Package ‘GenProSeq’

January 30, 2026

Type Package
Title Generating Protein Sequences with Deep Generative Models

Description Generative modeling for protein engineering is key to solving fundamental prob-
lems in synthetic biology, medicine, and material science. Machine learning has en-
abled us to generate useful protein sequences on a variety of scales. Generative models are ma-
chine learning methods which seek to model the distribution underlying the data, allow-
ing for the generation of novel samples with similar proper-
ties to those on which the model was trained. Generative models of proteins can learn biologi-
cally meaningful representations helpful for a variety of downstream tasks. Further-
more, they can learn to generate protein sequences that have not been observed before and to as-
sign higher probability to protein sequences that satisfy desired criteria. In this package, com-
mon deep generative models for protein sequences, such as variational autoencoder (VAE), gen-
erative adversarial networks (GAN), and autoregressive models are avail-
able. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is ap-
plied to protein sequences for the autoregressive model.

Version 1.14.0

Date 2024-02-06

LazyData FALSE

Depends keras, mclust, R (>=4.2)

Imports tensorflow, word2vec, DeepPINCS, ttgsea, CatEncoders,
reticulate, stats

Suggests VAExprs, stringdist, knitr, testthat, rmarkdown
License Artistic-2.0

biocViews Software, Proteomics

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/GenProSeq
git_branch RELEASE_3_22

git_last_commit ¢047101

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Dongmin Jung [cre, aut] (ORCID:
<https://orcid.org/0000-0001-7499-8422>)

Maintainer Dongmin Jung <dmdmjung@gmail.com>

1

https://orcid.org/0000-0001-7499-8422

2 ART
Contents
ART . . e 2
example_TuxA L 5
example_PTEN e 6
GAN . L 6
prot_seq_check L 9
PIOL_VEC . . o o o ot e e e e e e e e e 10
transformer e 11
VAE . . e 12
Index 16
ART Autoregressive language model with Transformer
Description
The autoregressive generative model predicts the next amino acid in a protein given the amino
acid sequence up to that point. The autoregressive model generates proteins one amino acid at a
time. For one step of generation, it takes a context sequence of amino acids as input and outputs
a probability distribution over amino acids. We sample from that distribution and then update the
context sequence with the sampled amino acid. The Transformer is used as an encoder model. The
AR with the Transformer model can be trained by the function "fit_ART", and then the function
"gen_ART" generates protein sequences.
Usage

fit_ART(prot_seq,

length_seq,
embedding_dim,
num_heads,
ff_dim,
num_transformer_blocks,
layers = NULL,
prot_seq_val = NULL,
epochs,
batch_size,
preprocessing = list(
x_train = NULL,

x_val = NULL,
y_train = NULL,
y_val = NULL,
lenc = NULL,

length_seq = NULL,
num_AA = NULL,
embedding_dim = NULL,
removed_prot_seq = NULL,
removed_prot_seq_val = NULL),
use_generator = FALSE,
optimizer = "adam",
metrics = "accuracy”,

ART 3
validation_split = 0, ...)
gen_ART(x,
seed_prot,
length_AA,
method = NULL,
b = NULL,
t=1,
k = NULL,
p = NULL)
Arguments
prot_seq amino acid sequence
length_seq length of sequence used as input
embedding_dim dimension of the dense embedding
num_heads number of attention heads
ff_dim hidden layer size in feedforward network inside transformer
num_transformer_blocks
number of transformer blocks
layers list of layers between the transformer encoder and the output layer (default:
NULL)
prot_seq_val amino acid sequence for validation (default: NULL)
epochs number of epochs
batch_size batch size

preprocessing list of preprocessed results, they are set to NULL as default x_train, y_train,
lenc, length_seq, num_AA, and embedding_dim must be required for training

x_train : embedded sequence data for train, result of the function "Deep-
PINCS::get_seq_encode_pad"

x_val : embedded sequence data for validation, result of the function "Deep-
PINCS::get_seq_encode_pad"

y_train : labels for train

y_val : labels for validation

lenc : encoded labels, result of the function "DeepPINCS::get_seq_encode_pad"

length_seq : length of sequence

num_AA : number of amino acids, result of the function "DeepPINCS::get_seq_encode_pad"
embedding_dim : dimension of the dense embedding

removed_prot_seq : index for removed protein sequences while checking
removed_prot_seq_val : index for removed protein sequences of validation

use_generator use data generator if TRUE (default: FALSE)

optimizer name of optimizer (default: adam)

metrics name of metrics (default: accuracy)

validation_split

proportion of validation data, it is ignored when there is a validation set (default:

