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AdvancedBSgenomeForge [Moved to BSgenomeForge] Tools to forge a BSgenome data package

Description

IMPORTANT NOTE: Starting with BioC 3.19, the forgeBSgenomeDataPkg and forgeMaskedBSgenomeDataPkg
functions are defined in the BSgenomeForge package.

See Also

BSgenomeForge: : forgeBSgenomeDataPkg in the BSgenomeForge package.
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available.genomes Find available/installed genomes

Description
available.genomes gets the list of BSgenome data packages that are available in the Bioconductor
repositories for your version of R/Bioconductor.

installed.genomes gets the list of BSgenome data packages that are currently installed on your
system.

getBSgenome searchs the installed BSgenome data packages for the specified genome and returns
it as a BSgenome object.

Usage
available.genomes(splitNameParts=FALSE, type=getOption("pkgType"))

installed. genomes(splitNameParts=FALSE)

getBSgenome (genome, masked=FALSE, load.only=FALSE)

Arguments

splitNameParts Whether to split or not the package names in parts. In that case the result is
returned in a data frame with 5 columns.

type Character string indicating the type of package ("source”, "mac.binary” or
"win.binary") to look for.

genome A BSgenome object, or the full name of an installed BSgenome data package,
or a short string specifying the name of an NCBI assembly (e.g. "GRCh38",
"TAIR10.1", etc...) or UCSC genome (e.g. "hg38", "bosTau9"”, "galGal6",
"ce11", etc...). The supplied short string must refer unambiguously to an in-
stalled BSgenome data package.

masked TRUE or FALSE. Whether to search for the masked BSgenome object (i.e. the
object that contains the masked sequences) or not (the default).

load.only TRUE or FALSE. By default getBSgenome loads and attaches the BSgenome data
package containing the requested genome, resulting in its addition to the search
path. Use load.only=TRUE to prevent this, in which case the BSgenome data
package is loaded but not attached.

Details

A BSgenome data package contains the full genome sequences for a given organism.

Its name typically has 4 parts (5 parts if it’s a masked BSgenome data package i.e. if it contains

masked sequences) separated by a dot e.g. BSgenome .Mmusculus.UCSC.mm10 or BSgenome .Mmusculus.UCSC.mm1@.mas
1. The Ist part is always BSgenome.

2. The 2nd part is the name of the organism in abbreviated form e.g. Mmusculus, Hsapiens,
Celegans, Scerevisiae, Ecoli, etc...

3. The 3rd part is the name of the organisation who provided the genome sequences. We formally
refer to it as the provider of the genome. E.g. UCSC, NCBI, TAIR, etc...
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4. The 4th part is a short string specifying the name of an NCBI assembly (e.g. GRCh38, TAIR10.1,
etc...) or UCSC genome (e.g. hg38, mm10, susScri1, bosTau9, galGale6, cell, etc...).

5. If the package contains masked sequences, its name has the . masked suffix added to it, which
is typically the 5th part.

A BSgenome data package contains a single top-level object (a BSgenome object) named like the
package itself that can be used to access the genome sequences.

Value

For available.genomes and installed.genomes: by default (i.e. if splitNameParts=FALSE),
a character vector containing the names of the BSgenome data packages that are available (for
available.genomes) or currently installed (for installed.genomes). If splitNameParts=TRUE,
the list of packages is returned in a data frame with one row per package and the following columns:
pkgname (character), organism (factor), provider (factor), genome (character), and masked (logi-
cal).

For getBSgenome: the BSgenome object containing the sequences for the specified genome. Or an
error if the object cannot be found in the BSgenome data packages currently installed.

Author(s)

H. Pages

See Also

* BSgenome objects.

e available.packages.

B — o
## available.genomes() and installed.genomes()
B m o

# What genomes are currently installed:
installed.genomes()

# What genomes are available:
available.genomes()

# Split the package names in parts:

av_gen <- available.genomes(splitNameParts=TRUE)
table(av_gen$organism)

table(av_gen$provider)

# Make your choice and install with:
if (interactive()) {
if (!'require("BiocManager"”))
install.packages(”"BiocManager")
BiocManager: :install("BSgenome.Scerevisiae.UCSC.sacCer1")

3
# Have a coffee 8-)

# Load the package and display the index of sequences for this genome:
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library(BSgenome.Scerevisiae.UCSC.sacCer1)
Scerevisiae # same as BSgenome.Scerevisiae.UCSC.sacCer1

B m o
## getBSgenome()
B o

## Specify the full name of an installed BSgenome data package:
genome <- getBSgenome("BSgenome.Celegans.UCSC.ce2")
genome

## Specify a UCSC genome:

genome <- getBSgenome("hg38")
class(genome) # BSgenome object
seqinfo(genome)

genome$chrM

genome <- getBSgenome("hg38", masked=TRUE)
class(genome) # MaskedBSgenome object
seginfo(genome)

genome$chr22

bsapply bsapply

Description

Apply a function to each chromosome in a genome.

Usage
bsapply(BSParams, ...)
Arguments
BSParams a BSParams object that holds the various parameters needed to configure the
bsapply function
optional arguments to "FUN’.
Details

The exclude parameter of the BSParams object must be a character vector containing regular ex-
pressions. By default it’s empty so nothing gets excluded. A popular option will probably be to set
this to "rand" so that random bits of unassigned contigs are filtered out.

Value

If BSParams sets simplify=FALSE, an ordinary list is returned containing the results generated
using the remaining BSParams specifications. If BSParams sets simplify=TRUE, an sapply-like
simplification is performed on the results.

Author(s)

Marc Carlson
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See Also

BSParams-class, BSgenome-class, BSgenome-utils

Examples

## Load the Worm genome:
library(”"BSgenome.Celegans.UCSC.ce2")

## Count the alphabet frequencies for every chromosome but exclude

## mitochrondrial and scaffold ones:

params <- new("BSParams”, X = Celegans, FUN = alphabetFrequency,
exclude = c("M", "_"))

bsapply(params)

## Or we can do this same function with simplify = TRUE:

params <- new("BSParams”, X = Celegans, FUN = alphabetFrequency,
exclude = c("M", "_"), simplify = TRUE)

bsapply(params)

## Examples to show how we might look for a string (in this case an
## ebox motif) across the whole genome.

Ebox <- DNAStringSet("CACGTG")

pdict® <- PDict(Ebox)

params <- new("BSParams”, X = Celegans, FUN = countPDict, simplify = TRUE)
bsapply(params, pdict = pdict®@)

params@FUN <- matchPDict
bsapply(params, pdict = pdict®@)

## And since its really overkill to use matchPDict to find a single pattern:
params@FUN <- matchPattern
bsapply(params, pattern = "CACGTG")

## Examples on how to use the masks
library(BSgenome.Hsapiens.UCSC.hg38.masked)
genome <- BSgenome.Hsapiens.UCSC.hg38.masked
## I can make things verbose if I want to see the chromosomes getting processed.
options(verbose=TRUE)
## For the 1st example, lets use default masks
params <- new("BSParams”, X = genome, FUN = alphabetFrequency,
exclude = c(1:8,"M","X","_"), simplify = TRUE)
bsapply(params)

if (interactive()) {
## Set up the motifList to filter out all double T's and all double C's
params@motiflList <-c("TT","CC")
bsapply(params)

## Get rid of the motifList
params@motiflList=as.character()

3

##Enable all standard masks
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params@maskList <- c(RM=TRUE, TRF=TRUE)
bsapply(params)

##Disable all standard masks
params@maskList <- c(AGAPS=FALSE,AMB=FALSE)
bsapply(params)

options(verbose=FALSE)

BSgenome-class BSgenome objects

Description

The BSgenome class is a container for storing the full genome sequences of a given organism.
BSgenome objects are usually made in advance by a volunteer and made available to the Biocon-
ductor community as "BSgenome data packages". See ?available.genomes for how to get the list
of "BSgenome data packages" curently available.

