Package ‘DEGraph’

January 29, 2026
Title Two-sample tests on a graph
Version 1.62.0
Date 2012-04-27
Author Laurent Jacob, Pierre Neuvial and Sandrine Dudoit
Maintainer Laurent Jacob <laurent. jacob@gmail.com>

Description DEGraph implements recent hypothesis testing methods which
directly assess whether a particular gene network is
differentially expressed between two conditions. This is to be
contrasted with the more classical two-step approaches which
first test individual genes, then test gene sets for enrichment
in differentially expressed genes. These recent methods take
into account the topology of the network to yield more powerful
detection procedures. DEGraph provides methods to easily test
all KEGG pathways for differential expression on any gene
expression data set and tools to visualize the results.

License GPL-3
LazyLoad yes

Imports graph, KEGGgraph, lattice, mvtnorm, R.methodsS3, RBGL,
Rgraphviz, rrcov, NClgraph

Suggests corpcor, fields, graph, KEGGgraph, lattice, marray, RBGL,
rrcov, Rgraphviz, NClgraph

Depends R (>=2.10.0), R.utils

biocViews Microarray, DifferentialExpression, GraphAndNetwork,
Network, NetworkEnrichment, DecisionTree

git_url https://git.bioconductor.org/packages/DEGraph
git_branch RELEASE_3_22

git_last_commit 1f09c9d

git_last commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

2 AN.test

Contents
ANLtESt . . e e 2
annLoi2008 4
BSutest e e 5
classLoi2008 e 6
exprLoi2008 e 7
getConnectedComponentList 8
getKEGGPathways 9
getSignedGraph L 10
graph. T2.test e 11
grListKEGG o e 12
hyper.test 13
laplacianFromA 15
plotValuedGraph e 16
randomWAMGraph L 18
testOneConnectedComponent oot 19
testOneGraph 21
twoSampleFromGraph 23
writeAdjacencyMatrix2KGML oo 24

Index 27

AN.test Performs the Adaptive Neyman test of Fan and Lin (1998)
Description

Performs the Adaptive Neyman test of Fan and Lin (1998).

Usage

AN.test (X1, X2, candK=1:ncol(X1), na.rm=FALSE)

Arguments
X1 A nl x pmatrix, observed data for class 1: p variables, nl observations.
X2 A n2 x pmatrix, observed data for class 2: p variables, n2 observations.
candK A vector, candidate values for the true number of Fourier components.
na.rm A logical value indicating whether variables with NA in at least one of the nl
+ n2 observations should be discarder before the test is performed.
Value

A list with class "htest" containing the following components:

statistic A numeric value, the test statistic.

p.value A numeric value, the corresponding p-value.

kstar A numeric value, the estimated true number of Fourier components.

AN.test

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

BS.test() graph.T2.test() hyper.test()

Examples

library("KEGGgraph")
library("NCIgraph™)
library("rrcov")

data("Loi2008_DEGraphVignette")
exprData <- exprLoi2008
classData <- classlLoi2008

rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
gr <- grListKEGG[[1]1]

gids <- translateKEGGID2GeneID(nodes(gr))

mm <- match(gids, rownames(exprData))

Keep genes from the graph that are present in the expression data set
idxs <- which(!is.na(mm))
gr <- subGraph(nodes(gr)[idxs], gr)

idxs <- which(is.na(mm))

if(length(idxs)) {
print("Gene ID not found in expression data: ")
str(gids[idxs])

}

dat <- exprDatalna.omit(mm), 1]

str(dat)

X1 <- t(dat[, classData==0])
X2 <- t(dat[, classData==1])

DEGraph T2 test
res <- testOneGraph(gr, exprData, classData, verbose=TRUE, prop=0.2)

T2 test (Hotelling)
r72 <- T2.test(X1, X2)
str(rT2)

Adaptive Neyman test
rAN <- AN.test(X1, X2, na.rm=TRUE)
str(rAN)

Adaptive Neyman test from Fan and Lin (1998)
rAN <- AN.test(X1, X2, na.rm=TRUE)
str(rAN)

Test from Bai and Saranadasa (1996)
rBS <- BS.test(X1, X2, na.rm=TRUE)
str(rBS)

4 annLoi2008

Hypergeometric test

pValues <- apply(exprData, 1, FUN=function(x) {
tt <- t.test(x[classData==0], x[classData==1])
tt$p.value

»

str(pValues)

names(pValues) <- rownames(exprData)

rHyper <- hyper.test(pValues, gids, thr=0.01)

str(rHyper)

annLoi2008 Annotation data used in the DEGraph package vignette

Description

This data set gives NCBI, Hugo and alternative gene symbols along with the cytoband and descrip-
tion for the 227 genes used in the DEGraph package vignette. This comes from the 15737 gene,
255 patient dataset of Loi et al. (2008) which was used to study resistance to tamoxifen treatment
in hormone-dependent breast cancer.

