tx_seqs), as.character(tx_seqs2)))

Store exon starts and ends in two IntegerList objects for use with
transcriptWidths() and transcriptlLocs2reflLocs():

exon_starts <- start(ex_by_tx)

exon_ends <- end(ex_by_tx)

Same as 'width(tx_segs)':
transcriptWidths(exonStarts=exon_starts, exonEnds=exon_ends)

transcriptlLocs2reflocs(list(c(1:2, 202:205, 1687:1688),
c(1:2, 193:196, 721:722)),
exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

A sanity check:

ref_locs <- transcriptlLocs2reflocs(list(1:1688, 1:722),
exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

stopifnot(genome$chrIiIfref_locs[[1]1]1] == tx_seqs[[1]1]1)

stopifnot(complement(genome$chrIiI)[ref_locs[[2]1]] == tx_seqs[[2]1]1)

transcripts Extract genomic features from a TxDb-like object

44 transcripts

Description

Generic functions to extract genomic features from a TxDb-like object. This page documents the
methods for TxDb objects only.

Usage
transcripts(x, ...)
S4 method for signature 'TxDb'
transcripts(x, columns=c("tx_id", "tx_name"), filter=NULL, use.names=FALSE)
exons(x, ...)

S4 method for signature 'TxDb'
exons(x, columns="exon_id", filter=NULL, use.names=FALSE)

cds(x, ...)
S4 method for signature 'TxDb'
cds(x, columns="cds_id"”, filter=NULL, use.names=FALSE)

genes(x, ...)
S4 method for signature 'TxDb'

genes(x, columns="gene_id", filter=NULL, single.strand.genes.only=TRUE)

S4 method for signature 'TxDb'

promoters(x, upstream=2000, downstream=200, use.names=TRUE, ...)

S4 method for signature 'TxDb'

terminators(x, upstream=2000, downstream=200, use.names=TRUE, ...)
Arguments

X A TxDb object.

For the transcripts(), exons(), cds(), and genes() generic functions: ar-
guments to be passed to methods.

For the promoters() and terminators() methods for TxDb objects: argu-
ments to be passed to the internal call to transcripts().

columns Columns to include in the output. Must be NULL or a character vector as given
by the columns method. With the following restrictions:

e "TXCHROM" and "TXSTRAND" are not allowed for transcripts().
e "EXONCHROM" and "EXONSTRAND" are not allowed for exons ().
e "CDSCHROM" and "CDSSTRAND" are not allowed for cds().

If the vector is named, those names are used for the corresponding column in
the element metadata of the returned object.
filter Either NULL or a named list of vectors to be used to restrict the output. Valid

n on n on

names for this list are: "gene_id", "tx_id", "tx_name", "tx_chrom”, "tx_strand”,

n on non

"exon_id", "exon_name", "exon_chrom”, "exon_strand”, "cds_id", "cds_name",

n o n

"cds_chrom”, "cds_strand” and "exon_rank".
use.names TRUE or FALSE. If TRUE, the feature names are set as the names of the returned
object, with NAs being replaced with empty strings.
single.strand.genes.only

TRUE or FALSE. If TRUE (the default), then genes are returned in a GRanges object
and those genes that cannot be represented by a single genomic range (because

transcripts 45

they have exons located on both strands of the same reference sequence or on
more than one reference sequence) are dropped with a message.

If FALSE, then all the genes are returned in a GRangesList object with the columns
specified thru the columns argument set as top level metadata columns. (Please
keep in mind that the fop level metadata columns of a GRangesList object are
not displayed by the show() method.)

upstream, downstream
For promoters(): Single integer values indicating the number of bases up-
stream and downstream from the TSS (transcription start sites).
For terminators(): Single integer values indicating the number of bases up-
stream and downstream from the TES (transcription end sites).
For additional details see ?GenomicRanges: : promoters in the GenomicRanges
package.

Details

These are the main functions for extracting features from a TxDb-like object. Note that cds()
extracts the bulk CDS parts stored in x, that is, the CDS regions associated with exons. It is often
more useful to extract them grouped by transcript with cdsBy ().

To restrict the output based on interval information, use the transcriptsByOverlaps(), exonsByOverlaps(),
or cdsByOverlaps() function.