Accessor methods

In the code snippets below, x is a BSgenome object.

metadata(x) Returns a named list containing metadata associated with the BSgenome object. The
components of the list are:

organism: The scientific name of the organism that this BSgenome object is for. E.g.
"Homo sapiens”, "Mus musculus”, "Caenorhabditis elegans”, etc...

common_name: The common name of the organism that this BSgenome object is for. E.g.
"Human”, "Mouse", "Worm”, etc...

provider: The provider of this genome. E.g. "UCSC", "BDGP", "FlyBase", etc...

genome: The name of the genome. Typically the name of an NCBI assembly (e.g.
"GRCh38.p12", "WBcel235", "TAIR10.1", "ARS-UCD1.2", etc...) or UCSC genome (e.g.
"hg38", "bosTau9”, "galGal6", "cel1”, etc...).

release_date: The release date of this genome e.g. "Mar. 2006".

source_url: The permanent URL to the place where the FASTA files used to produce
the sequences contained in x can be found (and downloaded).

seqnames(x), seqnames(x) <- value Gets or sets the names of the single sequences contained in
x. Each single sequence is stored in a DNAString or MaskedDNAString object and typically
comes from a source file (FASTA) with a single record. The names returned by segnames(x)
usually reflect the names of those source files but a common prefix or suffix was eventually
removed in order to keep them as short as possible.

seglengths(x) Returns the lengths of the single sequences contained in x.

See ?”length,XVector-method™ and ?~length,MaskedXString-method™ for the defini-
tion of the length of a DNAString or MaskedDNAString object. Note that the length of a
masked sequence (MaskedXString object) is not affected by the current set of active masks
but the nchar method for MaskedXString objects is.

names(seglengths(x)) is guaranteed to be identical to seqnames(x).
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msegnames(x) Returns the index of the multiple sequences contained in x. Each multiple sequence
is stored in a DNAStringSet object and typically comes from a source file (FASTA) with
multiple records. The names returned by mseqnames(x) usually reflect the names of those
source files but a common prefix or suffix was eventually removed in order to keep them as
short as possible.

names(x) Returns the index of all sequences contained in x. This is the same as c(segnames(x),
mseqnames(x)).

length(x) Returns the length of x, i.e., the total number of sequences in it (single and multiple
sequences). This is the same as length(names(x)).

x[[name]] Returns the sequence (single or multiple) in x named name (name must be a single
string). No sequence is actually loaded into memory until this is explicitely requested with a
call to x[[name]] or x$name. When loaded, a sequence is kept in a cache. It will be automati-
cally removed from the cache at garbage collection if it’s not in use anymore i.e. if there are no
reference to it (other than the reference stored in the cache). With options(verbose=TRUE),
a message is printed each time a sequence is removed from the cache.

x$name Same as x[[name]] but name is not evaluated and therefore must be a literal character
string or a name (possibly backtick quoted).

masknames(x) The names of the built-in masks that are defined for all the single sequences. There
can be up to 4 built-in masks per sequence. These will always be (in this order): (1) the mask
of assembly gaps, aka "the AGAPS mask";

(2) the mask of intra-contig ambiguities, aka "the AMB mask";

(3) the mask of repeat regions that were determined by the RepeatMasker software, aka "the
RM mask";

(4) the mask of repeat regions that were determined by the Tandem Repeats Finder software
(where only repeats with period less than or equal to 12 were kept), aka "the TRF mask".

All the single sequences in a given package are guaranteed to have the same collection of
built-in masks (same number of masks and in the same order).

masknames(x) gives the names of the masks in this collection. Therefore the value returned
by masknames(x) is a character vector made of the first N elements of c("AGAPS", "AMB",
"RM", "TRF"), where N depends only on the BSgenome data package being looked at (0 <=
N <=4). The man page for most BSgenome data packages should provide the exact list and
permanent URLs of the source data files that were used to extract the built-in masks. For
example, if you’ve installed the BSgenome.Hsapiens.UCSC.hg38 package, load it and see the
Note section in ? BSgenome.Hsapiens.UCSC.hg38".

Author(s)
H. Pages

See Also

available.genomes, GenomeDescription-class, BSgenome-utils, DNAString-class, DNAStringSet-
class, MaskedDNAString-class, getSeq, BSgenome-method, injectSNPs, subseq,X Vector-method,
rm, gc

Examples

## Loading a BSgenome data package doesn't load its sequences
## into memory:
library(BSgenome.Celegans.UCSC.ce2)
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metadata(Celegans)

## Number of sequences in this genome:
length(Celegans)

## Display a summary of the sequences:
Celegans

## Index of single sequences:
segnames(Celegans)

## Lengths (i.e. number of nucleotides) of the single sequences:
seqlengths(Celegans)

## Load chromosome I from disk to memory (hence takes some time)
## and keep a reference to it:
chrl <- Celegans[["chrI”]] # equivalent to Celegans$chrl

chrl

class(chrI) # a DNAString instance
length(chrl) # with 15080483 nucleotides

## Single sequence can be renamed:
segnames (Celegans) <- sub("*chr”,
seqlengths(Celegans)

Celegans$I

segnames(Celegans) <- paste@("chr”, segnames(Celegans))

nn

, segnames(Celegans))

## Multiple sequences:
library(BSgenome.Rnorvegicus.UCSC.rn5)
rn5 <- BSgenome.Rnorvegicus.UCSC.rn5

rn5

seqnames(rn5)

rn5_chrl <- rn5$%chri

mseqgnames (rn5)

rn5_random <- Rnorvegicus$random
rn5_random

class(rn5_random) # a DNAStringSet instance

## Character vector containing the description lines of the first
## 4 sequences in the original FASTA file:

names(rn5_random)[1:4]

e
## PASS-BY-ADDRESS SEMANTIC, CACHING AND MEMORY USAGE
Bt e

## We want a message to be printed each time a sequence is removed
## from the cache:
options(verbose=TRUE)

gc() # nothing seems to be removed from the cache

rm(rn5_chr1, rn5_random)

gc() # rn5_chr1 and rn5_random are removed from the cache (they are
# not in use anymore)

options(verbose=FALSE)



10 BSgenome-utils

## Get the current amount of data in memory (in Mb):
mem@ <- gc()["Vcells", "(Mb)"]

system.time(rn5_chr2 <- rn5$chr2) # read from disk
gc(O["Vcells”, "(Mb)"] - mem@ # 'rn5_chr2' occupies 20Mb in memory

system.time(tmp <- rn5$chr2) # much faster! (sequence
# is in the cache)

gc(O["Vcells”, "(Mb)"] - mem@ # we're still using 20Mb (sequences
# have a pass-by-address semantic
# i.e. the sequence data are not
# duplicated)

## subseq() doesn't copy the sequence data either, hence it is very
## fast and memory efficient (but the returned object will hold a
## reference to 'rn5_chr2'):

y <- subseq(rn5_chr2, 10, 8000000)

gc(O["Vcells"”, "(Mb)"]1 - mem@

## We must remove all references to 'rn5_chr2' before it can be
## removed from the cache (so the 20Mb of memory used by this
## sequence are freed):

options(verbose=TRUE)

rm(rn5_chr2, tmp)

gcO

## Remember that 'y' holds a reference to 'rn5_chr2' too:

rm(y)
gcO

options(verbose=FALSE)
gc()["Vcells"”, "(Mb)"]1 - mem@

BSgenome-utils BSgenome utilities

Description

Utilities for BSgenome objects.

