Package ‘ANF’

January 29, 2026

Type Package

Title Affinity Network Fusion for Complex Patient Clustering
Version 1.32.0

Author Tianle Ma, Aidong Zhang

Maintainer Tianle Ma <tianlema@buffalo.edu>

Description This package is used for complex patient clustering by integrating multi-
omic data through affinity network fusion.

License GPL-3

VignetteBuilder knitr

Imports igraph, Biobase, survival, MASS, stats, RColorBrewer
Suggests ExperimentHub, SNFtool, knitr, rmarkdown, testthat
biocViews Clustering, GraphAndNetwork, Network
RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/ANF
git_branch RELEASE_3_22

git_last_commit 58724a9

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Contents

ANF . o

Index

2 ANF

affinity_matrix Generate a symmetric affinity matrix based on a distance matrix using
"local’ Gaussian kernel

Description

Generate a symmetric affinity matrix based on a distance matrix using ’local’ Gaussian kernel

Usage

affinity_matrix(D, k, alpha = 1/6, beta = 1/6)

Arguments
D distance matrix (need to be a square and non-negative matrix)
k the number of k-nearest neighbors
alpha coefficient for local diameters. Default value: 1/6. This default value should
work for most cases.
beta coefficient for pair-wise distance. Default value: 1/6. This default value should
work for most cases.
Value

an affinity matrix

Examples
D = matrix(runif(400), nrow=20)
A = affinity_matrix(D, 5)
ANF Fuse affinity networks (i.e., matrices) through one-step or two-step
random walk
Description

Fuse affinity networks (i.e., matrices) through one-step or two-step random walk

Usage

ANF(Wall, K = 20, weight = NULL, type = c("two-step”, "one-step"”),
alpha = c(1, 1, 0, 0, 0, @, @, @), verbose = FALSE)

eval _clu

Arguments

Wall
K
weight

type

alpha

verbose

Value

a list of affinity matrices of the same shape.
the number of k nearest neighbors for function kKNN_graph

a list of non-negative real numbers (which will be normalized internally so that
it sums to 1) that one-to-one correspond to the affinity matrices included in
‘Wall‘. If not set, internally uniform weights are assigned to all affinity matrices
in ‘Wall®.

choose one of the two options: perform "one-step" random walk, or "two-step”
random walk on the list of affinity matrices in “Wall* to generate a fused affinity
matrix. Default: "two-step" random walk

a list of eight non-negative real numbers (which will be normalized internally to
make it sums to 1). Only used when "two-step" (default value of ‘type‘) random
walk is used. ‘alpha‘ is the weights for eight terms in the "two-step" random
walk formula (check research paper for more explanations about the terms).
Default value: (1, 1, 0, 0, 0, 0, 0, 0), i.e., only use the first two terms (since they
are most effective in practice).

logical(1); if true, print some information

a fused transition matrix (representing a fused network)

Examples

D1 = matrix(runif(400), nrow=20)
W1 = affinity_matrix(D1, 5)
D2 = matrix(runif(400), nrow=20)
W2 = affinity_matrix(D1, 5)
W = ANF(Llist(W1, W2), K=10)

eval_clu

Evaluate clustering result

Description

Evaluate clustering result

Usage

eval_clu(true_class, w = NULL, d = NULL, k = 10, num_clu = NULL,

surv = NULL, type_L = c("rw", "sym"”,

Arguments

true_class

W

n

"unnormalized"), verbose = TRUE)

A named vector of true class labels
affinity matrix
distance matrix if w is NULL, calcuate w using d

an integer, default 10; if w is null, w = affinity_matrix(d, k); otherwise unused.