The promoters() and terminators() functions compute user-defined promoter or terminator re-
gions for the transcripts in a TxDb-like object. The returned object is a GRanges with one range
per transcript in the TxDb-like object. Each range represents the promoter or terminator region
associated with a transcript, that is, the region around the TSS (transcription start site) or TES
(transcription end site) the span of which is defined by upstream and downstream.

For additional details on how the promoter and terminator ranges are computed and the handling of
+ and - strands see ?GenomicRanges: :promoters in the GenomicRanges package.

Value

A GRanges object. The only exception being when genes () is used with single.strand.genes.only=FALSE,
in which case a GRangesList object is returned.

Author(s)
M. Carlson, P. Aboyoun and H. Pages

See Also

* transcriptsBy and transcriptsByOverlaps for more ways to extract genomic features
from a TxDb-like object.

* transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

* extendExonsIntoIntrons for extending exons into their adjacent introns.

* extractTranscriptSeqs for extracting transcript (or CDS) sequences from reference se-
quences.

* getPromotersSeq for extracting gene promoter or terminator sequences.

46 transcripts

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* tRNAs for extracting tRNA genomic ranges from a TxDb object.
* id2name for mapping TxDb internal ids to external names for a given feature type.

e The TxDb class.

Examples

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")
txdb <- loadDb(txdb_file)

et
transcripts()
B m oo

tx1 <- transcripts(txdb)
tx1

transcripts(txdb, use.names=TRUE)
transcripts(txdb, columns=NULL, use.names=TRUE)

filter <- list(tx_chrom = c("chr3”, "chr5"), tx_strand = "+")
tx2 <- transcripts(txdb, filter=filter)
tx2

Sanity checks:

stopifnot(

identical(mcols(tx1)$tx_id, seq_along(tx1)),

identical (tx2, tx1[segnames(tx1) == "chr3" & strand(tx1) == "+"])
)
e
exons()
B oo

exons(txdb, columns=c(”"EXONID", "TXNAME"),
filter=list(exon_id=1))

exons(txdb, columns=c("EXONID", "TXNAME"),
filter=list(tx_name="uc@@9vip.1"))

B m oo
genes()
B — o

genes(txdb) # a GRanges object
cols <- c("tx_id", "tx_chrom”, "tx_strand”,

"exon_id", "exon_chrom”, "exon_strand")
By default, genes are returned in a GRanges object and those that
cannot be represented by a single genomic range (because they have
exons located on both strands of the same reference sequence or on
more than one reference sequence) are dropped with a message:
single_strand_genes <- genes(txdb, columns=cols)

transcriptsBy 47

Because we've returned single strand genes only, the "tx_chrom”

and "exon_chrom” metadata columns are guaranteed to match

'seqnames(single_strand_genes)':

stopifnot(identical(as.character(segnames(single_strand_genes)),
as.character(mcols(single_strand_genes)$tx_chrom)))

stopifnot(identical(as.character(segnames(single_strand_genes)),
as.character(mcols(single_strand_genes)$exon_chrom)))

and also the "tx_strand” and "exon_strand” metadata columns are

guaranteed to match 'strand(single_strand_genes)':

stopifnot(identical(as.character(strand(single_strand_genes)),
as.character(mcols(single_strand_genes)$tx_strand)))

stopifnot(identical(as.character(strand(single_strand_genes)),
as.character(mcols(single_strand_genes)$exon_strand)))

all_genes <- genes(txdb, columns=cols, single.strand.genes.only=FALSE)
all_genes # a GRangesList object

multiple_strand_genes <- all_genes[elementNROWS(all_genes) >= 2]
multiple_strand_genes

mcols(multiple_strand_genes)

B — o
promoters() and terminators()
HHE =

This:

promoters(txdb, upstream=100, downstream=50)
is equivalent to:

tx <- transcripts(txdb, use.names=TRUE)
promoters(tx, upstream=100, downstream=50)

And this:

terminators(txdb, upstream=100, downstream=50)
is equivalent to:

terminators(tx, upstream=100, downstream=50)

Extra arguments are passed to transcripts(). So this:

columns <- c("tx_name", "gene_id")

promoters(txdb, upstream=100, downstream=50, columns=columns)

is equivalent to:

promoters(transcripts(txdb, columns=columns, use.names=TRUE),
upstream=100, downstream=50)

transcriptsBy Extract and group genomic features of a given type from a TxDb-like
object

Description

Generic functions to extract genomic features of a given type grouped based on another type of
genomic feature. This page documents the methods for TxDb objects only.