Usage

annlLoi2008

Format

A matrix of 227 lines and 5 columns.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

Source
Loi et al., Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer
treated with tamoxifen. BMC Genomics, 9(1):239, 2008.

References
Loi et al., Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer

treated with tamoxifen. BMC Genomics, 9(1):239, 2008.

Examples

data("Loi2008_DEGraphVignette")

dim(annL0i2008)
head(annL0i2008)

BS.test 5

BS.test Performs the test of Bai and Saranadasa (1996)

Description

Performs the test of Bai and Saranadasa (1996).

Usage
BS.test(X1, X2, na.rm=FALSE)

Arguments
X1 A nl x pmatrix, observed data for class 1: p variables, nl observations.
X2 A n2 x pmatrix, observed data for class 2: p variables, n2 observations.
na.rm A logical value indicating whether variables with NA in at least one of the nl
+ n2 observations should be discarder before the test is performed.
Value

A list with class "htest" containing the following components:

statistic A numeric value, the test statistic.

p.value A numeric value, the corresponding p-value.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also
AN.test() graph.T2.test() hyper.test()

Examples

library("KEGGgraph")
library(”"NCIgraph”)
library("rrcov")

data(”"Loi20@8_DEGraphVignette")
exprData <- exprLoi2008
classData <- classlLoi2008

rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
gr <- grListKEGGL[1]1]

gids <- translateKEGGID2GeneID(nodes(gr))

mm <- match(gids, rownames(exprData))

Keep genes from the graph that are present in the expression data set
idxs <- which(!is.na(mm))
gr <- subGraph(nodes(gr)[idxs], gr)

6 classLoi2008

idxs <- which(is.na(mm))

if(length(idxs)) {
print("Gene ID not found in expression data: ")
str(gids[idxs])

3

dat <- exprDatalna.omit(mm), 1]

str(dat)

X1 <- t(dat[, classData==0])
X2 <- t(dat[, classData==1])

DEGraph T2 test
res <- testOneGraph(gr, exprData, classData, verbose=TRUE, prop=0.2)

T2 test (Hotelling)
rT2 <- T2.test(X1, X2)
str(rT2)

Adaptive Neyman test
rAN <- AN.test(X1, X2, na.rm=TRUE)
str(rAN)

Adaptive Neyman test from Fan and Lin (1998)
rAN <- AN.test(X1, X2, na.rm=TRUE)
str(rAN)

Test from Bai and Saranadasa (1996)
rBS <- BS.test(X1, X2, na.rm=TRUE)
str(rBS)

Hypergeometric test

pValues <- apply(exprData, 1, FUN=function(x) {
tt <- t.test(x[classData==0], x[classData==11])
tt$p.value

»

str(pValues)

names(pValues) <- rownames(exprData)

rHyper <- hyper.test(pValues, gids, thr=0.01)

str(rHyper)
classLoi2008 Tamoxifen treatment resistance status data used in the DEGraph pack-
age vignette
Description

This data set gives resistance status data for the 255 patients used in the DEGraph package vignette.
This comes from the 15737 gene, 255 patient dataset of Loi et al. (2008) which was used to study
resistance to tamoxifen treatment in hormone-dependent breast cancer.

Usage

classlLoi2008

exprLoi2008 7

Format

A vector of 255 elements which are either O (resistance to treatment) or 1 (sensitivity to treatment).

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

Source
Loi et al., Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer
treated with tamoxifen. BMC Genomics, 9(1):239, 2008.

References
Loi et al., Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer

treated with tamoxifen. BMC Genomics, 9(1):239, 2008.

Examples

data(”"Loi2008_DEGraphVignette")

dim(classLoi2008)
head(classL0i2008)

exprLoi20e8 Gene expression data used in the DEGraph package vignette

Description

This data set gives gene expression data for a subset of 227 genes used in the DEGraph package
vignette. This comes from the 15737 gene, 255 patient dataset of Loi et al. (2008) which was used
to study resistance to tamoxifen treatment in hormone-dependent breast cancer.