Usage

## S4 method for signature 'BSgenome'

vmatchPattern(pattern, subject, max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE, algorithm="auto"”,
exclude="", maskList=logical(@), userMask=IRangesList(),
invertUserMask=FALSE)

## S4 method for signature 'BSgenome'

vcountPattern(pattern, subject, max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE, algorithm="auto"”,
exclude="", maskList=logical(@), userMask=IRangesList(),
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invertUserMask=FALSE)

## S4 method for signature 'BSgenome'

vmatchPDict(pdict, subject, max.mismatch=0, min.mismatch=0,
fixed=TRUE, algorithm="auto"”, verbose=FALSE,
exclude="", maskList=logical(@))

## S4 method for signature 'BSgenome'

vcountPDict(pdict, subject, max.mismatch=0, min.mismatch=0,
fixed=TRUE, algorithm="auto"”, collapse=FALSE,
weight=1L, verbose=FALSE, exclude="", maskList=logical(@))

## S4 method for signature 'BSgenome'

matchPWM(pwm, subject, min.score="80%", exclude="", maskList=logical(@))

## S4 method for signature 'BSgenome'

countPWM(pwm, subject, min.score="80%", exclude="", maskList=logical(@))
Arguments

pattern A DNAString object containing the pattern sequence.

subject A BSgenome object containing the subject sequences.

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ?~ lowlevel-matching”
for the details). If non-zero, an inexact matching algorithm is used.

with.indels If TRUE then indels are allowed. In that case, min.mismatch must be @ and
max.mismatch is interpreted as the maximum "edit distance" allowed between
any pattern and any of its matches (see ? "matchPattern” for the details).

fixed If FALSE then IUPAC extended letters are interpreted as ambiguities (see ?~ lowlevel-matching”
for the details).

non

algorithm For vmatchPattern and vcountPattern one of the following: "auto”, "naive-exact”,
"naive-inexact”, "boyer-moore”, "shift-or”, or "indels".
n n

For vmatchPDict and vcountPDict one of the following: "auto”, "naive-exact”,
"naive-inexact”, "boyer-moore”, or "shift-or".

exclude A character vector with strings that will be used to filter out chromosomes whose
names match these strings.

maskList A named logical vector of maskStates preferred when used with a BSGenome
object. When using the bsapply function, the masks will be set to the states in
this vector.

userMask An IntegerRangesList, containing a mask to be applied to each chromosome.
See bsapply.

invertUserMask Whether the userMask should be inverted.

collapse, weight
ignored arguments.

pdict A PDict or DNAStringSet object containing the pattern sequences.

verbose TRUE or FALSE.

pwm A numeric matrix with row names A, C, G and T representing a Position Weight
Matrix.

min.score The minimum score for counting a match. Can be given as a character string

containing a percentage (e.g. "85%") of the highest possible score or as a single
number.
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Value

A GRanges object for vmatchPattern. genome and seqinfo information from "subject" are prop-
agated to the return object.

A data.frame object for vcountPattern and countPWM with three columns: "seqname" (factor),
"strand" (factor), and "count" (integer).

A GRanges object for vmatchPDict with one metadata column: "index", which represents a map-
ping to a position in the original pattern dictionary. genome and seqinfo information from "subject"
are propagated.

A DataFrame object for vcountPDict with four columns: "seqname" (’factor’ Rle), "strand" (*fac-
tor’ Rle), "index" (integer) and "count" ('integer’ Rle). As with vmatchPDict the index column
represents a mapping to a position in the original pattern dictionary.

A GRanges object for matchPWM with two metadata columns: "score" (numeric), and "string"
(DNAStringSet). genome and seginfo information from "subject" are included.

Author(s)

P. Aboyoun

See Also

matchPattern, matchPDict, matchPWM, bsapply

Examples

library(BSgenome.Celegans.UCSC.ce2)
data(HNF4alpha)

pattern <- consensusString(HNF4alpha)
vmatchPattern(pattern, Celegans, fixed="subject")
vcountPattern(pattern, Celegans, fixed="subject"”)

pdict <- PDict(HNF4alpha)
vmatchPDict(pdict, Celegans)
vcountPDict(pdict, Celegans)

pwm <- PWM(HNF4alpha)
matchPWM(pwm, Celegans)
countPWM(pwm, Celegans)

BSgenomeViews-class BSgenomeViews objects

Description

The BSgenomeViews class is a container for storing a set of genomic positions on a BSgenome
object, called the "subject" in this context.
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Usage

## Constructor
## -

BSgenomeViews(subject, granges)

## Accessors
## ————————-

## S4 method for signature 'BSgenomeViews'
subject(x)

## S4 method for signature 'BSgenomeViews'
granges(x, use.mcols=FALSE)

## S4 method for signature 'BSgenomeViews'

length(x)

## S4 method for signature 'BSgenomeViews'
names (x)

## S4 method for signature 'BSgenomeViews'
segnames (x)

## S4 method for signature 'BSgenomeViews'
start(x)

## S4 method for signature 'BSgenomeViews'
end(x)

## S4 method for signature 'BSgenomeViews'
width(x)

## S4 method for signature 'BSgenomeViews'
strand(x)

## S4 method for signature 'BSgenomeViews'
ranges(x, use.mcols=FALSE)

## S4 method for signature 'BSgenomeViews'
elementNROWS (x)

## S4 method for signature 'BSgenomeViews'
seqginfo(x)

## DNAStringSet methods
e

## S4 method for signature 'BSgenomeViews'
seqtype(x)

## S4 method for signature 'BSgenomeViews'
nchar(x, type="chars”, allowNA=FALSE)

## S4 method for signature 'BSgenomeViews'
unlist(x, recursive=TRUE, use.names=TRUE)

## S4 method for signature 'BSgenomeViews'
alphabetFrequency(x, as.prob=FALSE, collapse=FALSE, baseOnly=FALSE)

## S4 method for signature 'BSgenomeViews'
hasOnlyBaselLetters(x)

13
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## S4 method for signature 'BSgenomeViews'
uniqueletters(x)

## S4 method for signature 'BSgenomeViews'
letterFrequency(x, letters, OR="|", as.prob=FALSE, collapse=FALSE)

## S4 method for signature 'BSgenomeViews'
oligonucleotideFrequency(x, width, step=1,
as.prob=FALSE, as.array=FALSE,
fast.moving.side="right"”, with.labels=TRUE, simplify.as="matrix")

## S4 method for signature 'BSgenomeViews'
nucleotideFrequencyAt(x, at, as.prob=FALSE, as.array=TRUE,
fast.moving.side="right"”, with.labels=TRUE)

## S4 method for signature 'BSgenomeViews'
consensusMatrix(x, as.prob=FALSE, shift=0L, width=NULL, baseOnly=FALSE)

## S4 method for signature 'BSgenomeViews'
consensusString(x, ambiguityMap=IUPAC_CODE_MAP, threshold=0.25,
shift=0L, width=NULL)

Arguments

subject A BSgenome object or the name of a reference genome specified in a way
that is accepted by the getBSgenome function. In that case the corresponding
BSgenome data package needs to be already installed (see ?getBSgenome for
the details).

granges A GRanges object containing ranges relative to the genomic sequences stored in
subject.

X A BSgenomeViews object.

use.mcols TRUE or FALSE (the default). Whether the metadata columns on x (accessible

with mcols(x)) should be propagated to the returned object or not.
type, allowNA, recursive, use.names

Ignored.
as.prob, letters, OR, width

See ?alphabetFrequency and ?oligonucleotideFrequency in the Biostrings
package.

collapse, baseOnly

See ?alphabetFrequency in the Biostrings package.
step, as.array, fast.moving.side, with.labels, simplify.as, at

See ?0ligonucleotideFrequency in the Biostrings package.
shift, ambiguityMap, threshold

See ?consensusMatrix in the Biostrings package.