48 transcriptsBy
Usage

transcriptsBy(x, by=c("gene"”, "exon", "cds"), ...)

S4 method for signature 'TxDb'

transcriptsBy(x, by=c("gene”, "exon"”, "cds"), use.names=FALSE)

exonsBy(x, by=c("tx", "gene"), ...)

S4 method for signature 'TxDb'
exonsBy(x, by=c("tx", "gene"), use.names=FALSE)

cdsBy(x, by=c("tx", "gene"), ...)
S4 method for signature 'TxDb'
cdsBy(x, by=c("tx", "gene"), use.names=FALSE)

intronsByTranscript(x, ...)
S4 method for signature 'TxDb'
intronsByTranscript(x, use.names=FALSE)

fiveUTRsByTranscript(x, ...)
S4 method for signature 'TxDb'
fiveUTRsByTranscript(x, use.names=FALSE)

threeUTRsByTranscript(x, ...)
S4 method for signature 'TxDb'
threeUTRsByTranscript(x, use.names=FALSE)

Arguments

by

use.names

A TxDb object.

Arguments to be passed to or from methods.

One of "gene”, "exon"”, "cds” or "tx". Determines the grouping.

Controls how to set the names of the returned GRangesList object. These func-
tions return all the features of a given type (e.g. all the exons) grouped by an-
other feature type (e.g. grouped by transcript) in a GRangesList object. By
default (i.e. if use.names is FALSE), the names of this GRangesList object (aka
the group names) are the internal ids of the features used for grouping (aka the
grouping features), which are guaranteed to be unique. If use.names is TRUE,
then the names of the grouping features are used instead of their internal ids.
For example, when grouping by transcript (by="tx"), the default group names
are the transcript internal ids ("tx_id"). But, if use.names=TRUE, the group
names are the transcript names ("tx_name"). Note that, unlike the feature ids,
the feature names are not guaranteed to be unique or even defined (they could
be all NAs). A warning is issued when this happens. See ?id2name for more in-
formation about feature internal ids and feature external names and how to map
the formers to the latters.

Finally, use.names=TRUE cannot be used when grouping by gene by="gene".
This is because, unlike for the other features, the gene ids are external ids (e.g.
Entrez Gene or Ensembl ids) so the db doesn’t have a "gene_name” column for
storing alternate gene names.

transcriptsBy 49

Details

These functions return a GRangesList object where the ranges within each of the elements are
ordered according to the following rule:

When using exonsBy or cdsBy with by="tx", the returned exons or CDS parts are ordered by
ascending rank for each transcript, that is, by their position in the transcript. In all other cases, the
ranges will be ordered by chromosome, strand, start, and end values.

Value

A GRangesList object.

Author(s)

M. Carlson, P. Aboyoun and H. Pages

See Also

transcripts and transcriptsByOverlaps for more ways to extract genomic features from
a TxDb-like object.

transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

extendExonsIntoIntrons for extending exons into their adjacent introns.

extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosome se-
quences.

coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

id2name for mapping TxDD internal ids to external names for a given feature type.
The TxDb class.

Examples

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,

txdb

package="GenomicFeatures")
<- loadDb(txdb_file)

Extract the transcripts grouped by gene:
transcriptsBy(txdb, "gene")

Extract the exons grouped by gene:
exonsBy (txdb, "gene")

Extract the CDS parts grouped by transcript:

cds_by_tx@ <- cdsBy(txdb, "tx")

With more informative group names:

cds_by_tx1 <- cdsBy(txdb, "tx", use.names=TRUE)

Note that 'cds_by_tx1' can also be obtained with:

names(cds_by_tx0@) <- id2name(txdb, feature.type="tx")[names(cds_by_tx@)]
stopifnot(identical(cds_by_tx@, cds_by_tx1))

50 transcriptsByOverlaps

Extract the introns grouped by transcript:
intronsByTranscript(txdb)

Extract the 5' UTRs grouped by transcript:
fiveUTRsByTranscript (txdb)
fiveUTRsByTranscript(txdb, use.names=TRUE) # more informative group names

transcriptsByOverlaps Extract genomic features from a TxDb-like object based on their ge-
nomic location

Description

Generic functions to extract genomic features for specified genomic locations. This page documents
the methods for TxDb objects only.

Usage
transcriptsByOverlaps(x, ranges,
maxgap = -1L, minoverlap = 0oL,
type = c("any"”, "start”, "end"), ...)