0)

additional parameters for the "fit"

4 ART

X result of the function "fit_ ART"

seed_prot sequence to be used as a seed protein

length_AA length of amino acids to be generated

method "greedy", "beam", "temperature”, "top_k", or "top_p"

b beam size in the beam search

t temperature in the temperature sampling (default: 1)

k number of amino acids in the top-k sampling

p minimum probabilty for the set of amino acids in the top-p sampling
Value

model trained ART model

preprocessing preprocessed results

Author(s)

Dongmin Jung

References

Deepak, P., Chakraborty, T., & Long, C. (2021). Data Science for Fake News: Surveys and Per-
spectives (Vol. 42). Springer.

Liu, Z., Lin, Y., & Sun, M. (2020). Representation learning for natural language processing.
Springer.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand, N., Eguchi, R. R., Huang, P., & Socher,
R. (2020). Progen: Language modeling for protein generation. arXiv:2004.03497.

See Also

keras::fit, keras::compile, ttgsea::sampling_generator, DeepPINCS::multiple_sampling_generator,
DeepPINCS::seq_preprocessing, DeepPINCS::get_seq_encode_pad, CatEncoders::LabelEncoder.fit,
CatEncoders::transform, CatEncoders::inverse.transform

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
prot_seq <- DeepPINCS::SARS_CoV2_3CL_Protease

model parameters
length_seq <- 10
embedding_dim <- 16
num_heads <- 2

ff_dim <- 16
num_transformer_blocks <- 2
batch_size <- 32

epochs <- 2

ART

ART_result <- fit_ART(prot_seq = prot_seq,
length_seq = length_seq,
embedding_dim = embedding_dim,
num_heads = num_heads,

example_luxA 5

ff_dim = ff_dim,
num_transformer_blocks = num_transformer_blocks,
layers = list(layer_dropout(rate = 0.1),
layer_dense(units = 32, activation = "relu"),
layer_dropout(rate = 0.1)),
prot_seq_val = prot_seq,
epochs = epochs,
batch_size = batch_size,
use_generator = TRUE,
callbacks = callback_early_stopping(
monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))

seed_prot <- "SGFRKMAFPS"

gen_ART(ART_result, seed_prot, length_AA
gen_ART(ART_result, seed_prot, length_AA
gen_ART(ART_result, seed_prot, length_AA
gen_ART(ART_result, seed_prot, length_AA
gen_ART(ART_result, seed_prot, length_AA

20, method = "greedy")

20, method = "beam”, b = 5)

20, method = "temperature”, t = 0.1)
20, method = "top_k", k = 3)

20, method = "top_p"”, p = 0.75)

from preprocessing
ART_result2 <- fit_ART(num_heads = 4,
ff_dim = 32,
num_transformer_blocks = 3,
layers = list(layer_dropout(rate=0.1),
layer_dense(units=32, activation="relu"),
layer_dropout(rate=0.1)),
epochs = epochs,
batch_size = batch_size,
preprocessing = ART_result$preprocessing,
use_generator = TRUE,
callbacks = callback_early_stopping(
monitor = "val_loss”,
patience = 50,
restore_best_weights = TRUE))

gen_ART(ART_result2, seed_prot, length_AA
gen_ART(ART_result2, seed_prot, length_AA
gen_ART(ART_result2, seed_prot, length_AA
gen_ART(ART_result2, seed_prot, length_AA

20, method = "greedy")

20, method = "beam”, b = 5)

20, method = "temperature”, t = 0.1)
20, method = "top_k", k = 3)

gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_p", p = 0.75)
}
example_luxA Example Data for Protein Sequences
Description

The data consist of selected amino acid sequences of the luxA. There are 2283 aligned sequences
of length 360.