Constructors

BSgenomeViews(subject, granges): Make a BSgenomeViews object by putting the views spec-
ified by granges on top of the genomic sequences stored in subject. See above for how
argument subject and granges should be specified.
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Views(subject, granges): Equivalent to BSgenomeViews(subject, granges). Provided for
convenience.

Accessors

In the code snippets below, x is a BSgenomeViews object.
subject(x): Return the BSgenome object containing the full genomic sequences on top of which
the views in x are defined.

granges(x, use.mcols=FALSE): Return the genomic ranges of the views as a GRanges object.
These ranges are relative to the genomic sequences stored in subject(x).

length(x): The number of views in x.
names(x): The names of the views in x.

seqnames(x), start(x), end(x), width(x), strand(x): Equivalent to seqnames(granges(x)),
start(granges(x)), end(granges(x)), width(granges(x)), strand(granges(x)), re-
spectively.

ranges(x, use.mcols=FALSE): Equivalent to ranges(granges(x, use.mcols), use.mcols).
elementNROWS(x): Equivalent to width(x).

seqinfo(x): Equivalent to seqinfo(subject(x)) and to seqinfo(granges(x)) (both are guar-
anteed to be the same). See ?seqinfo in the Seqinfo package for more information.

Coercion

In the code snippets below, x is a BSgenomeViews object.

as(x, "DNAStringSet"): Turn x into a DNAStringSet object by extxracting the DNA sequence
corresponding to each view. Alternatively as(x, "XStringSet") can be used for this, and is
equivalent to as(x, "DNAStringSet").

as.character(x): Equivalent to as.character(as(x, "DNAStringSet")).

as.data.frame(x): Turn x into a data.frame.

Subsetting

x[1]: Select the views specified by 1i.

x[[11]: Extract the one view specified by i.

DNAStringSet methods

For convenience, some methods defined for DNAStringSet objects in the Biostrings package can be
used directly on a BSgenomeViews object. In that case, everything happens like if the BSgenome Views
object x was turned into a DNAStringSet object (with as(x, "DNAStringSet")) before it’s passed

to the method for DNAStringSet objects.

At the moment, the list of such methods is: seqtype, nchar,XStringSet-method, unlist,XStringSet-method,
alphabetFrequency, hasOnlyBaseletters, uniquelLetters, letterFrequency, oligonucleotideFrequency,
nucleotideFrequencyAt, consensusMatrix, and consensusString.

See the corresponding man page in the Biostrings package for a description of these methods.

Author(s)

H. Pages
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The seqinfo and related getters in the Seqinfo package for getting the sequence information
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See Also
* The BSgenome class.
» The GRanges class in the GenomicRanges package.
* The DNAStringSet class in the Biostrings package.
stored in an object.
» TxDb objects in the GenomicFeatures package.
Examples

library(BSgenome.Mmusculus.UCSC.mm10)
genome <- BSgenome.Mmusculus.UCSC.mm10@
library(TxDb.Mmusculus.UCSC.mm10.knownGene)

txdb

ex <- exons(txdb, columns=c("exon_id", "tx_name", "gene_id"))

v <-
\

<- TxDb.Mmusculus.UCSC.mm1@.knownGene

Views(genome, ex)

subject(v)
granges(v)
seqginfo(v)
as(v, "DNAStringSet")

v10 <- v[1:10] # select the first 10 views
subject(v10) # same as subject(v)
granges(v10)

seqinfo(v10) # same as seqinfo(v)
as(v10, "DNAStringSet")
alphabetFrequency(v10)
alphabetFrequency(v1@, collapse=TRUE)

v12 <- v[width(v) <= 12] # select the views of 12 nucleotides or less

head(as.data.frame(vi2))
trinucleotideFrequency(v12, simplify.as="collapsed"”)

## BSgenomeViews objects are list-like objects. That is, the
## BSgenomeViews class derives from List and typical list/List
## operations (e.g. [[, elementNROWS(), unlist(), elementType(),

## etc...) work on these objects:
is(v12, "List") # TRUE
vi2[[2]]

head(elementNROWS(v12)) # elementNROWS(v) is the same as width(v)

unlist(vi12)
elementType(v12)

BSParams-class Class "BSParams"

Description

A parameter class for representing all parameters needed for running the bsapply method.
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Objects from the Class

Objects can be created by calls of the form new("BSParams”, ...).

Slots

X: a BSgenome object that contains chromosomes that you wish to apply FUN on
FUN: the function to apply to each chromosome in the BSgenome object "X’

exclude: this is a character vector with strings that will be treated as regular expressions to filter
out chromosomes whose names match these strings.

simplify: TRUE/FALSE value to indicate whether or not the function should try to simplify the
output for you.

maskList: A named logical vector of maskStates preferred when used with a BSGenome object.
When using the bsapply function, the masks will be set to the states in this vector.

motifList: A character vector which should contain motifs that the user wishes to mask from the
sequence.

userMask: A IntegerRangesList object, where each element masks the corresponding chromosome
in X. This allows the user to conveniently apply masks besides those included in X.

invertUserMask: A logical indicating whether to invert each mask in userMask.

Methods

bsapply(p) Performs the function FUN using the parameters contained within BSParams.

Author(s)

Marc Carlson

See Also

bsapply

export-methods Export a BSgenome object as a FASTA or twoBit file

Description

export methods for BSgenome objects.

NOTE: The export generic function and most of its methods are defined and documented in the
BioclO package. This man page only documents the 2 export methods defined in the BSgenome
package.

Usage

## S4 method for signature 'BSgenome,FastaFile,ANY'

export(object, con, format, compress=FALSE, compression_level=NA, verbose=TRUE)
## S4 method for signature 'BSgenome,TwoBitFile,ANY'

export(object, con, format, ...)
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Arguments

object The BSgenome object to export.

con A FastaFile or TwoBitFile object.

Alternatively con can be a single string containing the path to a FASTA or
twoBit file, in which case either the file extension or the format argument
needs to be "fasta”, "twoBit”, or "2bit"”. Also note that in this case, the
export method that is called is either the method with signature c("ANY",
"character”, "missing”) or the method with signature c("ANY", "character”,
"character"), both defined in the BiocIO package. If object is a BSgenome
object and the file extension or the format argument is "fasta"”, "twoBit", or
"2bit", then the flow eventually reaches one of 2 methods documented here.

format If not missing, should be "fasta”, "twoBit", or "2bit" (case insensitive for
"twoBit” and "2bit").

compress, compression_level
Forwarded to writeXStringSet. See ?writeXStringSet for the details.

verbose Whether or not the function should display progress. TRUE by default.
Extra arguments. The method for TwoBitFile objects forwards them to bsapply.

Author(s)

Michael Lawrence

See Also

* BSgenome objects.
* The export generic function in the BiocIO package.

* FastaFile and TwoBitFile objects in the rtracklayer package.

Examples

library(BSgenome.Celegans.UCSC.ce2)
genome <- BSgenome.Celegans.UCSC.ce2

## Export as FASTA file.
outl_file <- file.path(tempdir(), "Celegans.fasta")
export(genome, outl_file)

## Export as twoBit file.
out2_file <- file.path(tempdir(), "Celegans.2bit")
export(genome, out2_file)

## Sanity checks:
dna@ <- DNAStringSet(as.list(genome))

system.time(dnal <- import(outl_file))
stopifnot(identical (names(dna®), names(dnal)) && all(dna@ == dnal))

system.time(dna2 <- import(out2_file)) # importing twoBit is 10-20x
# faster than importing non
# compressed FASTA

stopifnot(identical(names(dna®), names(dna2)) && all(dna@ == dna2))
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getSeq methods for BSgenome and XStringSet objects

Description

getSeq methods for extracting a set of sequences (or subsequences) from a BSgenome or XStringSet
object. For XStringSets, there are also convenience methods on [ that delegate to getSeq.