S4 method for signature 'TxDb'
transcriptsByOverlaps(x, ranges,

maxgap = -1L, minoverlap = 0oL,
type = c("any”, "start"”, "end"),
columns = c("tx_id", "tx_name"))

exonsByOverlaps(x, ranges,

maxgap = -1L, minoverlap = 0oL,

type = c("any"”, "start”, "end"), ...)
S4 method for signature 'TxDb'
exonsByOverlaps(x, ranges,

maxgap = -1L, minoverlap = 0oL,
type = c("any", "start”, "end"),
columns = "exon_id")

cdsByOverlaps(x, ranges,

maxgap = -1L, minoverlap = 0L,

type = c("any”, "start”, "end"), ...)
S4 method for signature 'TxDb'
cdsByOverlaps(x, ranges,

maxgap = -1L, minoverlap = 0oL,
type = c("any”, "start”, "end"),
columns = "cds_id")
Arguments
X A TxDb object.

ranges A GRanges object to restrict the output.

transcriptsByOverlaps 51

maxgap, minoverlap, type
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

Arguments to be passed to or from methods.

columns Columns to include in the output. See ?transcripts for the possible values.

Details

These functions subset the results of transcripts, exons, and cds function calls with using the
results of findOverlaps calls based on the specified ranges.

Value

a GRanges object

Author(s)

P. Aboyoun

See Also

e transcripts and transcriptsBy for more ways to extract genomic features from a TxDb-
like object.

e transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

» exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

* extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* id2name for mapping TxDb internal ids to external names for a given feature type.

¢ The TxDb class.

Examples

txdb <- loadDb(system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures"))
gr <- GRanges(Rle("chr1”, 2),
IRanges(c(500,10500), c(10000,30000)),
strand = Rle("-", 2))
transcriptsByOverlaps(txdb, gr)

52 TxDb-class

tRNAs Extract tRNA genomic ranges from an object

Description

WARNING: The code base for tRNAs() is no longer actively maintained and the function might
get deprecated in the near future.

The tRNAs () function extracts tRNA genomic ranges from a TxDb object.

Usage
tRNAs (x)

Arguments

X A TxDb object.

Value

A GRanges object.

Author(s)
M. Carlson

See Also

e transcripts, transcriptsBy, and transcriptsByOverlaps for the core genomic features
extractors.

e The TxDb class.

TxDb-class TxDb objects

Description

The TxDb class is a container for storing transcript annotations.

Methods

In the code snippets below, x is a TxDb object.

metadata(x): Return x’s metadata in a data frame.

seqlevels@(x): Get the sequence levels originally in x. This ignores any change the user might
have made to the sequence levels with the seqlevels setter.

seqlevels(x), seqlevels(x) <- value: Get or set the sequence levels in x.

TxDb-class 53

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences.
Note that, for now, the setter only supports replacement of the sequence names, i.e., except
for their sequence names (accessed with seqnames(value) and segnames(seqinfo(x)), re-
spectively), Seqinfo objects value (supplied) and seqinfo(x) (current) must be identical.

isActiveSeq(x): Return the currently active sequences for this txdb object as a named logical
vector. Only active sequences will be tapped when using the supplied accessor methods.
Inactive sequences will be ignored. By default, all available sequences will be active.

isActiveSeq(x) <- value: Allows the user to change which sequences will be actively accessed
by the accessor methods by altering the contents of this named logical vector.

GenomelInfoDb: :seqlevelsStyle(x), GenomeInfoDb: :seqlevelsStyle(x) <- value: Getor set
the seqname style for x. See the GenomeInfoDb: :seqlevelsStyle generic getter and setter
in the GenomelnfoDb package for more information.

as.list(x): Dump the entire db into a list of data frames, say txdb_dump, that can then be used to
recreate the original db with do.call(txdbmaker: :makeTxDb, txdb_dump) with no loss of
information (except possibly for some of the metadata). Note that the transcripts are dumped
in the same order in all the data frames.

Author(s)

Hervé Pages, Marc Carlson

See Also

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl in the txdbmaker
package for making a TxDb object from online resources.

* makeTxDbFromGRanges and makeTxDbFromGFF in the txdbmaker package for making a TxDb
object from a GRanges object, or from a GFF or GTF file.

* saveDb and loadDb in the AnnotationDbi package for saving and loading a TxDb object as
an SQLite file.

* transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

e transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* The Seqinfo class in the Seqinfo package.

Examples

txdb_file <- system.file("extdata”, "Biomart_Ensembl_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

txdb

Use of seqinfo():

seqinfo(txdb)

seqlevels(txdb)

seqglengths(txdb) # shortcut for 'seqlengths(seqinfo(txdb))'
isCircular(txdb) # shortcut for 'isCircular(seqinfo(txdb))'
names(which(isCircular(txdb)))

54

TxDb-class

library(GenomeInfoDb)
seqlevelsStyle(txdb)

You can set user-supplied seqglevels on 'txdb' to restrict any further
operations to a subset of chromosomes:

seqlevels(txdb) <- c("Y", "6")

Then you can restore the seqlevels stored in the db:

seqlevels(txdb) <- seqlevels@(txdb)

Use of as.list():
txdb_dump <- as.list(txdb)
txdb_dump

library(txdbmaker) # for makeTxDb()
txdb1 <- do.call(makeTxDb, txdb_dump)
stopifnot(identical(as.list(txdb1), txdb_dump))

Index

* classes
FeatureDb-class, 19
TxDb-class, 52

* manip
coverageByTranscript, 4
exonicParts, 8
extendExonsIntoIntrons, 11
extractTranscriptSegs, 13
extractUpstreamSegs, 16
getPromoterSeq, 20
transcriptlLengths, 39
transcriptlLocs2reflLocs, 41

+* methods
FeatureDb-class, 19
getPromotersSeq, 20
mapToTranscripts, 28
proteinToGenome, 35
select-methods, 38
transcripts, 43
transcriptsBy, 47
transcriptsByOverlaps, 50
tRNAs, 52
TxDb-class, 52

« utilities
mapToTranscripts, 28
nearest-methods, 34
proteinToGenome, 35

AnnotationDb-class, 39
as-format-methods, 3
as.list,TxDb-method (TxDb-class), 52
asBED, TxDb-method (as-format-methods), 3
asGFF, TxDb-method (as-format-methods), 3
available.genomes, 14, 18

BamFile, 4

browseUCSCtrack, 25

browseUCSCtrack (makeTxDbFromUCSC), 25
BSgenome, 13, 17, 18, 20, 21

cds, 51

cds (transcripts), 43

cds, TxDb-method (transcripts), 43
cdsBy, 36, 37,45

55

cdsBy (transcriptsBy), 47

cdsBy, TxDb-method (transcriptsBy), 47

cdsByOverlaps, 45

cdsByOverlaps (transcriptsByOverlaps),
50

cdsByOverlaps, TxDb-method
(transcriptsByOverlaps), 50

class:FeatureDb (FeatureDb-class), 19

class:TxDb (TxDb-class), 52

columns, TxDb-method (select-methods), 38

coordinate-mapping (mapToTranscripts),
28

coordinate-mapping-methods
(mapToTranscripts), 28

coverage, 4, 5

coverageByTranscript, 4, 9, 14, 40, 42, 46,
49,51

DataFrame, 27

disjoin, 8§, 9

distance,GenomicRanges, TxDb-method
(nearest-methods), 34

DNAString, 13, 14

DNAStringSet, 14, 17, 18, 21

DNAStringSetList, 21

EnsDb, 5, 8, 13, 36, 37

exonicParts, 8, 12, 40, 45,49, 51

exons, 51

exons (transcripts), 43

exons, TxDb-method (transcripts), 43

exonsBy, 4, 5, 8,11, 13, 14

exonsBy (transcriptsBy), 47

exonsBy, TxDb-method (transcriptsBy), 47

exonsByOverlaps, 45

exonsByOverlaps
(transcriptsByOverlaps), 50

exonsByOverlaps, TxDb-method
(transcriptsByOverlaps), 50

export, 3

extendExonsIntoIntrons, 9, 11, 14, 45, 49

extractTranscriptSegs, 5, 9, 12, 13, 40, 42,
45,49, 51

56

extractTranscriptSegs, ANY-method
(extractTranscriptSegs), 13

extractTranscriptSeqgs,DNAString-method
(extractTranscriptSegs), 13

extractUpstreamSegs, 16

extractUpstreamSeqs,GenomicRanges-method

(extractUpstreamSeqgs), 16
extractUpstreamSeqgs, GRangesList-method
(extractUpstreamSeqgs), 16
extractUpstreamSeqs, TxDb-method