Usage

example_luxA

6 GAN

Value

aligned amino acid sequences

Author(s)

Dongmin Jung

Source

Hawkins-Hooker, A., Depardieu, F., Baur, S., Couairon, G., Chen, A., & Bikard, D. (2020). Gener-
ating functional protein variants with variational autoencoders. bioRxiv.

example_PTEN Example Data for Protein Sequences

Description
The data consist of selected amino acid sequences of the PTEN. There are 912 aligned sequences
of length 403.

Usage

example_PTEN

Value

aligned amino acid sequences

Author(s)

Dongmin Jung

Source

Frazer, J., Notin, P, Dias, M., Gomez, A., Brock, K., Gal, Y., & Marks, D. (2020). Large-scale
clinical interpretation of genetic variants using evolutionary data and deep learning. bioRxiv.

GAN Generative adversarial network for generating protein sequences

Description

The generative adversarial network (GAN) is made up of a discriminator and a generator that com-
pete in a two-player minimax game. The objective of the generator is to produce an output that is
so close to real that it confuses the discriminator in being able to differentiate the fake data from
the real data. The conditional GAN (CGAN) is based on vanilla GAN with additional conditional
input to generator and discriminator. The auxiliary classifier GAN (ACGAN) is an extension of
CGAN that adds conditional input only to the generator. The Word2vec is applied to amino acids
for embedding. The GAN or ACGAN model can be trained by the function "fit_ GAN", and then
the function "gen_ GAN" generates protein sequences from the trained model.

GAN

Usage
fit_GAN(prot_seq,
label = NULL,
length_seq,

embedding_dim,
embedding_args = list(),
latent_dim = NULL,
intermediate_generator_layers,
intermediate_discriminator_layers,
prot_seq_val = NULL,
label_val = NULL,
epochs,
batch_size,
preprocessing = list(

x_train = NULL,

x_val = NULL,
y_train = NULL,
y_val = NULL,
lenc = NULL,

length_seq = NULL,
num_seq = NULL,
embedding_dim = NULL,
embedding_matrix = NULL,
removed_prot_seq = NULL,
removed_prot_seq_val = NULL,
latent_dim = NULL),
optimizer = "adam",
validation_split = @)

gen_GAN(x,
label = NULL,
num_seq,
remove_gap = TRUE)

Arguments
prot_seq aligned amino acid sequence
label label (default: NULL)
length_seq length of sequence

embedding_dim dimension of the dense embedding
embedding_args list of arguments for "word2vec::word2vec" but for dim, min_count and split

latent_dim dimension of latent vector (default: NULL)
intermediate_generator_layers

list of intermediate layers for generator, without input layer
intermediate_discriminator_layers

list of intermediate layers for discriminator, without output layer
prot_seq_val amino acid sequence for validation (default: NULL)
label_val label for validation (default: NULL)

epochs number of epochs

8 GAN

batch_size batch size
preprocessing list of preprocessed results, they are set to NULL as default x_train, length_seq,
num_seq, embedding_dim and embedding_matrix must be required for training
 x_train : embedded sequence data for train
* x_val : embedded sequence data for validation
* y_train : labels for train
* y_val : labels for validation
* lenc : encoded labels
* length_seq : length of sequence
* num_seq : number of sequences for train
* embedding_dim : dimension of the dense embedding
* embedding_matrix : embedding matrix
* removed_prot_seq : index for removed protein sequences while checking
* removed_prot_seq_val : index for removed protein sequences of validation
e latent_dim : dimension of latent vector
optimizer name of optimizer (default: adam)
validation_split
proportion of validation data, it is ignored when there is a validation set (default:

0)
X result of the function "fit. GAN"
num_seq number of sequences to be generated
remove_gap remove gaps from sequences (default: TRUE)
Value
model trained GAN model
generator trained generator model

discriminator trained discriminator model

preprocessing preprocessed results

gen_seq generated sequence data
label labels for generated sequence data
Author(s)

Dongmin Jung

References

Liebowitz, J. (Ed.). (2020). Data Analytics and AI. CRC Press.
Pedrycz, W., & Chen, S. M. (Eds.). (2020). Deep Learning: Concepts and Architectures. Springer.