Usage

## S4 method for signature 'BSgenome'
getSeq(x, names, start=NA, end=NA, width=NA,

strand="+", as.character=FALSE)

## S4 method for signature 'XStringSet'
getSeq(x, names)

Arguments

X

names

start, end, width

strand

as.character

Details

A BSgenome or XStringSet object. See the available.genomes function for
how to install a genome.

When x is a BSgenome, names must be a character vector containing the names
of the sequences in x where to get the subsequences from, or a GRanges ob-
ject, or a GRangesList object, or a named IntegerRangesList object, or a named
IntegerRanges object. The IntegerRangesList or IntegerRanges object must be
named according to the sequences in x where to get the subsequences from.

If names is missing, then segnames(x) is used.

See ?°BSgenome-class™ for details on how to get the lists of single sequences
and multiple sequences (respectively) contained in a BSgenome object.

When x is a XStringSet object, names must be a character vector, GRanges or
GRangesList object.

Vector of integers (eventually with NAs) specifying the locations of the subse-
quences to extract. These are not needed (and it’s an error to supply them) when
names is a GRanges, GRangesList, IntegerRangesList, or IntegerRanges object.

A vector containing "+"s or/and "-"s. This is not needed (and it’s an error to
supply it) when names is a GRanges or GRangesList object.

TRUE or FALSE. Should the extracted sequences be returned in a standard char-
acter vector?

L, the number of sequences to extract, is determined as follow:

* If names is a GRanges or IntegerRanges object then L = 1length(names).

* If names is a GRangesList or IntegerRangesList object then L = length(unlist(names)).

* Otherwise, L is the length of the longest of names, start, end and width and all these ar-
guments are recycled to this length. NAs and negative values in these 3 arguments are solved
according to the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW for the

details).
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If names is neither a GRanges or GRangesList object, then the strand argument is also recycled to
length L.

Here is how the names passed to the names argument are matched to the names of the sequences in
BSgenome object x. For each name in names:
* (1): If x contains a single sequence with that name then this sequence is used for extraction;

* (2): Otherwise the names of all the elements in all the multiple sequences are searched. If the
names argument is a character vector then name is treated as a regular expression and grep is
used for this search, otherwise (i.e. when the names are supplied via a higher level object like
GRanges or GRangesList) then name must match exactly the name of the sequence. If exactly
1 sequence is found, then it is used for extraction, otherwise (i.e. if no sequence or more than
1 sequence is found) then an error is raised.

There are convenience methods for extracting sequences from XStringSet objects using a Genom-
icRanges or GRangesList subscript (character subscripts are implicitly supported). Both methods
are simple wrappers around getSeq, although the GRangesList method differs from the getSeq
behavior in that the within-element results are concatenated and returned as an XStringSet, rather
than an XStringSetList. See the examples.

Value

Normally a DNAStringSet object (or character vector if as.character=TRUE).
With the 2 following exceptions:

1. A DNAStringSetList object (or CharacterList object if as.character=TRUE) of the same
shape as names if names is a GRangesList object.

2. A DNAString object (or single character string if as.character=TRUE) if L = 1 and names is
not a GRanges, GRangesList, IntegerRangesList, or IntegerRanges object.
Note

Be aware that using as.character=TRUE can be very inefficient when extracting a "big" amount of
DNA sequences (e.g. millions of short sequences or a small number of very long sequences).

Note that the masks in x, if any, are always ignored. In other words, masked regions in the genome
are extracted in the same way as unmasked regions (this is achieved by dropping the masks before
extraction). See ?~MaskedDNAString-class™ for more information about masked DNA sequences.

Author(s)

H. Pages; improvements suggested by Matt Settles and others

See Also

getSeq, available. genomes, BSgenome-class, DNAString-class, DNAStringSet-class, MaskedDNAString-
class, GRanges-class, GRangesList-class, IntegerRangesList-class, IntegerRanges-class, grep

Examples

## A. SIMPLE EXAMPLES
et

## Load the Caenorhabditis elegans genome (UCSC Release ce2):
library(BSgenome.Celegans.UCSC.ce2)
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## Look at the index of sequences:
Celegans

## Get chromosome V as a DNAString object:
getSeq(Celegans, "chrV")

## which is in fact the same as doing:
Celegans$chrVv

## Not run:
## Never try this:
getSeq(Celegans, "chrV", as.character=TRUE)
## or this (even worse):
getSeq(Celegans, as.character=TRUE)

## End(Not run)

## Get the first 20 bases of each chromosome:
getSeq(Celegans, end=20)

## Get the last 20 bases of each chromosome:
getSeq(Celegans, start=-20)

## B. EXTRACTING SMALL SEQUENCES FROM DIFFERENT CHROMOSOMES
e

myseqs <- data.frame(
chr=c("chrl”, "chrX", "chrM", "chrM" 6 "chrX", "chrI", "chrM", "chrl"),
start=c(NA, -40, 8510, 301, 30001, 9220500, -2804, -30),
end=c(50, NA, 8522, 324, 30011, 9220555, -2801, -11),
strand=c("+", "=", "HT) MM U=nononnngn on_ny
)
getSeq(Celegans, myseqs$chr,
start=mysegs$start, end=myseqgs$end)
getSeq(Celegans, myseqs$chr,
start=myseqs$start, end=myseqs$end, strand=myseqs$strand)

## C. USING A GRanges OBJECT
e

grl <- GRanges(segnames=c("chrl”, "chrI”, "chrM"),
ranges=IRanges(start=101:103, width=9))

gr1 # all strand values are "x"

getSeq(Celegans, gr1) # treats strand values as if they were "+"

strand(gr1)[] <- "-"
getSeq(Celegans, gri1)

strand(gr1)[1] <- "+"
getSeq(Celegans, gri1)

strand(gri1)[2] <- "x"
if (interactive())
getSeq(Celegans, gr1) # Error: cannot mix "*" with other strand values

21
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gr2 <- GRanges(segnames=c("chrM”, "NM_058280_up_1000"),
ranges=IRanges(start=103:102, width=9))
gr2
if (interactive()) {
## Because the sequence names are supplied via a GRanges object, they
## are not treated as regular expressions:
getSeq(Celegans, gr2) # Error: sequence NM_058280_up_1000 not found
3

HHE =
## D. USING A GRangesList OBJECT
B = m e

gr1 <- GRanges(segnames=c("chrI”, "chrII", "chrM", "chrIl"),
ranges=IRanges(start=101:104, width=12),
strand="+"

gr2 <- shift(gril, 5)

gr3 <- gr2

strand(gr3) <- "-"

grl <- GRangesList(grl, gr2, gr3)
getSeq(Celegans, grl)
## E. EXTRACTING A HIGH NUMBER OF RANDOM 40-MERS FROM A GENOME

e

extractRandomReads <- function(x, density, readlength)

{
if (!is.integer(readlength))
readlength <- as.integer(readlength)
start <- lapply(segnames(x),
function(name)
{
seqlength <- seqlengths(x)[name]
sample(seqlength - readlength + 1L,
seglength * density,
replace=TRUE)
»
names <- rep.int(seqgnames(x), elementNROWS(start))
ranges <- IRanges(start=unlist(start), width=readlength)
strand <- strand(sample(c("+", "-"), length(names), replace=TRUE))
gr <- GRanges(segnames=names, ranges=ranges, strand=strand)
getSeq(x, gr)
3

## With a density of 1 read every 100 genome bases, the total number of
## extracted 40-mers is about 1 million:
rndreads <- extractRandomReads(Celegans, 0.01, 40)

## Notes:

## - The short sequences in 'rndreads' can be seen as the result of a
##  simulated high-throughput sequencing experiment. A non-realistic
##  one though because:

#i# (a) It assumes that the underlying technology is perfect (the
#it generated reads have no technology induced errors).