(extractUpstreamSeqgs), 16

FaFile, 13,17, 18, 20, 21

FeatureDb, 20

FeatureDb (FeatureDb-class), 19

FeatureDb-class, 19

features, 79, 20

features,FeatureDb-method (features), 20

findCompatibleOverlaps, 5

findOverlaps, 27, 51

fiveUTRsByTranscript (transcriptsBy), 47

fiveUTRsByTranscript, TxDb-method
(transcriptsBy), 47

GAlignmentPairs, 4

GAlignments, 4

GAlignmentsList, 4

genes, 17, 18

genes (transcripts), 43

genes, TxDb-method (transcripts), 43

GenomicRanges, 17, 18, 21, 28, 34

getChromInfoFromBiomart, 24

getChromInfoFromBiomart
(makeTxDbFromBiomart), 24

getPromoterSeq, 20, 45

getPromoterSeq, GRanges-method
(getPromoterSeq), 20

getPromoterSeq,GRangesList-method
(getPromoterSeq), 20

getSeq, 13,17, 18, 21

getTerminatorSeq (getPromoterSeq), 20

getTerminatorSeq, GRanges-method
(getPromoterSeq), 20

getTerminatorSeq, GRangesList-method
(getPromoterSeq), 20

GRanges, 3-5,9, 11, 18, 20, 21, 34, 36, 37, 40,
41,44, 45, 50, 52, 53

GRangeslList, 4, 5, 11-14, 20, 21, 26, 28, 36,
37,45,48, 49

grglist, 4, 5

id2name, 22, 46, 48, 49, 51
IntegerlList, 42

INDEX

IntegerRanges, 28
IntegerRangeslList, 13, 14
intronicParts, 12, 40, 45, 49, 51
intronicParts (exonicParts), 8
intronsByTranscript (transcriptsBy), 47
intronsByTranscript, TxDb-method
(transcriptsBy), 47
IRanges, 36, 37
isActiveSeq (TxDb-class), 52
isActiveSeq, TxDb-method (TxDb-class), 52
isActiveSeqg<- (TxDb-class), 52
isActiveSeq<-, TxDb-method (TxDb-class),
52

keys, TxDb-method (select-methods), 38
keytypes, TxDb-method (select-methods),
38

loadDb, 719, 53

makeFDbPackageFromUCscC, 26
makeFDbPackageFromUCSC
(makeTxDbPackage), 26
makeFeatureDbFromUCSC, 19, 20, 23, 23
makePackageName, 26
makePackageName (makeTxDbPackage), 26
makeTxDb, 24, 24
makeTxDbFromBiomart, I8, 24, 24, 41, 53
makeTxDbFromEnsembl, I8, 24, 24, 41, 53
makeTxDbFromGFF, 18, 25, 25,41, 53
makeTxDbFromGRanges, 18, 25, 25,41, 53
makeTxDbFromUCSC, 18, 25, 25,41, 53
makeTxDbPackage, 26, 26
makeTxDbPackageFromBiomart, 26
makeTxDbPackageFromBiomart
(makeTxDbPackage), 26
makeTxDbPackageFromUCSC, 26
makeTxDbPackageFromUCSC
(makeTxDbPackage), 26
mapFromTranscripts (mapToTranscripts),
28

mapFromTranscripts,GenomicRanges, GenomicRanges-method

(mapToTranscripts), 28

mapFromTranscripts,GenomicRanges, GRangesList-method

(mapToTranscripts), 28
mapIdsToRanges, 26
mapIdsToRanges, TxDb-method

(mapIdsToRanges), 26
mapRangesTolds, 27
mapRangesTolds, TxDb-method

(mapRangesTolds), 27
mapToAlignments, 28, 31
mapToTranscripts, 28

INDEX

mapToTranscripts,ANY, TxDb-method
(mapToTranscripts), 28

57

seglevelsStyle, 53
show, TxDb-method (TxDb-class), 52

mapToTranscripts,GenomicRanges, GenomicRanges-sietthod, /4

(mapToTranscripts), 28

supportedMiRBaseBuildValues, 26

mapToTranscripts,GenomicRanges,GRangesList-mesbpportedMiRBaseBuildValues

(mapToTranscripts), 28
mcols, 17
microRNAs (tRNAs), 52

nearest-methods, 34, 35

organism, TxDb-method (TxDb-class), 52

pcoverageByTranscript
(coverageByTranscript), 4

pmapFromTranscripts (mapToTranscripts),
28

(makeTxDbPackage), 26
supportedUCSCFeatureDbTables, 23
supportedUCSCFeatureDbTables