Suguna, S. K., Dhivya, M., & Paiva, S. (Eds.). (2021). Artificial Intelligence (AI): Recent Trends
and Applications. CRC Press.

Sun, S., Mao, L., Dong, Z., & Wu, L. (2019). Multiview machine learning. Springer.

See Also

keras::train_on_batch, keras::evaluate, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform,
CatEncoders::inverse.transform

prot_seq_check 9

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
data("example_PTEN")
model parameters
length_seq <- 403
embedding_dim <- 8
latent_dim <- 4
epochs <- 2
batch_size <- 64

GAN
GAN_result <- fit_GAN(prot_seq = example_PTEN,
length_seq = length_seq,
embedding_dim = embedding_dim,
latent_dim = latent_dim,
intermediate_generator_layers = list(
layer_dense(units = 16),
layer_dense(units = 128)),
intermediate_discriminator_layers = list(
layer_dense(units = 128, activation = "relu”),
layer_dense(units = 16, activation = "relu")),
prot_seg_val = example_PTEN,
epochs = epochs,
batch_size = batch_size)
set.seed(1)
gen_prot_GAN <- gen_GAN(GAN_result, num_seq = 100)

from preprocessing
GAN_result2 <- fit_GAN(preprocessing = GAN_result$preprocessing,
intermediate_generator_layers = list(
layer_dense(units = 16),
layer_dense(units = 128)),
intermediate_discriminator_layers = list(
layer_dense(units = 128, activation = "relu"),
layer_dense(units = 16, activation = "relu")),
epochs = epochs,
batch_size = batch_size)
gen_prot_GAN <- gen_GAN(GAN_result2, num_seq = 100)

prot_seq_check Check a protein sequence

Description

The protein sequence dataset is filtered by eliminating sequences containing the non-amino acid
characters (digits and blank spaces) from the amino acid sequences. A valid amino acid sequence
means a string that only contains capital letters of an alphabet and a hyphen for a gap.

Usage

prot_seq_check(prot_seq, label = NULL)

10 prot_vec

Arguments
prot_seq amino acid sequences
label label (default: NULL)
Value

valid sequences

Author(s)

Dongmin Jung

References

Mukhopadhyay, C. S., Choudhary, R. K., & Iquebal, M. A. (2017). Basic Applied Bioinformatics.
John Wiley & Sons.

Examples

data("example_PTEN")
prot_seq_check(example_PTEN[1])

prot_vec Converting from protein sequences to vectors or vice versa.

Description

By using the word2vec model, amino acids are mapped to vectors of real numbers. Conceptually,
it involves a mathematical embedding from a space with many dimensions per amino acid to a
continuous vector space with a much lower dimension.

Usage

prot2vec(prot_seq, embedding_dim, embedding_matrix = NULL, ...)
vec2prot(prot_vec, embedding_matrix)

Arguments
prot_seq protein sequences
prot_vec protein embedding vectors

embedding_dim dimension of embedding vectors
embedding_matrix
embedding matrix (default: NULL)

arguments for "word2vec::word2vec" but for dim, min_count and split

Value
prot_seq protein sequences
prot_vec protein embedding vectors

embedding_matrix
embedding matrix

transformer 11

Author(s)

Dongmin Jung

References

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations
of Words and Phrases and their Compositionality. arXiv:1310.4546.

Chang, M. (2020). Artificial intelligence for drug development, precision medicine, and healthcare.