#it (b) It assumes that the sequenced genome is exactly the same as
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#it
#it
#i#
#it
#it
#i#
#it
#it
#i#
#it
#it
#i
#it
#it
#i#
#it
#it
#it
#it
#it
#it
#it
#it
#it

#it

the reference genome.

(c) The simulated reads can contain IUPAC ambiguity letters only
because the reference genome contains them. In a real
high-throughput sequencing experiment, the sequenced genome
of course doesn't contain those letters, but the sequencer
can introduce them in the generated reads to indicate
ambiguous base-calling.

Those reads are coming from the plus and minus strands of the
chromosomes.

With a density of .01 and the reads being only 40-base long, the
average coverage of the genome is only 0.4 which is low. The total
number of reads is about 1 million and it takes less than 10 sec.
to generate them.

A higher coverage can be achieved by using a higher density and/or
longer reads. For example, with a density of ©.1 and 100-base reads
the average coverage is 10. The total number of reads is about 10
millions and it takes less than 1 minute to generate them.

Those reads could easily be mapped back to the reference by using
an efficient matching tool like matchPDict() for performing exact
matching (see ?matchPDict for more information). Typically, a
small percentage of the reads (4 to 5% in our case) will hit the
reference at multiple locations. This is especially true for such
short reads, and, in a lower proportion, is still true for longer
reads, even for reads as long as 300 bases.

## F. SEE THE BSgenome CACHE IN ACTION

#it

options(verbose=TRUE)
first20 <- getSeq(Celegans, end=20)
first20

gcO)

stopifnot(length(ls(Celegans@.seqgs_cache)) == 0L)
## One more gc() call is needed in order to see the amount of memory in
## used after all the chromosomes have been removed from the cache:

gcO

#it

## G. USING '[' FOR CONVENIENT EXTRACTION

#it

seqs <- getSeq(Celegans)
seqs[gri]
seqs[grl]
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injectSNPs SNP injection

Description

Inject SNPs from a SNPlocs data package into a genome.
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Usage
injectSNPs(x, snps)
SNPlocs_pkgname (x)
## S4 method for signature 'BSgenome'
snpcount (x)
## S4 method for signature 'BSgenome'
snplocs(x, segname, ...)
## Related utilities
available.SNPs(type=getOption("pkgType"))
installed.SNPs()
Arguments
X A BSgenome object.
snps A SNPlocs object or the name of a SNPlocs data package. This object or pack-
age must contain SNP information for the single sequences contained in x. If a
package, it must be already installed (injectSNPs won’t try to install it).
segname The name of a single sequence in x.
type Character string indicating the type of package ("source”, "mac.binary"” or
"win.binary") to look for.
Further arguments to be passed to snplocs method for SNPlocs objects.
Value
injectSNPs returns a copy of the original genome x where some or all of the single sequences from
x are altered by injecting the SNPs stored in snps. The SNPs in the altered genome are represented
by an IUPAC ambiguity code at each SNP location.
SNPlocs_pkgname, snpcount and snplocs return NULL if no SNPs were injected in x (i.e. if x is
not a BSgenome object returned by a previous call to injectSNPs). Otherwise SNPlocs_pkgname
returns the name of the package from which the SNPs were injected, snpcount the number of SNPs
for each altered sequence in x, and snplocs their locations in the sequence whose name is specified
by segname.
available. SNPs returns a character vector containing the names of the SNPlocs and XtraSNPlocs
data packages that are currently available on the Bioconductor repositories for your version of
R/Bioconductor. A SNPlocs data package contains basic information (location and alleles) about
the known molecular variations of class snp for a given organism. A XtraSNPlocs data package
contains information about the known molecular variations of other classes (in-del, heterozygous,
microsatellite, named-locus, no-variation, mixed, multinucleotide-polymorphism) for a given or-
ganism. Only SNPlocs data packages can be used for SNP injection for now.
installed. SNPs returns a character vector containing the names of the SNPlocs and XtraSNPlocs
data packages that are already installed.
Note

injectSNPs, SNPlocs_pkgname, snpcount and snplocs have the side effect to try to load the
SNPIlocs data package that was specified thru the snps argument if it’s not already loaded.
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Author(s)

H. Pages

See Also

BSgenome-class, IUPAC_CODE_MAP, injectHardMask, letterFrequencyInSlidingView,

Examples

## What SNPlocs data packages are already installed:
installed.SNPs()

## What SNPlocs data packages are available:
available.SNPs()

if (interactive()) {
## Make your choice and install with:
if (!require(”BiocManager"))
install.packages("BiocManager")
BiocManager: :install(”"SNPlocs.Hsapiens.dbSNP144.GRCh38")
3

## Inject SNPs from dbSNP into the Human genome:
library(BSgenome.Hsapiens.UCSC.hg38.masked)
genome <- BSgenome.Hsapiens.UCSC.hg38.masked
SNPlocs_pkgname (genome)

genome2 <- injectSNPs(genome, "SNPlocs.Hsapiens.dbSNP144.GRCh38")
genome2 # note the extra "with SNPs injected from ..." line
SNPlocs_pkgname (genome?2)

snpcount (genome2)

head(snplocs(genome2, "chri1"))

alphabetFrequency(genome$chri)
alphabetFrequency(genome2$chril)

## Find runs of SNPs of length at least 25 in chrl1. Might require
## more memory than some platforms can handle (e.g. 32-bit Windows
## and maybe some Mac OS X machines with little memory):

is_32bit_windows <- .Platform$0S.type == "windows" &&
.Platform$r_arch == "i386"
is_macosx <- substr(R.version$os, start=1, stop=6) == "darwin”

if (!is_32bit_windows && !is_macosx) {
chr1 <- injectHardMask(genome2$chri)
ambiguous_letters <- paste(DNA_ALPHABET[5:15], collapse="")
1f <- letterFrequencyInSlidingView(chr1, 25, ambiguous_letters)
sl <- slice(as.integer(lf), lower=25)
vl <- Views(chril, start(sl), end(sl)+24)
v
max(width(v1)) # length of longest SNP run

25

.inplaceReplaceletterAt
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SNPlocs-class SNPlocs objects

Description
The SNPlocs class is a container for storing known SNP locations (of class snp) for a given organ-
ism.

SNPlocs objects are usually made in advance by a volunteer and made available to the Bioconductor
community as SNPlocs data packages. See ?available.SNPs for how to get the list of SNPlocs
and XtraSNPlocs data packages curently available.

The main focus of this man page is on how to extract SNPs from an SNPlocs object.

Usage
snpcount (x)
snpsBySegname(x, seqgnames, ...)

## S4 method for signature 'SNPlocs'
snpsBySegname (x, seqnames, drop.rs.prefix=FALSE, genome=NULL)

snpsByOverlaps(x, ranges, ...)

## S4 method for signature 'SNPlocs'

snpsByOverlaps(x, ranges, drop.rs.prefix=FALSE, ..., genome=NULL)
snpsById(x, ids, ...)

## S4 method for signature 'SNPlocs'
snpsById(x, ids, ifnotfound=c(”error”, "warning"”, "drop"), genome=NULL)

inferRefAndAltAlleles(gpos, genome)

Arguments
X A SNPIlocs object.
segnames The names of the sequences for which to get SNPs. Must be a subset of seqlevels(x).

NAs and duplicates are not allowed.

Additional arguments, for use in specific methods.