(makeFeatureDbFromUCSC), 23
supportedUCSCFeatureDbTracks, 23
supportedUCSCFeatureDbTracks

(makeFeatureDbFromUCSC), 23
supportedUCSCtables, 25
supportedUCSCtables (makeTxDbFromUCSC),

25

terminators (transcripts), 43

pmapFromTranscripts,GenomicRanges, GenomicRangesrméthodrs, TxDb-method (transcripts),

(mapToTranscripts), 28

43

pmapFromTranscripts,GenomicRanges, GRangesListthedbdotRsByTranscript (transcriptsBy),

(mapToTranscripts), 28

47

pmapFromTranscripts, IntegerRanges, GenomicRangelsraettRsByTranscript, TxDb-method

(mapToTranscripts), 28

(transcriptsBy), 47

pmapFromTranscripts, IntegerRanges,GRangesListtingyhrons (exonicParts), 8

(mapToTranscripts), 28
pmapToTranscripts (mapToTranscripts), 28

tidyIntrons (exonicParts), 8
tidyTranscripts (exonicParts), 8

pmapToTranscripts,GenomicRanges,GenomicRangestmetbodiptLengths, 5, 9, 14, 39, 45,49, 51,

(mapToTranscripts), 28

53

pmapToTranscripts,GenomicRanges,GRangesList-methoscriptLocs2reflocs, 14, 41

(mapToTranscripts), 28

pmapToTranscripts,GRangesList,GRangesList-method

(mapToTranscripts), 28
promoters, 21,45
promoters (transcripts), 43
promoters, TxDb-method (transcripts), 43
proteinToGenome, 35, 35, 37
proteinToGenome, ANY-method
(proteinToGenome), 35
proteinToGenome,GRangesList-method
(proteinToGenome), 35

Rle, 5, 14
RlelList, 4, 5

saveDb, /9, 53

saveRDS, TxDb-method (TxDb-class), 52
select, TxDb-method (select-methods), 38
select-methods, 38, 46, 49, 51, 53
Seqinfo, 53

seqinfo, 4, 13,17, 18

seqinfo, TxDb-method (TxDb-class), 52
seqglevels@, TxDb-method (TxDb-class), 52
seglevels<-,TxDb-method (TxDb-class), 52

transcripts, 5,8, 9, 12, 23, 26, 36, 37, 39,

40, 43,49, 51-53

transcripts, TxDb-method (transcripts),
43

transcriptsBy, 5, 9, 12, 23, 39, 40, 45, 47,
51-53

transcriptsBy, TxDb-method
(transcriptsBy), 47

transcriptsByOverlaps, 5, 9, 12, 23, 39, 40,
45,49, 50, 52, 53

transcriptsByOverlaps, TxDb-method
(transcriptsByOverlaps), 50

transcriptWidths
(transcriptLocs2reflocs), 41

translate, /4

tRNAs, 46, 52

tRNAs, TxDb-method (tRNAs), 52

TwoBitFile, /7, I8

TxDb, 3, 5,8, 9, 12—-14, 17-19, 22, 23, 34,
3641, 44-53

TxDb (TxDb-class), 52

TxDb-class, 52

UCSCFeatureDbTableSchema, 23

58 INDEX

UCSCFeatureDbTableSchema
(makeFeatureDbFromUCSC), 23

	as-format-methods
	coverageByTranscript
	exonicParts
	extendExonsIntoIntrons
	extractTranscriptSeqs
	extractUpstreamSeqs
	FeatureDb-class
	features
	getPromoterSeq
	id2name
	makeFeatureDbFromUCSC
	makeTxDb
	makeTxDbFromBiomart
	makeTxDbFromEnsembl
	makeTxDbFromGFF
	makeTxDbFromGRanges
	makeTxDbFromUCSC
	makeTxDbPackage
	mapIdsToRanges
	mapRangesToIds
	mapToTranscripts
	nearest-methods
	proteinToGenome
	select-methods
	transcriptLengths
	transcriptLocs2refLocs
	transcripts
	transcriptsBy
	transcriptsByOverlaps
	tRNAs
	TxDb-class
	Index

