
Package ‘MsFeatures’
February 20, 2025

Title Functionality for Mass Spectrometry Features

Version 1.15.0

Description The MsFeature package defines functionality for Mass Spectrometry
features. This includes functions to group (LC-MS) features based on some
of their properties, such as retention time (coeluting features), or
correlation of signals across samples. This packge hence allows to group
features, and its results can be used as an input for the `QFeatures`
package which allows to aggregate abundance levels of features within each
group. This package defines concepts and functions for base and common data
types, implementations for more specific data types are expected to be
implemented in the respective packages (such as e.g. `xcms`). All
functionality of this package is implemented in a modular way which allows
combination of different grouping approaches and enables its re-use in
other R packages.

Depends R (>= 4.1)

Imports methods, ProtGenerics (>= 1.23.5), MsCoreUtils,
SummarizedExperiment, stats

Suggests testthat, roxygen2, BiocStyle, pheatmap, knitr, rmarkdown

License Artistic-2.0

Encoding UTF-8

LazyData no

BugReports https://github.com/RforMassSpectrometry/MsFeatures/issues

URL https://github.com/RforMassSpectrometry/MsFeatures

biocViews Infrastructure, MassSpectrometry, Metabolomics

RoxygenNote 7.1.1

Roxygen list(markdown=TRUE)

VignetteBuilder knitr

Collate 'corRows.R' 'grouping-functions.R' 'hidden_aliases.R'
'AllGenerics.R' 'AbundanceSimilarityParam.R'
'SimilarRtimeParam.R' 'featureGroups.R' 'se.R'

1

https://github.com/RforMassSpectrometry/MsFeatures/issues
https://github.com/RforMassSpectrometry/MsFeatures

2 corRows

git_url https://git.bioconductor.org/packages/MsFeatures

git_branch devel

git_last_commit 2fb27a6

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-02-20

Author Johannes Rainer [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6977-7147>)

Maintainer Johannes Rainer <Johannes.Rainer@eurac.edu>

Contents

corRows . 2
featureGroups . 3
groupClosest . 4
groupConsecutive . 6
groupFeatures . 7
groupFeatures-similar-abundance . 9
groupFeatures-similar-rtime . 11
groupSimilarityMatrix . 14
hidden_aliases . 16
se . 16

Index 17

corRows Correlate rows of a numeric matrix

Description

corRows is a simple function to perform a pairwise correlation between rows of a numeric matrix
by calling stats::cor() on the transposed input matrix x.

Usage

corRows(
x,
y = NULL,
use = "pairwise.complete.obs",
method = c("pearson", "kendall", "spearman"),
...

)

https://orcid.org/0000-0002-6977-7147

featureGroups 3

Arguments

x numeric matrix.

y not supported (ignored).

use see information for parameter use in stats::cor(). Defaults to use = "pairwise.complete.obs".

method see information for parameter method in stats::cor().

... additional parameters (ignored).

Value

matrix with correlation coefficients between rows in x.

Author(s)

Johannes Rainer

Examples

Define a simple numeric matrix
x <- rbind(

c(12, 34, 231, 234, 9, 5, 7),
c(900, 900, 800, 10, 12, 9, 4),
c(25, 70, 400, 409, 15, 8, 4),
c(12, 13, 14, 15, 16, 17, 18),
c(14, 36, 240, 239, 12, 7, 8)
)

corRows(x)

corRows(x, method = "spearman")

featureGroups Get or set feature group definitions from an object

Description

featureGroups and featureGroups<- allow to extract or set the feature definitions from the input
object. The implementations for SummarizedExperiment() get or set the content of a column
named "feature_group" in the object’s rowData.

This method should be implemented for all other object for which a groupFeatures() method is
defined.

4 groupClosest

Usage

featureGroups(object, ...)

featureGroups(object) <- value

S4 method for signature 'SummarizedExperiment'
featureGroups(object)

S4 replacement method for signature 'SummarizedExperiment'
featureGroups(object) <- value

Arguments

object the input object. In the MsFeatures package this method is implemented for
SummarizedExperiment.

... ignored.

value the new value for the feature groups variable.

Value

a character with the group assignment of the features. Has to have the same length as there are
features in object.