Arguments passed to the snpsByOverlaps method for SNPlocs objects thru . . .

are used internally in the call to subsetByOverlaps(). See ?IRanges: : subsetByOverlaps
in the IRanges package and ?GenomicRanges: : subsetByOverlaps in the Ge-
nomicRanges package for more information about the subsetByOverlaps()

generic and its method for GenomicRanges objects.

drop.rs.prefix Should the rs prefix be dropped from the returned RefSNP ids? (RefSNP ids
are stored in the RefSNP_id metadata column of the returned object.)

genome For snpsBySeqgname, snpsByOverlaps, and snpsById:
NULL (the default), or a BSgenome object containing the sequences of the refer-
ence genome that corresponds to the SNP positions. See inferRefAndAltAlleles
below for an alternative way to specify genome.
If genome is supplied, then inferRefAndAltAlleles is called internally by
snpsBySeqgname, snpsByOverlaps, or snpsById to infer the reference allele
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(a.k.a. ref allele) and alternate allele(s) (a.k.a. alt allele(s)) for each SNP in the
returned GPos object. The inferred ref allele and alt allele(s) are returned in
additional metadata columns ref_allele (character) and alt_alleles (Char-
acterList).

For inferRefAndAltAlleles:

A BSgenome object containing the sequences of the reference genome that cor-
responds to the SNP positions in gpos. Alternatively genome can be a single
string containing the name of the reference genome, in which case it must be
specified in a way that is accepted by the getBSgenome function (e.g. "GRCh38")
and the corresponding BSgenome data package needs to be already installed (see
?getBSgenome for the details).

ranges One or more genomic regions of interest specified as a GRanges or GPos object.
A single region of interest can be specified as a character string of the form
"ch14:5201-5300".

ids The RefSNP ids to look up (a.k.a. rs ids). Can be integer or character vector,
with or without the "rs" prefix. NAs are not allowed.

ifnotfound What to do if SNP ids are not found.

gpos A GPos object containing SNPs. It must have a metadata column alleles_as_ambig

like obtained when using any of the SNP extractor snpsBySeqgname, snpsByOverlaps,
or snpsById on a SNPlocs object.

Details

When the reference genome is specified via the genome argument, SNP extractors snpsBySeqgname,
snpsByOverlaps, and snpsById call inferRefAndAltAlleles internally to infer the reference
allele (a.k.a. ref allele) and alternate allele(s) (a.k.a. alt allele(s)) for each SNP.

For each SNP the ref allele is inferred from the actual nucleotide found in the reference genome
at the SNP position. The alt alleles are inferred from metadata column alleles_as_ambig and
the ref allele. More precisely for each SNP the alr alleles are considered to be the alleles in
alleles_as_ambig minus the ref allele.

Value
snpcount returns a named integer vector containing the number of SNPs for each sequence in the
reference genome.
snpsBySegname, snpsByOverlaps, and snpsById return an unstranded GPos object with one ele-
ment (genomic position) per SNP and the following metadata columns:
* RefSNP_id: RefSNP ID (aka "rs id"). Character vector with no NAs and no duplicates.

* alleles_as_ambig: A character vector with no NAs containing the alleles for each SNP
represented by an IUPAC nucleotide ambiguity code. See ?ITUPAC_CODE_MAP in the Biostrings
package for more information.

If the reference genome was specified (via the genome argument), the additional metadata columns
are returned:

» genome_compat: A logical vector indicating whether the alleles in alleles_as_ambig are
consistent with the reference genome.
* ref_allele: A character vector containing the inferred reference allele for each SNP.

* alt_alleles: A CharacterList object where each list element is a character vector containing
the inferred alternate allele(s) for the corresponding SNP.
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Note that this GPos object is unstranded i.e. all the SNPs in it have their strand set to "*". Alleles
are always reported with respect to the positive strand.

If ifnotfound="error", the object returned by snpsById is guaranteed to be parallel to ids, that
is, the i-th element in the GPos object corresponds to the i-th element in ids.

inferRefAndAltAlleles returns a DataFrame with one row per SNP in gpos and with columns
genome_compat (logical), ref_allele (character), and alt_alleles (CharacterList).

Author(s)

H. Pages

See Also

* available.SNPs
* GPos and GRanges objects in the GenomicRanges package.

» XtraSNPlocs packages and objects for molecular variations of class other than snp e.g. of
class in-del, heterozygous, microsatellite, etc...

* IRanges: :subsetByOverlaps in the IRanges package and GenomicRanges: : subsetByOverlaps

in the GenomicRanges package for more information about the subsetByOverlaps() generic
and its method for GenomicRanges objects.

* injectSNPs

* seqlevelsStyle in the GenomelnfoDb package to rename the seqlevels of an object accord-
ing to a given style.

* TUPAC_CODE_MAP in the Biostrings package.

Examples

library(SNPlocs.Hsapiens.dbSNP144.GRCh38)
snps <- SNPlocs.Hsapiens.dbSNP144.GRCh38
snpcount (snps)

B — oo o
## snpsBySeqname()
B — o

## Get all SNPs located on chromosome 22 or MT:
snpsBySeqgname(snps, c("22", "MT"))

B o o
## snpsByOverlaps()
B m oo

## Get all SNPs overlapping some genomic region of interest:
snpsByOverlaps(snps, "X:3e6-33e6")

## With the regions of interest being all the known CDS for hg38

## located on chromosome 22 or MT (except for the chromosome naming
## convention, hg38 is the same as GRCh38):
library(TxDb.Hsapiens.UCSC.hg38.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene

my_cds <- cds(txdb)

seqlevels(my_cds, pruning.mode="coarse”) <- c("chr22", "chrM")
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library(GenomeInfoDb) # for seglevelsStyle()
seqlevelsStyle(my_cds) # UCSC
seqlevelsStyle(snps) # NCBI
seqlevelsStyle(my_cds) <- seqlevelsStyle(snps)
genome(my_cds) <- genome(snps)

my_snps <- snpsByOverlaps(snps, my_cds)
my_snps

table(my_snps %within% my_cds)

B m oo
## snpsById()
B o

## Lookup some RefSNP ids:
my_rsids <- c¢("rs10458597", "rs12565286", "rs7553394")
## Not run:

snpsById(snps, my_rsids) # error, rs7553394 not found

## End(Not run)
## The following example uses more than 2GB of memory, which is more
## than what 32-bit Windows can handle:
is_32bit_windows <- .Platform$0S.type == "windows" &&
.Platform$r_arch == "i386"
if (lis_32bit_windows) {
snpsById(snps, my_rsids, ifnotfound="drop")

B m o
## Obtaining the ref allele and alt allele(s)
B =

## When the reference genome is specified (via the 'genome' argument),
## SNP extractors snpsBySegname(), snpsByOverlaps(), and snpsById()

## call inferRefAndAltAlleles() internally to x*infer*x the ref allele
## and alt allele(s) for each SNP.

my_snps <- snpsByOverlaps(snps, "X:3e6-8e6"”, genome="GRCh38")

my_snps

## Most SNPs have only 1 alternate allele:
table(lengths(mcols(my_snps)$alt_alleles))

## SNPs with 2 alternate alleles:
my_snps[lengths(mcols(my_snps)$alt_alleles) == 2]

## SNPs with 3 alternate alleles:
my_snps[lengths(mcols(my_snps)$alt_alleles) == 3]

## Note that a small percentage of SNPs in dbSNP have alleles that
## are inconsistent with the reference genome (don't ask me why):
table(mcols(my_snps)$genome_compat)

## For the inconsistent SNPs, all the alleles reported by dbSNP

## are considered alternate alleles i.e. for each inconsistent SNP
## metadata columns "alleles_as_ambig” and "alt_alleles” represent
## the same set of nucleotides (the latter being just an expanded
## representation of the IUPAC ambiguity letter in the former):
my_snps[!mcols(my_snps)$genome_compat]
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XtraSNPlocs-class XtraSNPlocs objects

Description

The XtraSNPlocs class is a container for storing extra SNP locations and alleles for a given or-
ganism. While a SNPlocs object can store only molecular variations of class snp, an XtraSNPlocs
object contains molecular variations of other classes (in-del, heterozygous, microsatellite, named-
locus, no-variation, mixed, multinucleotide-polymorphism).