Usage
exprLoi2008

Format

A matrix of 227 lines and 255 columns.

Details

The original data set corresponds to data processed by RMA and median-centered as available from
the GSE6532 GEO archive: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532.

These data were summarized from the probe set level to the gene level as follows. The expression
level of a gene was defined as the expression level of the probe set with largest alignment score
among all probe sets mapping to this gene according to the annotation in GSE6532. When the
largest alignment score was achieved by several probe sets, the median expression level of those
probe sets was taken.

8 getConnectedComponentList

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

Source

Loi et al., Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer
treated with tamoxifen. BMC Genomics, 9(1):239, 2008.

References

Loi et al., Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer
treated with tamoxifen. BMC Genomics, 9(1):239, 2008.

Examples

data("Loi2008_DEGraphVignette")

dim(exprLoi2008)
head(exprLoi2008)

getConnectedComponentList
Given a graph, returns a list of its connected components (which are
also graph objects), ordered by decreasing number of nodes

Description

Given a graph, returns a list of its connected components (which are also graph objects), ordered by
decreasing number of nodes.

Usage

getConnectedComponentList(graph, verbose=FALSE)

Arguments

graph A graph object.

verbose If TRUE, extra information is output.
Value

A list containing a graph object for each connected component of the input graph, ordered by
decreasing number of nodes

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

connectedComp.

getKEGGPathways 9

Examples

data("Loi2008_DEGraphVignette")
exprData <- exprLoi2008
rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
graph <- grListKEGGL[11]

pname <- attr(graph, "label")

cat(verbose, "Pathway name: ", pname)

sgraph <- getSignedGraph(graph, verbose=TRUE)
print(sgraph)

graphList <- getConnectedComponentList(graph, verbose=TRUE)
print(graphList)

getKEGGPathways Builds a graph for each of the KEGG pathways

Description

Builds a graph for each of the KEGG pathways.

Usage

getKEGGPathways(path=NULL, rootPath="networkData/ftp.genome. jp/pub/kegg/xml/kgml”, organism="hsa’

Arguments
path A character value, the local _full_ path of KGML data.
rootPath A character value, the local _root_ path of KGML data.
organism A character value specifying the organism whose pathways should be consid-
ered. Defaults to "hsa" (Homo Sapiens).
metaTag A character value, specifying the type of pathways to be considered ("metabolic"
or "non-metabolic"). Defaults to "non-metabolic".
pattern An optional character value specifying a file name pattern to look for.
verbose If TRUE, extra information is output.
Details

If *path’ is supplied, KGML files in this directory are loaded. Otherwise, KGML files are assumed
to be in <rootPath>/<metaTag>/"organisms"/<organism>, which mirrors the structure of the KEGG
KGML file repository.

Value

A list containing a graph object for each KEGG pathway with at least one edge.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

10 getSignedGraph

See Also
parseKGML KEGGpathway2Graph

Examples

library("Rgraphviz")
library("KEGGgraph")

example of KGML files

path <- system.file("extdata", package="KEGGgraph")
grList <- getKEGGPathways(path=path, verbose=TRUE)
print(grList)

graph <- grList[[1]]
plotKEGGgraph(graph)

Not run:
Download all human KGML pathways locally
pathname <- system.file("downloadScripts”, "downloadKeggXmlFiles.R", package="DEGraph")
source(pathname)

Load some of them
grList <- getKEGGPathways(pattern="040", verbose=TRUE)
print(grList)

graph <- grList[[1]]
plotKEGGgraph(graph)

End(Not run)

getSignedGraph Given a graph, builds a signed version of the adjacency matrix taking
into account the type of interaction (e.g., activation or inhibition)

Description

Given a graph, builds a signed version of the adjacency matrix taking into account the type of
interaction (e.g., activation or inhibition).

Usage

getSignedGraph(graph, positivelnteractionLabels=c("activation”, "expression”), negativelnteractic

Arguments

graph A graph object.
positivelnteractionLabels
A character vector specifying which interaction labels correspond to positive
interactions. Defaults to *c("activation", "expression")’.
negativelnteractionLabels
A character vector specifying which interaction labels correspond to negative
interactions. Defaults to ’c("inhibition", "repression")’.

verbose If TRUE, extra information is output.

graph.T2.test 11

Value
This function returns a squared matrix whose (i,j) entry is:

0 if edges i and j are not connected

1 if edges i and j are connected by a positive interaction

-1 if edges i and j are connected by a negative interaction.