See Also

word2vec::word2vec, word2vec::word2vec_similarity

Examples

data("example_PTEN")

prot_seq <- example_PTEN[1:10]

prot2vec_result <- prot2vec(prot_seq = prot_seq, embedding_dim = 8)

vec2prot_result <- vec2prot(prot_vec = prot2vec_result$prot_vec,
embedding_matrix = prot2vec_result$embedding_matrix)

transformer Transformer model

Description

The Transformer architecture is a nonrecurrent architecture with a series of attention-based blocks.
Each block is composed of a multi-head attention layer and a position-wise feedforward layer with
an add and normalize layer in between. These layers process input sequences simultaneously, in
parallel, independently of sequential order.

Usage

layer_embedding_token_position(x, maxlen, vocab_size, embed_dim)
layer_transformer_encoder(x, embed_dim, num_heads, ff_dim, num_transformer_blocks)

Arguments
X layer object
maxlen maximum of sequence size
vocab_size vacabulary size
embed_dim embedding size for each token
num_heads number of attention heads
ff_dim hidden layer size in feedforward network inside transformer

num_transformer_blocks
number of transformer blocks

Value

layer object

12 VAE

Author(s)

Dongmin Jung

References

Lappin, S. (2021). Deep learning and linguistic representation. CRC Press.

Liu, Z., Lin, Y., & Sun, M. (2020). Representation learning for natural language processing.
Springer.

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
num_AA <- 20
length_seq <- 10
embedding_dim <- 16
num_heads <- 2
ff_dim <- 16
num_transformer_blocks <- 2

inputs <- layer_input(shape = length_seq)
X <- inputs %>%
layer_embedding_token_position(maxlen = length_seq,
vocab_size = num_AA,
embed_dim = embedding_dim) %>%
layer_transformer_encoder (embed_dim = embedding_dim,
num_heads = num_heads,
ff_dim = ff_dim,
num_transformer_blocks = num_transformer_blocks) %>%
layer_global_average_pooling_1d()

VAE Variational autoencoder for generating protein sequences

Description

The variational autoencoder (VAE) is a class of autoencoder where the encoder module is used to
learn the parameter of a distribution and the decoder is used to generate examples from samples
drawn from the learned distribution. The conditional variational autoencoder (CVAE) is designed
to generate desired samples by including additional conditioning information. Since there may
be underlying distinctions between groups of samples, the Gaussian mixture model is used for
sequence generation. The Word2vec is applied to amino acids for embedding. The VAE or CVAE
model can be trained by the function "fit_VAE", and then the function "gen_VAE" generates protein
sequences from the trained model.

Usage
fit_VAE(prot_seq,
label = NULL,
length_seq,

embedding_dim,
embedding_args = list(),

VAE 13

latent_dim = 2,

intermediate_encoder_layers,

intermediate_decoder_layers,

prot_seq_val = NULL,

label_val = NULL,

regularization = 1,

epochs,

batch_size,

preprocessing = list(
x_train = NULL,

x_val = NULL,
y_train = NULL,
y_val = NULL,
lenc = NULL,

length_seq = NULL,
embedding_dim = NULL,
embedding_matrix = NULL,
removed_prot_seq = NULL,
removed_prot_seq_val = NULL),
use_generator = FALSE,
optimizer = "adam"”,
validation_split = 0, ...)

gen_VAE(x,
label = NULL,
num_seq,
remove_gap = TRUE,
batch_size,
use_generator = FALSE)

Arguments
prot_seq aligned amino acid sequence
label label (default: NULL)
length_seq length of sequence

embedding_dim dimension of the dense embedding
embedding_args list of arguments for "word2vec::word2vec" but for dim, min_count and split

latent_dim dimension of latent vector (default: 2)
intermediate_encoder_layers

list of intermediate layers for encoder, without input layer
intermediate_decoder_layers

list of intermediate layers for decoder, without output layer

regularization regularization parameter, which is nonnegative (default: 1)

prot_seq_val amino acid sequence for validation (default: NULL)

label_val label for validation (default: NULL)
epochs number of epochs
batch_size batch size

preprocessing list of preprocessed results, they are set to NULL as default x_train, length_seq,
embedding_dim and embedding_matrix must be required for training