XtraSNPlocs objects are usually made in advance by a volunteer and made available to the Biocon-
ductor community as XtraSNPlocs data packages. See ?available.SNPs for how to get the list of
SNPlocs and XtraSNPlocs data packages curently available.

The main focus of this man page is on how to extract SNPs from an XtraSNPlocs object.

Usage

## S4 method for signature 'XtraSNPlocs'
snpcount (x)

## S4 method for signature 'XtraSNPlocs'

snpsBySegname (x, segnames,
columns=c("seqnames”, "start”, "end"”, "strand”, "RefSNP_id"),
drop.rs.prefix=FALSE, as.DataFrame=FALSE)

## S4 method for signature 'XtraSNPlocs'

snpsByOverlaps(x, ranges,
columns=c("”seqgnames”, "start”, "end", "strand”, "RefSNP_id"),
drop.rs.prefix=FALSE, as.DataFrame=FALSE, ...)

## S4 method for signature 'XtraSNPlocs'

snpsById(x, ids,
columns=c("seqnames”, "start”, "end”, "strand”, "RefSNP_id"),
ifnotfound=c("error”, "warning”, "drop"), as.DataFrame=FALSE)

## S4 method for signature 'XtraSNPlocs'
colnames(x, do.NULL=TRUE, prefix="col")

Arguments
X An XtraSNPlocs object.
segnames The names of the sequences for which to get SNPs. NAs and duplicates are not
allowed. The supplied seqnames must be a subset of seqlevels(x).
columns The names of the columns to return. Valid column names are: seqnames, start,

end, width, strand, RefSNP_id, alleles, snpClass, loctype. See Details
section below for a description of these columns.

drop.rs.prefix Should the rs prefix be dropped from the returned RefSNP ids? (RefSNP ids
are stored in the RefSNP_id metadata column of the returned object.)

as.DataFrame  Should the result be returned in a DataFrame instead of a GRanges object?
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ranges One or more regions of interest specified as a GRanges object. A single region
of interest can be specified as a character string of the form "ch14:5201-5300".

Additional arguments, for use in specific methods.

Arguments passed to the snpsByOverlaps method for XtraSNPlocs objects thru

... are used internally in the call to subsetByOverlaps(). See ?IRanges: : subsetByOverlaps
in the IRanges package and ?GenomicRanges: : subsetByOverlaps in the Ge-

nomicRanges package for more information about the subsetByOverlaps()

generic and its method for GenomicRanges objects.

ids The RefSNP ids to look up (a.k.a. rs ids). Can be integer or character vector,
with or without the "rs" prefix. NAs are not allowed.
ifnotfound What to do if SNP ids are not found.

do.NULL, prefix These arguments are ignored.

Value

snpcount returns a named integer vector containing the number of SNPs for each chromosome in
the reference genome.

snpsBySegname and snpsById both return a GRanges object with 1 element per SNP, unless
as.DataFrame is set to TRUE in which case they return a DataFrame with 1 row per SNP. When
a GRanges object is returned, the columns requested via the columns argument are stored as
metada columns of the object, except for the following columns: segnames, start, end, width,
and strand. These "spatial columns” (in the sense that they describe the genomic locations of the
SNPs) can be accessed by calling the corresponding getter on the GRanges object.

Summary of available columns (my_snps being the returned object):

¢ segnames: The name of the chromosome where each SNP is located. Access with segqnames (my_snps)
when my_snps is a GRanges object.

* start and end: The starting and ending coordinates of each SNP with respect to the chro-
mosome indicated in seqnames. Coordinated are 1-based and with respect to the 5’ end of
the plus strand of the chromosome in the reference genome. Access with start(my_snps),
end(my_snps), or ranges(my_snps) when my_snps is a GRanges object.

e width: The number of nucleotides spanned by each SNP on the reference genome (e.g. a

width of 0 means the SNP is an insertion). Access with width( my_snps) when my_snps is a
GRanges object.

* strand: The strand that the alleles of each SNP was reported to. Access with strand(my_snps)
when my_snps is a GRanges object.

¢ RefSNP_id: The RefSNPid (a.k.a. rs id) of each SNP. Access with mcols(my_snps) $RefSNP_id
when my_snps is a GRanges object.

* alleles: The alleles of each SNP in the format used by dbSNP. Access with mcols(my_snps)$alleles
when my_snps is a GRanges object.

¢ snpClass: Class of each SNP. Possible values are in-del, heterozygous, microsatellite,
named-locus, no-variation, mixed, and multinucleotide-polymorphism. Access with
mcols(my_snps)$snpClass when my_snps is a GRanges object.

e loctype: See ftp://ftp.ncbi.nih.gov/snp/@@readme.txt for the 6 loctype codes used
by dbSNP, and their meanings. WARNING: The code assigned to each SNP doesn’t seem
to be reliable. For example, loctype codes 1 and 3 officially stand for insertion and deletion,
respectively. However, when looking at the SNP ranges it actually seems to be the other way
around. Access with mcols(my_snps)$loctype when my_snps is a GRanges object.

colnames(x) returns the names of the available columns.


ftp://ftp.ncbi.nih.gov/snp/00readme.txt
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See Also

* available.SNPs
* GRanges objects in the GenomicRanges package.

* SNPlocs packages and objects for molecular variations of class snp.
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* seqlevelsStyle in the GenomelnfoDb package to rename the seqlevels of an object accord-

ing to a given style.

Examples

library(XtraSNPlocs.Hsapiens.dbSNP144.GRCh38)
snps <- XtraSNPlocs.Hsapiens.dbSNP144.GRCh38
snpcount (snps)
colnames(snps)

e

## snpsBySeqname()

B = m o

## Get the location, RefSNP id, and alleles for all "extra SNPs”
## located on chromosome 22 or MT:

snpsBySegname(snps, c("ch22", "chMT"), columns=c("RefSNP_id", "alleles"))

A

## snpsByOverlaps()

B~

## Get the location, RefSNP id, and alleles for all "extra SNPs”

## overlapping some regions of interest:

snpsByOverlaps(snps, "ch22:33.63e6-33.64e6",
columns=c("RefSNP_id", "alleles"))

## With the regions of interest being all the known CDS for hg38
## (except for the chromosome naming convention, hg38 is the same
## as GRCh38):

library(TxDb.Hsapiens.UCSC.hg38.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene

hg38_cds <- cds(txdb)

library(GenomeInfoDb) # for seqglevelsStyle()
seqlevelsStyle(hg38_cds) # UCSC
seqlevelsStyle(snps) # dbSNP

seqlevelsStyle(hg38_cds) <- seqlevelsStyle(snps)
genome (hg38_cds) <- genome(snps)
snpsByOverlaps(snps, hg38_cds, columns=c("RefSNP_id", "alleles"))

B = m o m

## snpsById()

o

## Get the location and alleles for some RefSNP ids:
my_rsids <- c("rs367617508", "rs398104919", "rs3831697", "rs372470289",



XtraSNPIlocs-class

"rs141568169", "rs34628976", "rs67551854")
snpsById(snps, my_rsids, c("RefSNP_id", "alleles"))

## See ?XtraSNPlocs.Hsapiens.dbSNP144.GRCh38 for more examples of using
## snpsBySegname() and snpsById().
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