By construction, the absolute value of this matrix is the adjacency matrix of the graph. Edges

which cannot interpreted as corresponding to a positive or a negative interaction are marked as not
connected.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

Examples

data("Loi2008_DEGraphVignette")
exprData <- exprLoi2008
rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
graph <- grListKEGG[[1]]
pname <- attr(graph, "label”)
cat(verbose, "Pathway name: ", pname)

sgraph <- getSignedGraph(graph, verbose=TRUE)
print(sgraph)

graphList <- getConnectedComponentList(graph, verbose=TRUE)
print(graphList)

graph.T2.test Performs the Hotelling T2 test in Fourier space

Description

Performs the Hotelling T2 test in Fourier space.

Usage
graph.T2.test(X1, X2, G=NULL, 1fA=NULL, ..., k=ncol(X1))
Arguments
X1 A nl x p numeric matrix, observed data for class 1: p variables, nl observa-
tions.
X2 A n2 x p numeric matrix, observed data for class 2: p variables, n2 observa-
tions.
G An object of class graphAM or graphNEL, the graph to be used in the two-sample

test.

12 grListKEGG

1fA A list returned by laplacianFromA(), containing the Laplacian eigen vectors
and eigen values

Further arguments to be passed to 1aplacianFromA().

k A numeric value, number of Fourier components retained for the test.

Value

A list with class "htest", as returned by T2. test.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

T2.test graphAM

Examples

library("rrcov")

Some parameters

nl <- n2 <- 20

nnodes <- nedges <- 20

k <- 3

ncp <- 0.5

sigma <- diag(nnodes)/sqrt(nnodes)

Build graph, decompose laplacian

G <- randomWAMGraph(nnodes=nnodes,nedges=nedges)
A <- G@adjMat

1fA <- laplacianFromA(A,ltype="unnormalized")

U <- 1fAs$U

1 <- 1fA$l

Build two samples with smooth mean shift
X <- twoSampleFromGraph(nl,n2,shiftM2=ncp, sigma,U=U,k=k)

Do hypothesis testing

t <- T2.test(X$X1,X$X2) # Raw T-square

print(t$p.value)

tu <- graph.T2.test(X$X1,X$X2,1fA=1fA k=k) # Filtered T-squares
print(tu$p.value)

grListKEGG KEGG networks used in the DEGraph package vignette

Description

This data set gives KEGGgraph objects for two KEGG non-metabolic pathways ("Natural killer cell
mediated cytotoxicity" and "Insulin signaling pathway").

hyper.test 13

Usage

grListKEGG

Format

A list of two elements.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

Examples

library("Rgraphviz")
data(”"Loi2008_DEGraphVignette")

grListKEGG
plot(grListKEGGL[1]1])

hyper.test Performs an hypergeometric test of enrichment of a set of hypotheses
in significant elements

Description

Performs an hypergeometric test of enrichment of a set of hypotheses in significant elements.

Usage

hyper.test(p.values, testSet, thr=0.001, universe=length(p.values), verbose=FALSE)

Arguments
p.values A named numeric vector giving the p-values of all tested elements.
testSet A character vector giving the ids of the elements in the tested set. Elements of
“testSet” must have a match in *names(p.values)’.
thr A numeric value between 0 and 1 giving the threshold on p-values at which an
element is declared to be significant.
universe An integer value giving the number of elelments in the considered universe.
Defaults to ’length(p.values)’.
verbose If TRUE, extra information is output.
Value

A list with class "htest" containing the following components:

statistic A numeric value, the test statistic.

p-value A numeric value, the corresponding p-value.

14 hyper.test

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

AN. test() BS.test() graph.T2.test()

Examples

library("KEGGgraph")
library("NCIgraph™)
library("rrcov")

data("Loi2008_DEGraphVignette")
exprData <- exprLoi2008
classData <- classlLoi2008

rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
gr <- grListKEGG[[1]1]

gids <- translateKEGGID2GeneID(nodes(gr))

mm <- match(gids, rownames(exprData))

Keep genes from the graph that are present in the expression data set
idxs <- which(!is.na(mm))
gr <- subGraph(nodes(gr)[idxs], gr)

idxs <- which(is.na(mm))

if(length(idxs)) {
print("Gene ID not found in expression data: ")
str(gids[idxs])

}

dat <- exprDatalna.omit(mm), 1]

str(dat)

X1 <- t(dat[, classData==0])
X2 <- t(dat[, classData==1])