Author(s)

Johannes Rainer

Examples

Load the test SummarizedExperiment
library(SummarizedExperiment)
data(se)

No column "feature_group" present in the object, this NA is returned
featureGroups(se)

Add a column "feature_group" to the `rowData` of the object
rowData(se)$feature_group <- seq_len(nrow(rowData(se)))

featureGroups(se)

groupClosest Group values with differences below threshold

groupClosest 5

Description

Group values with a difference between them being smaller than a user defined threshold. This
function uses the groupSimilarityMatrix() function to create groups with smallest differences
between its members. Differences between all members of one group are below the user defined
threshold maxDiff. This is a more stringent grouping than what groupConsecutive() performs
leading thus to smaller groups (with smaller differences between its members).

Usage

groupClosest(x, maxDiff = 1)

Arguments

x numeric of values that should be grouped.

maxDiff numeric(1) defining the threshold for difference between values in x to be
grouped into the same group.

Value

integer with the group assignment (values grouped together have the same return value).

Author(s)

Johannes Rainer

See Also

Other grouping operations: groupConsecutive(), groupSimilarityMatrix()

Examples

x <- c(1.1, 1.9, 2.2)
groupClosest(x)
Although the difference between the 1st and 2nd element would be smaller
than the threshold, they are not grouped because the difference between
the 2nd and 3rd element is even smaller. The first element is also not
put into the same group, because it has a difference > diffRt to the 3rd
element.

x <- c(1.1, 1.5, 1.7, 2.3, 2.7, 4.3, 4.4, 4.9, 5.2, 5.4, 5.8, 6, 7,
9, 9.5, 15)

groupClosest(x)

6 groupConsecutive

groupConsecutive Grouping of sorted values into sets with smallest differences

Description

groupConsecutive groups sorted values in x for which the difference is smaller than maxDiff. As
a result, the mean difference between the groups will always be larger than maxDiff, but difference
between individual values within the same group (e.g. between the first and last) can be larger
maxDiff.

In detail, from the sorted x, the function starts from the smallest value defining the first group as the
one containing all values in x with a difference to this first value which is <= maxDiff. The next
group is the defined based on the next larger value that is not part of the first group and includes
all values with a difference <= maxDiff to this value. For values fulfilling this criteria but being
already part of a previous group, the differences to the mean value of the current group and to the
mean of previous groups are compared and values are assigned to the group to which they have the
smallest difference.

Example: values 1.1, 1.9, 2.2 should be grouped with a maxDiff = 1. The first group is defined
to include all values for which the difference to the first value (1.1) is smaller maxDiff. Thus, the
first group is defined to contain values 1.1 and 1.9. Then the next group is defined based on the
next larger value not part of any group, 2.2. This group contains values 1.9 and 2.2 with the value
1.9 being already assigned to the first group. The difference between this value 1.9 and the mean
of the current group (mean(c(1.9, 2.2)) is then compared to the difference of 1.9 to the mean
value of the group 1.9 is already part of (which is mean(c(1.1, 1.9))). Since the difference to the
second group is smaller, 1.9 is removed from the first group and assigned to the second one.

Usage

groupConsecutive(x, maxDiff = 1)

Arguments

x numeric of values that should be grouped.

maxDiff numeric(1) defining the threshold for difference between values in x to be
grouped into the same group.

Value

integer with the group assignment (values grouped together have the same return value).

Note

The difference between consecutive (ordered) values within a defined group is always <= maxDiff,
but the difference between e.g. the first and the last of the (ordered) values can be larger than
maxDiff. See groupClosest() for a more stringent grouping function.

groupFeatures 7

Author(s)

Johannes Rainer

See Also

Other grouping operations: groupClosest(), groupSimilarityMatrix()

Examples

The example described above
x <- c(1.1, 1.9, 2.2)
groupConsecutive(x)

x <- c(1.1, 1.5, 1.7, 2.3, 2.7, 4.3, 4.4, 4.9, 5.2, 5.4, 5.8, 6, 7,
9, 9.5, 15)

groupConsecutive(x)
value 5.2 was initially grouped with 4.3 (because their difference is
smaller 1, but then re-grouped together with 5.4 because the difference
between 5.4 (the next value outside the group of 4.3) and 5.2 is smaller
than its difference to the mean value of the group for value 4.3

Example for a case in which values are NOT grouped into the same group
even if the difference between them is <= maxDiff
a <- c(4.9, 5.2, 5.4)
groupConsecutive(a, maxDiff = 0.3)

groupFeatures General Feature Grouping Concept

Description

This documentation describes the general concepts of feature grouping, which can be achieved by
the different approaches described further below.