4 kNN_graph

num_clu an integer; number of clusters; if NULL, set num_clu to be the number of classes
using true_class

surv a data.frame with at least two columns: time (days_to_death or days_to_last_follow_up),
and censored (logical(1))

type_L (parameter passed to spectral_clustering: ‘type‘) choose one of three versions of
graph Laplacian: "unnormalized": unnormalized graph Laplacian matrix (L =D
- W); "rw": normalization closely related to random walk (L = I - DA(-1)*W);
(default choice) "sym": normalized symmetric matrix (L =1 - D*(-0.5) * W *
D*(-0.5)) For more information: https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_T]

verbose logical(1); if true, print some information

Value

anamed list of size 3: "w": affinity matrix used for spectral_clustering; "clu.res": a named vector of
calculated "NMI" (normalized mutual information), "ARI" (Adjusted Rand Index), and "-log10(p)"
of log rank test of survival distributions of patient clusters; "labels: a numeric vector as class labels

Examples

library(MASS)

true.class = rep(c(1,2), each=100)

feature.matl = mvrnorm(100, rep(@, 20), diag(runif(20,0.2,2)))
feature.mat2 = mvrnorm(100, rep(@.5, 20), diag(runif(20,0.2,2)))
featurel = rbind(feature.matl, feature.mat2)

d = dist(featurel)

d = as.matrix(d)

A = affinity_matrix(d, 10)

res = eval_clu(true_class=true.class, w=A)

kNN_graph Calculate k-nearest-neighbor graph from affinity matrix and normal-
ize it as transition matrix

Description

Calculate k-nearest-neighbor graph from affinity matrix and normalize it as transition matrix

Usage

kNN_graph(W, K)

Arguments
W affinity matrix (its elements are non-negative real numbers)
K the number of k nearest neighbors

Value

a transition matrix of the same shape as W

pod 5

Examples
D = matrix(runif(400),20)
W = affinity_matrix(D, 5)
S = kNN_graph(W, 5)
pod Finding optimal discrete solutions for spectral clustering
Description

Finding optimal discrete solutions for spectral clustering

Usage

pod(Y, verbose = FALSE)

Arguments
Y a matrix with N rows and K columns, with N being the number of objects (e.g.,
patients), K being the number of clusters. The K columns of ‘Y * should corre-
spond to the first k eigenvectors of graph Laplacian matrix (of affinity matrix)
corresponding to the k smallest eigenvalues
verbose logical(1); if true, print some information
Value

class assignment matrix with the same shape as Y (i.e., N x K). Each row contains all zeros except
one 1. For instance, if X_ij = 1, then object (eg, patient) i belongs to cluster j.

References

Stella, X. Yu, and Jianbo Shi. "Multiclass spectral clustering." ICCV. IEEE, 2003.

Examples
D = matrix(runif(400),20)
A = affinity_matrix(D, 5)
d = rowSums(A)
L = diag(d) - A

NL™ is graph Laplacian of affinity matrix “A°

NL = diag(1/d) %% L

e = eigen(NL)

Here we select eigenvectors corresponding to three smallest eigenvalues
Y = Re(e$vectors[,-1:-17])

X = pod(Y)

6 spectral_clustering

spectral_clustering spectral_clustering

Description

spectral_clustering

Usage

n [l

spectral_clustering(A, k, type = c("rw”, "sym", "unnormalized"),
verbose = FALSE)

Arguments
A affinity matrix
k the number of clusters
type choose one of three versions of graph Laplacian: "unnormalized": unnormal-
ized graph Laplacian matrix (L =D - W); "rw": normalization closely related to
random walk (L =1- DA(-1)*W); (default choice) "sym": normalized symmetric
matrix (L =1-DA(-0.5) * W * DA(-0.5)) For more information: https://www.cs.cmu.edu/~aarti/Class/]
verbose logical(1); if true, print user-friendly information
Value

a numeric vector as class labels

Examples

D = matrix(runif(400), nrow = 20)
A = affinity_matrix(D, 5)
labels = spectral_clustering(A, k=2)

Index

affinity_matrix, 2
ANF, 2

eval_clu, 3
kNN_graph, 4
pod, 5

spectral_clustering, 6

	affinity_matrix
	ANF
	eval_clu
	kNN_graph
	pod
	spectral_clustering
	Index