DEGraph T2 test
res <- testOneGraph(gr, exprData, classData, verbose=TRUE, prop=0.2)

T2 test (Hotelling)
r72 <- T2.test(X1, X2)
str(rT2)

Adaptive Neyman test
rAN <- AN.test(X1, X2, na.rm=TRUE)
str(rAN)

Adaptive Neyman test from Fan and Lin (1998)
rAN <- AN.test(X1, X2, na.rm=TRUE)
str(rAN)

Test from Bai and Saranadasa (1996)
rBS <- BS.test(X1, X2, na.rm=TRUE)
str(rBS)

laplacianFromA 15

Hypergeometric test

pValues <- apply(exprData, 1, FUN=function(x) {
tt <- t.test(x[classData==0], x[classData==1])
tt$p.value

»

str(pValues)

names(pValues) <- rownames(exprData)

rHyper <- hyper.test(pValues, gids, thr=0.01)

str(rHyper)

laplacianFromA Calculates the Laplacian associated to an adjacency matrix

Description

Calculates the Laplacian associated to an adjacency matrix.

Usage

laplacianFromA(A, k=1, 1type=c("meanInfluence”, "normalized”, "unnormalized”, "totalInfluence"))

Arguments
A The adjacency matrix of the graph.
k
ltype A character value specifying the type of Laplacian to be calculated. Defaults
to meanInfluence.
Value

A list containing the following components:

U Eigenvectors of the graph Laplacian.
1 Eigenvalues of the graph Laplacian
kIdx Multiplicity of "0’ as eigenvalue.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

Examples

library("KEGGgraph")
library("rrcov")

Create a random graph
graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE)
plot(graph)

Retrieve its adjacency matrix
A <- graph@adjMat

16 plotValuedGraph

write it to KGML file
grPathname <- "randomWAMGraph.xml”
writeAdjacencyMatrix2KGML (A, pathname=grPathname, verbose=TRUE, overwrite=TRUE)

read it from file
gr <- parseKGML2Graph(grPathname)

Two examples of Laplacians from the same graph
lapMI <- laplacianFromA(A, ltype="meanInfluence")
print(lapMI)

lapN <- laplacianFromA(A, ltype="normalized")
print(lapN)

U <- lapN$u
p <- nrow(A)
sigma <- diag(p)/sqrt(p)

X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3)
#H# T2

t <- T2.test(X$X1,X$X2)

str(t)

tu <- graph.T2.test(X$X1, X$X2, 1fA=lapMI, k=3)
str(tu)

plotValuedGraph Plots a graph with nodes colored according to a quantitative variable

Description

Plots a graph with nodes colored according to a quantitative variable.

Usage

plotValuedGraph(graph, values=NULL, nodelLabels=nodes(graph), gMax=0.95, colorPalette=heat.colors(

Arguments
graph A graph object.
values A named vector of numeric values according to which the graph nodes should
be colored.
nodelLabels A character vector of the same length and in the same order as *nodes(graph)’:
node labels to be displayed. Defaults to 'nodes(graph)’.
gMax A numeric value, fraction of the data to be truncated in order to avoid outliers.

colorPalette A character vector, the set of colors to be used.

adjustColorRange
A logical value. If TRUE, the color range is adjusted to the range of values of
nodes actually present in the graph. Defaults to FALSE, i.e. the color range spans
range(values) regardless of which nodes are present in the graph.

plotValuedGraph 17

symmetrizeArrows
A logical value. If TRUE, arrow tails are drawn as the corresponding arrow
heads. Defaults to FALSE.

height A numeric value, the (common) size of nodes.
lwd A numeric value, the (common) width of edges.
cex A numeric value, the relative size of the text for gene names.

Further arguments to be passed to ’edgeRenderInfo’ and 'nodeRenderInfo’.

verbose If TRUE, extra information is output.

Value

A list containing the following components:

graph The ’graph’ object as plotted.
breaks The break points in the supplied values (can be used for plotting a legend).