The main function for the stepwise feature grouping is groupFeatures. The selection of the actual
grouping algorithm (along with the definition of its parameters) is done by passing the respective
parameter object, along with the object containing the input data and optional additional arguments,
to the groupFeatures method.

Usage

groupFeatures(object, param, ...)

Arguments

object input data object on which (with which data) the feature grouping should be
performed.

param parameter object which type defines the selection of the grouping algorithm.
... additional arguments to be passed to the grouping algorithm.

8 groupFeatures

Value

Depending on the implementation and the input object. Generally the input object with grouping
results added. See respective help pages for more information.

Single-step Feature Grouping

Each feature grouping algorithm can be applied individually as a single-step approach, e.g. by
grouping features only on a single feature property, such as the retention time. Additional feature
grouping approaches might also be implemented that consider combination of different MS feature
properties in a single clustering process.

Stepwise Feature Grouping Refinement

Stepwise feature grouping evaluates a single property of MS features (such as their retention time
or abundances) at a time to define the feature groups. Each subsequent grouping step builds on
the previous one by eventually sub-grouping each feature group, if needed. Thus, feature groups
get refined in each step. As an example, grouping of features based on a similar retention time
would loosely group features from all compounds eluting at about the same time from a e.g. liquid
chromatography run. This obviously would also group features representing ions from different co-
eluting compounds. Thus, calling groupFeatures on the previous feature grouping result with a
different parameter object would refine these initial feature groups, splitting them based on another
property of the features (such as correlation of feature abundances across samples).

The advantage of the stepwise approach is that results can be evaluated after each grouping step and
parameters adapted if needed. Also, it provides flexibility by allowing to change the order of group-
ing approaches, or skip individual steps if not suitable for the available data or the experimental
setup.

The major disadvantage is that a wrong group assignment in one of the initial steps can not be
corrected for in later steps.

Author(s)

Johannes Rainer

See Also

featureGroups() for the function to extract (defined) feature groups from a result object.

Examples

For examples please refer to the help pages of the `SimilarRtimeParam` or
`AbundanceSimilarityParam` objects.
NULL

groupFeatures-similar-abundance 9

groupFeatures-similar-abundance

Group features based on abundance similarities across samples

Description

Group features based on similar abundances (i.e. feature values) across samples. Parameter subset
allows to define a sub set of samples on which the similarity calculation should be performed. It
might for example be better to exclude QC samples from the analysis because feature values are
supposed to be constant in these samples.

The function first calculates a nxn similarity matrix with n being the number of features and subse-
quently groups features for which the similarity is higher than the user provided threshold. Parame-
ter simFun allows to specify the function to calculate the pairwise similarities on the feature values
(eventually transformed by the function specified with parameter transform). simFun defaults to
a function that uses cor to calculate similarities between rows in object but any function that cal-
culates similarities between rows and that returns a (symmetric) numeric similarity matrix can be
used.

If object is a SummarizedExperiment(): if a column "feature_group" is found in SummarizedExperiment::colData()
feature groups defined in that column are further sub-grouped with this method. See groupFeatures()
for the general concept of this feature grouping.

Parameter groupFun allows to specify the function to group the features based on the similarity
function. It defaults to groupSimilarityMatrix. See groupSimilarityMatrix() for details.

Additional settings for the groupFun and simFun functions can be passed to the parameter object
with the ... in the AbundanceSimilarityParam constructor function. Other additional parameters
specific for the type of object can be passed via ... in the groupFeatures call.

Usage

AbundanceSimilarityParam(
threshold = 0.9,
simFun = corRows,
groupFun = groupSimilarityMatrix,
subset = integer(),
transform = identity,
...

)

S4 method for signature 'matrix,AbundanceSimilarityParam'
groupFeatures(object, param, ...)