14 VAE

 x_train : embedded sequence data for train
* x_val : embedded sequence data for validation
e y_train : labels for train
 y_val : labels for validation
* lenc : encoded labels
* length_seq : length of sequence
* embedding_dim : dimension of the dense embedding
* embedding_matrix : embedding matrix
* removed_prot_seq : index for removed protein sequences while checking
» removed_prot_seq_val : index for removed protein sequences of validation
use_generator use data generator if TRUE (default: FALSE)
optimizer name of optimizer (default: adam)
validation_split

proportion of validation data, it is ignored when there is a validation set (default:
0)

additional parameters for the "fit"

X result of the function "fit_ VAE"

num_seq number of sequences to be generated

remove_gap remove gaps from sequences (default: TRUE)
Value

model trained VAE model

encoder trained encoder model

decoder trained decoder model

preprocessing preprocessed results
gen_seq generated sequence data
label labels for generated sequence data

latent_vector latent vector from embedded sequence data

Author(s)

Dongmin Jung

References

Cinelli, L. P., Marins, M. A., da Silva, E. A. B., & Netto, S. L. (2021). Variational Methods for
Machine Learning with Applications to Deep Networks. Springer.

Liebowitz, J. (Ed.). (2020). Data Analytics and AI. CRC Press.

See Also

keras::fit, keras::compile, reticulate::array_reshape, mclust::mclustBIC, mclust::mclustModel, mclust::sim,
DeepPINCS::multiple_sampling_generator, CatEncoders::LabelEncoder.fit, CatEncoders::transform,
CatEncoders::inverse.transform

VAE

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
data("example_luxA")
label <- substr(example_luxA, 3, 3)

model parameters
length_seq <- 360
embedding_dim <- 8
batch_size <- 128
epochs <- 2

CVAE

VAE_result <- fit_VAE(prot_seq = example_luxA,
label = label,
length_seq = length_seq,
embedding_dim = embedding_dim,
embedding_args = list(iter = 20),

intermediate_encoder_layers = list(layer_dense(units

layer_dense(units

intermediate_decoder_layers = list(layer_dense(units
layer_dense(units = 128)),

prot_seq_val = example_luxA,
label_val = label,
epochs = epochs,
batch_size = batch_size,
use_generator = FALSE,
optimizer = keras::optimizer_adam(clipnorm = 0.1),
callbacks = keras::callback_early_stopping(
monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))
gen_prot_VAE_I <- gen_VAE(VAE_result, label = rep("I", 100), num_seq
gen_prot_VAE_L <- gen_VAE(VAE_result, label = rep("L", 100), num_seq =

from preprocessing

15

= 128),

=16)),
= 16),

100)
100)

VAE_result2 <- fit_VAE(intermediate_encoder_layers = list(layer_dense(units = 128),
layer_dense(units = 16)),

intermediate_decoder_layers = list(layer_dense(units = 16),

layer_dense(units = 128)),

epochs = epochs, batch_size = batch_size,
preprocessing = VAE_result$preprocessing,
use_generator = FALSE,

optimizer = keras::optimizer_adam(clipnorm = 0.1),

callbacks = keras::callback_early_stopping(
monitor = "val_loss”,
patience = 10,
restore_best_weights = TRUE))
gen_prot_VAE2_I <- gen_VAE(VAE_result2, label = rep("I", 100), num_seq
gen_prot_VAE2_L <- gen_VAE(VAE_result2, label = rep("L"”, 100), num_seq

100)
100)

Index

ART, 2

example_luxA, 5
example_PTEN, 6

fit_ART (ART), 2
fit_GAN (GAN), 6
fit_VAE (VAE), 12

GAN, 6

gen_ART (ART), 2
gen_GAN (GAN), 6
gen_VAE (VAE), 12

layer_embedding_token_position
(transformer), 11

layer_transformer_encoder
(transformer), 11

prot2vec (prot_vec), 10
prot_seq_check, 9
prot_vec, 10

transformer, 11

VAE, 12
vec2prot (prot_vec), 10

16

	ART
	example_luxA
	example_PTEN
	GAN
	prot_seq_check
	prot_vec
	transformer
	VAE
	Index