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also
plotKEGGgraph plot()

Examples

library("Rgraphviz")
library("KEGGgraph")
library(”"NCIgraph”)

data("Loi2008_DEGraphVignette")
exprData <- exprLoi2008
classData <- classlLoi2008
annData <- annLoi2008

rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
graph <- grListKEGG[[1]]

pname <- attr(graph, "label”)

print(pname)

DEGraph T2 test
resList <- testOneGraph(graph, exprData, classData, verbose=TRUE, prop=0.2)

Largest connected component
res <- resList[[1]]
gr <- res$graph

individual t statistics

shift <- apply(exprData, 1, FUN=function(x) {
tt <- t.test(x[classData==0], x[classData==11])
tt$statistic

»

18 randomWAMGraph

names(shift) <- translateGeneID2KEGGID(names(shift))

color palette
if (require(marray)) {
pal <- maPalette(low="red"”, high="green", mid="black”, k=100)
} else {
pal <- heat.colors(100)
3

plot results

dn <- getDisplayName(gr, shortLabel=TRUE)

mm <- match(translateKEGGID2GeneID(nodes(gr)), rownames(annData))
dn <- annData[mm, "NCBI.gene.symbol"]

pvg <- plotValuedGraph(gr, values=shift, nodelLabels=dn, qMax=0.95, colorPalette=pal, height=40, 1lwd=1, verbos
title(pname)

txtl <- sprintf("p(T2)=%s", signif(res$p.valuel[1], 2))
txt2 <- sprintf("p(T2F[%s]1)=%s", res$k, signif(res$p.valuel[2]))
txt <- paste(txtl, txt2, sep="\n")
stext(side=3, pos=1, txt)
if (require(fields)) {
image.plot(legend.only=TRUE, zlim=range(pvg$breaks), col=pal, legend.shrink=0.3, legend.width=0.8, legend.]
3

randomWAMGraph Generates a random graph

Description

Generates a random graph.

Usage
randomWAMGraph(nnodes=5, nedges=nnodes, verbose=FALSE)

Arguments
nnodes A numeric value, the desired number of nodes.
nedges A numeric value, the desired number of edges.
verbose If TRUE, extra information is output.

Value

An object of class graphAM.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

graphAM.

testOneConnectedComponent

Examples

library("KEGGgraph")
library("rrcov")

Create a random graph
graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE)

plot(graph)

Retrieve its adjacency matrix
A <- graph@adjMat

write it to KGML file
grPathname <- "randomWAMGraph.xml”
writeAdjacencyMatrix2KGML (A, pathname=grPathname, verbose=TRUE, overwrite=TRUE)

read it from file
gr <- parseKGML2Graph(grPathname)

Two examples of Laplacians from the same graph
lapMI <- laplacianFromA(A, ltype="meanInfluence")
print(lapMI)

lapN <- laplacianFromA(A, ltype="normalized")
print(lapN)

U <- lapN$u
p <- nrow(A)
sigma <- diag(p)/sqrt(p)

X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3)
#H# T2

t <- T2.test(X$X1,X$X2)

str(t)

tu <- graph.T2.test(X$X1, X$X2, 1fA=lapMI, k=3)
str(tu)

testOneConnectedComponent
Applies a series of two-sample tests to a connected graph using vari-
ous statistics

Description

Applies a series of two-sample tests to a connected graph using various statistics.

Usage

testOneConnectedComponent (graph, data, classes, ..., prop=0.2, verbose=FALSE)

20 testOneConnectedComponent

Arguments
graph A graph object.
data A ’numeric matrix (size: number 'p’ of genes x number 'n’ of samples) of
gene expression.
classes A character vector (length: 'n’) of class assignments.
Further arguments to be passed to laplacianFromA().
prop A numeric value, percentage of components retained for Fourier and PCA.
verbose If TRUE, extra information is output.
Details

This function performs the test, assuming that all genes in the graph are represented in the expres-
sion data set, in order not to have to modify the graph topology.

Interaction signs are used if available in the graph (’getSignedGraph’ is not called here, in order not
to have to modify the graph topology.).

The graph given as input has to have only one connex component. It can be retrieved from the
output of getConnectedComponentList().

Value

A structured 1ist containing the p-values of the tests, the graph object of the connected component
and the number of retained Fourier dimensions.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

testOneGraph() getConnectedComponentList()

Examples

library("rrcov")

Some parameters

nl <- n2 <- 20

nnodes <- nedges <- 20

k <- 3

ncp <- 0.5

sigma <- diag(nnodes)/sqrt(nnodes)

Build graph, decompose laplacian

G <- randomWAMGraph(nnodes=nnodes,nedges=nedges)
A <- G@adjMat

1fA <- laplacianFromA(A,ltype="unnormalized")

U <- 1fAs$U

1 <- 1fA$l

Build two samples with smooth mean shift
X <- twoSampleFromGraph(n1,n2,shiftM2=ncp,sigma,U=U,k=k)

testOneGraph 21

Do hypothesis testing

t <- T2.test(X$X1,X$X2) # Raw T-square

print(t$p.value)

tu <- graph.T2.test(X$X1,X$X2,1fA=1fA k=k) # Filtered T-squares
print(tu$p.value)

testOneGraph Applies a serie of two-sample tests to each connected component of a
graph using various statistics

Description

Applies a serie of two-sample tests to each connected component of a graph using various statistics.

