cellCellSimulate
functionscTensor 2.18.2
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.22.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.21.0
## [5] GO.db_3.21.0
## [6] OrganismDbi_1.50.0
## [7] GenomicFeatures_1.60.0
## [8] AnnotationDbi_1.70.0
## [9] SingleCellExperiment_1.30.1
## [10] SummarizedExperiment_1.38.1
## [11] Biobase_2.68.0
## [12] GenomicRanges_1.60.0
## [13] GenomeInfoDb_1.44.0
## [14] IRanges_2.42.0
## [15] S4Vectors_0.46.0
## [16] MatrixGenerics_1.20.0
## [17] matrixStats_1.5.0
## [18] scTensor_2.18.2
## [19] RSQLite_2.4.1
## [20] LRBaseDbi_2.18.1
## [21] AnnotationHub_3.16.0
## [22] BiocFileCache_2.16.0
## [23] dbplyr_2.5.0
## [24] BiocGenerics_0.54.0
## [25] generics_0.1.4
## [26] BiocStyle_2.36.0
##
## loaded via a namespace (and not attached):
## [1] fs_1.6.6 bitops_1.0-9 enrichplot_1.28.2
## [4] httr_1.4.7 webshot_0.5.5 RColorBrewer_1.1-3
## [7] Rgraphviz_2.52.0 tools_4.5.1 backports_1.5.0
## [10] R6_2.6.1 lazyeval_0.2.2 withr_3.0.2
## [13] prettyunits_1.2.0 graphite_1.54.0 gridExtra_2.3
## [16] schex_1.22.0 fdrtool_1.2.18 cli_3.6.5
## [19] TSP_1.2-5 entropy_1.3.2 sass_0.4.10
## [22] genefilter_1.90.0 meshr_2.14.0 Rsamtools_2.24.0
## [25] yulab.utils_0.2.0 gson_0.1.0 txdbmaker_1.4.1
## [28] DOSE_4.2.0 R.utils_2.13.0 MeSHDbi_1.44.0
## [31] AnnotationForge_1.50.0 dichromat_2.0-0.1 nnTensor_1.3.0
## [34] plotrix_3.8-4 maps_3.4.3 visNetwork_2.1.2
## [37] gridGraphics_0.5-1 GOstats_2.74.0 BiocIO_1.18.0
## [40] dplyr_1.1.4 dendextend_1.19.0 Matrix_1.7-3
## [43] abind_1.4-8 R.methodsS3_1.8.2 lifecycle_1.0.4
## [46] yaml_2.3.10 qvalue_2.40.0 SparseArray_1.8.0
## [49] grid_4.5.1 blob_1.2.4 misc3d_0.9-1
## [52] crayon_1.5.3 ggtangle_0.0.6 lattice_0.22-7
## [55] msigdbr_24.1.0 cowplot_1.1.3 annotate_1.86.1
## [58] KEGGREST_1.48.1 magick_2.8.7 pillar_1.10.2
## [61] knitr_1.50 fgsea_1.34.0 tcltk_4.5.1
## [64] rjson_0.2.23 codetools_0.2-20 fastmatch_1.1-6
## [67] glue_1.8.0 outliers_0.15 ggfun_0.1.9
## [70] data.table_1.17.6 vctrs_0.6.5 png_0.1-8
## [73] treeio_1.32.0 spam_2.11-1 rTensor_1.4.8
## [76] gtable_0.3.6 assertthat_0.2.1 cachem_1.1.0
## [79] xfun_0.52 S4Arrays_1.8.1 mime_0.13
## [82] tidygraph_1.3.1 survival_3.8-3 seriation_1.5.7
## [85] iterators_1.0.14 tinytex_0.57 fields_16.3.1
## [88] nlme_3.1-168 Category_2.74.0 ggtree_3.16.0
## [91] bit64_4.6.0-1 progress_1.2.3 filelock_1.0.3
## [94] bslib_0.9.0 DBI_1.2.3 tidyselect_1.2.1
## [97] bit_4.6.0 compiler_4.5.1 curl_6.4.0
## [100] httr2_1.1.2 graph_1.86.0 xml2_1.3.8
## [103] DelayedArray_0.34.1 plotly_4.11.0 bookdown_0.43
## [106] rtracklayer_1.68.0 checkmate_2.3.2 scales_1.4.0
## [109] hexbin_1.28.5 RBGL_1.84.0 plot3D_1.4.1
## [112] rappdirs_0.3.3 stringr_1.5.1 digest_0.6.37
## [115] rmarkdown_2.29 ca_0.71.1 XVector_0.48.0
## [118] htmltools_0.5.8.1 pkgconfig_2.0.3 fastmap_1.2.0
## [121] rlang_1.1.6 htmlwidgets_1.6.4 UCSC.utils_1.4.0
## [124] farver_2.1.2 jquerylib_0.1.4 jsonlite_2.0.0
## [127] BiocParallel_1.42.1 GOSemSim_2.34.0 R.oo_1.27.1
## [130] RCurl_1.98-1.17 magrittr_2.0.3 GenomeInfoDbData_1.2.14
## [133] ggplotify_0.1.2 dotCall64_1.2 patchwork_1.3.1
## [136] Rcpp_1.0.14 babelgene_22.9 ape_5.8-1
## [139] viridis_0.6.5 stringi_1.8.7 tagcloud_0.6
## [142] ggraph_2.2.1 MASS_7.3-65 plyr_1.8.9
## [145] parallel_4.5.1 ggrepel_0.9.6 Biostrings_2.76.0
## [148] graphlayouts_1.2.2 splines_4.5.1 hms_1.1.3
## [151] igraph_2.1.4 reshape2_1.4.4 biomaRt_2.64.0
## [154] BiocVersion_3.21.1 XML_3.99-0.18 evaluate_1.0.4
## [157] BiocManager_1.30.26 foreach_1.5.2 tweenr_2.0.3
## [160] tidyr_1.3.1 purrr_1.0.4 polyclip_1.10-7
## [163] heatmaply_1.5.0 ggplot2_3.5.2 ReactomePA_1.52.0
## [166] ggforce_0.5.0 xtable_1.8-4 restfulr_0.0.15
## [169] reactome.db_1.92.0 tidytree_0.4.6 viridisLite_0.4.2
## [172] tibble_3.3.0 aplot_0.2.7 ccTensor_1.0.2
## [175] memoise_2.0.1 registry_0.5-1 GenomicAlignments_1.44.0
## [178] cluster_2.1.8.1 concaveman_1.1.0 GSEABase_1.70.0