Usage
testOneGraph(graph, data, classes, uselnteractionSigns=TRUE, ..., verbose=FALSE)
Arguments
graph A graph object.
data A ’matrix’ (size: number 'p’ of genes X number 'n’ of samples) of gene expres-
sion.
classes A ’vector’ (length: ’n’) of class assignments.
uselnteractionSigns
A logical value indicating whether the sign of interaction should be taken into
account.
Further arguments to be passed to testOneConnectedComponent.
verbose If TRUE, extra information is output.
Value

A structured 1ist containing the p-values of the tests, the graph object of the connected component
and the number of retained Fourier dimensions.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

testOneConnectedComponent()

22 testOneGraph

Examples

library("Rgraphviz")
library("KEGGgraph")
library("NCIgraph”)

data("Loi2008_DEGraphVignette")
exprData <- exprLoi2008
classData <- classlLoi2008
annData <- annLoi2008

rn <- rownames(exprData)

Retrieve expression levels data for genes from one KEGG pathway
graph <- grListKEGGL[1]]

pname <- attr(graph, "label")

print(pname)

DEGraph T2 test
resList <- testOneGraph(graph, exprData, classData, verbose=TRUE, prop=0.2)

Largest connected component
res <- resList[[1]]
gr <- res$graph

individual t statistics

shift <- apply(exprData, 1, FUN=function(x) {
tt <- t.test(x[classData==0], x[classData==1])
tt$statistic

»
names(shift) <- translateGeneID2KEGGID(names(shift))

color palette
if (require(marray)) {
pal <- maPalette(low="red”, high="green"”, mid="black"”, k=100)
} else {
pal <- heat.colors(100)
3

plot results

dn <- getDisplayName(gr, shortLabel=TRUE)

mm <- match(translateKEGGID2GeneID(nodes(gr)), rownames(annData))
dn <- annData[mm, "NCBI.gene.symbol"]

pvg <- plotValuedGraph(gr, values=shift, nodeLabels=dn, gMax=0.95, colorPalette=pal, height=40, 1lwd=1, verbos
title(pname)

txtl <- sprintf("p(T2)=%s", signif(res$p.valuel1], 2))
txt2 <- sprintf("p(T2F[%s])=%s", res$k, signif(res$p.valuel[2]))
txt <- paste(txtl, txt2, sep="\n")
stext(side=3, pos=1, txt)
if (require(fields)) {
image.plot(legend.only=TRUE, zlim=range(pvg$breaks), col=pal, legend.shrink=0.3, legend.width=0.8, legend.]
3

twoSampleFromGraph 23

twoSampleFromGraph Given a basis (typically the eigenvectors of a graph Laplacian), builds
two multivariate normal samples with mean shift located in the first
elements of the basis

Description

Given a basis (typically the eigenvectors of a graph Laplacian), builds two multivariate normal
samples with mean shift located in the first elements of the basis.

Usage

twoSampleFromGraph(n1=20, n2=n1, shiftM2=0, sigma, U, k=ceiling(ncol(U)/3))

Arguments
n1 An integer value specifying the number of points in the first sample.
n2 An integer value specifying the number of points in the second sample.
shiftM2 A numeric value giving the desired squared Mahalanobis norm of the mean shift
between the two samples.
sigma A matrix giving the covariance structure of each sample.
u A matrix giving the desired basis.
k An integer value giving the number of basis elements in which the mean shift
must be located.
Value

A list with named elements:

X1 The first sample in the original basis (before transformation by U).
X2 The second sample in the original basis (before transformation by U).
X1 The first sample in the specified basis (after transformation by U).
X2 The second sample in the specified basis (after transformation by U).
mul The population mean of F1

mu2 The population mean of F2

diff mul - mu2

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

24

writeAdjacencyMatrix2ZKGML

Examples

library("KEGGgraph")
library("rrcov")

Create a random graph
graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE)

plot(graph)

Retrieve its adjacency matrix
A <- graph@adjMat

write it to KGML file
grPathname <- "randomWAMGraph.xml"
writeAdjacencyMatrix2KGML (A, pathname=grPathname, verbose=TRUE, overwrite=TRUE)

read it from file
gr <- parseKGML2Graph(grPathname)

Two examples of Laplacians from the same graph
lapMI <- laplacianFromA(A, ltype="meanInfluence")
print(lapMI)

lapN <- laplacianFromA(A, ltype="normalized")
print(lapN)

U <- lapN$u
p <- nrow(A)
sigma <- diag(p)/sqrt(p)

X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3)
T2

t <- T2.test(X$X1,X$X2)

str(t)

tu <- graph.T2.test(X$X1, X$X2, 1fA=lapMI, k=3)
str(tu)

writeAdjacencyMatrix2KGML
Writes an adjacency matrix into an XML file

Description

Writes an adjacency matrix into an XML file.

Usage

n.n

writeAdjacencyMatrix2KGML (mat, pathname, nodePrefix="n", overwrite=FALSE, ...

Arguments

mat A matrix, interpreted of the adjacency matrix of a graph.

, verbose=FALSE)

writeAdjacencyMatrix2ZKGML 25

pathname The full path name of the XML file to be written.

nodePrefix A character value giving the prefix to which the node index in mat’ will be
appended.

overwrite If TRUE and file already exists, overwrite it.

Further arguments to be passed to plotKEGGgraph.

verbose If TRUE, extra information is output.

Value

None.

Author(s)

Laurent Jacob, Pierre Neuvial and Sandrine Dudoit

See Also

parseKGML2Graph

Examples

library("KEGGgraph")
library("rrcov")

Create a random graph
graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE)

plot(graph)

Retrieve its adjacency matrix
A <- graph@adjMat

write it to KGML file
grPathname <- "randomWAMGraph.xml”
writeAdjacencyMatrix2KGML(A, pathname=grPathname, verbose=TRUE, overwrite=TRUE)

read it from file
gr <- parseKGML2Graph(grPathname)

Two examples of Laplacians from the same graph
lapMI <- laplacianFromA(A, ltype="meanInfluence")
print(lapMI)

lapN <- laplacianFromA(A, ltype="normalized")
print(lapN)

U <- lapN$u
p <= nrow(A)
sigma <- diag(p)/sqrt(p)

X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3)
#H# T2

t <- T2.test(X$X1,X$X2)
str(t)

26

tu <- graph.T2.test(X$X1, X$X2, 1fA=lapMI, k=3)
str(tu)

writeAdjacencyMatrix2ZKGML

Index

x datasets plotKEGGgraph, 17
annLoi2008, 4 plotValuedGraph, 16
classlLoi2008, 6
exprLoi208, 7 randomWAMGraph, 18
grListKEGG, 12
T2.test, 12
AN.test, 2, 5, 14 testOneConnectedComponent, 19, 21
annLoi2008, 4 testOneGraph, 20, 21
TRUE, 8-10, 13, 16-18, 20, 21, 25
BS.test, 3,5, 14 twoSampleFromGraph, 23
character, 9, 10, 13, 15, 16, 20, 25 vector, 2, 10, 16, 20
classlLoi2008, 6
connectedComp, 8 writeAdjacencyMatrix2KGML, 24

exprlLoi2008, 7
FALSE, 16, 17

getConnectedComponentlist, 8, 20
getKEGGPathways, 9
getSignedGraph, 10
graph, 8-10, 16, 20, 21
graph.T2.test, 3, 5, 11, 14
graphAM, 11, 12, 18

graphNEL, 17

grListKEGG, 12

hyper.test, 3, 5, 13

integer, 13,23
KEGGpathway2Graph, 10
laplacianFromA, 12,15, 20

list, 2,5,8, 9,12, 13,15,17,20, 21,23
logical, 2,5, 16, 17,21
matrix, 2, 5, 11, 20, 24

NA, 2,5
numeric, 2, 5, 11-13, 16-18, 20, 23

parsekKGML, 10
parseKGML2Graph, 25
plot, 17

27

	AN.test
	annLoi2008
	BS.test
	classLoi2008
	exprLoi2008
	getConnectedComponentList
	getKEGGPathways
	getSignedGraph
	graph.T2.test
	grListKEGG
	hyper.test
	laplacianFromA
	plotValuedGraph
	randomWAMGraph
	testOneConnectedComponent
	testOneGraph
	twoSampleFromGraph
	writeAdjacencyMatrix2KGML
	Index