S4 method for signature 'SummarizedExperiment,AbundanceSimilarityParam'
groupFeatures(object, param, i = 1L, ...)

10 groupFeatures-similar-abundance

Arguments

threshold numeric(1) defining the (similarity) threshold to be used for the feature group-
ing. This parameter is passed to the groupFun function.

simFun function to be used to calculate (pairwise) similarities (between rows). De-
faults to simFun = corRows. See description or corRows() for more details.

groupFun function to group features based on the calculated similarity matrix. Defaults
to groupFun = groupSimilarityMatrix. See groupSimilarityMatrix() for
details.

subset integer or logical defining a subset of samples (at least 2) on which the sim-
ilarity calculation should be performed. By default the calculation is performed
on all samples.

transform function to be used to transform feature abundances prior to the similarity
calculation. Defaults to transform = identity. Alternatively, values could
e.g. transformed into log2 scale with transform = log2.

... for AbundanceSimilarityParam: optional parameters to be passed along to
simFun and groupFun. For groupFeatures: optional parameters for the extrac-
tion/definition of the feature values from object.

object object containing the feature abundances on which features should be grouped.

param AbundanceSimilarityParam defining the settings for the grouping based on
feature values.

i for object being a SummarizedExperiment(): integer(1) or character(1)
specifying either the index or name of the the assay in object that contains
the feature values that should be used. Use assayNames() on object to list all
available assays.

Value

for object being a SummarizedExperiment: a SummarizedExperiment with the grouping results
added to a column "feature_group" in the object’s rowData. For object being a matrix: an
integer of length equal to the number of rows with the group identifiers.

Author(s)

Johannes Rainer

See Also

groupFeatures() for the general concept of feature grouping.

featureGroups() for the function to extract defined feature groups from a SummarizedExperiment.

Other feature grouping methods: groupFeatures-similar-rtime

Examples

Define a simple numeric matrix on which we want to group the rows
x <- rbind(

c(12, 34, 231, 234, 9, 5, 7),

groupFeatures-similar-rtime 11

c(900, 900, 800, 10, 12, 9, 4),
c(25, 70, 400, 409, 15, 8, 4),
c(12, 13, 14, 15, 16, 17, 18),
c(14, 36, 240, 239, 12, 7, 8),
c(100, 103, 80, 2, 3, 1, 1)
)

Group rows based on similarity calculated with Pearson's correlation
on the actual data values (without transforming them).
res <- groupFeatures(x, AbundanceSimilarityParam())
res

Use Spearman's rho to correlate rows of the log2 transformed x matrix
res <- groupFeatures(x, AbundanceSimilarityParam(method = "spearman",

transform = log2))
res

Perform the grouping on a SummarizedExperiment
library(SummarizedExperiment)
data(se)

Group features based on log2 transformed feature values in the first
assay of the SummarizedExperiment
res <- groupFeatures(se, param = AbundanceSimilarityParam(threshold = 0.7,

transform = log2))

featureGroups(res)

Perform feature grouping only on a subset of rows/features:
featureGroups(res) <- NA_character_
featureGroups(res)[40:80] <- "FG"
res <- groupFeatures(res, AbundanceSimilarityParam(transform = log2))
featureGroups(res)

groupFeatures-similar-rtime

Group features based on approximate retention times

Description

Group features based on similar retention time. This method is supposed to be used as an initial
crude grouping of LC-MS features based on the median retention time of all their chromatographic
peaks. All features with a difference in their retention time which is <= parameter diffRt of the
parameter object are grouped together.

If object is a SummarizedExperiment(): if a column "feature_group" is found in SummarizedExperiment::colData()
feature groups defined in that column are further sub-grouped with this method. See groupFeatures()
for the general concept of this feature grouping. Also, it might be required to specify the column
in the object’s rowData containing the retention times with the rtime parameter (which defaults to
rtime = "rtime".

12 groupFeatures-similar-rtime

Parameter groupFun allows to specify the function that should be used for the actual grouping. Two
possible choices are:

• groupFun = groupClosest (the default): this method creates groups of features with smallest
differences in retention times between the individual group members. All differences between
group members are < diffRt (in contrast to the other grouping functions listed below). See
groupSimilarityMatrix() (which is used for the actual grouping on pairwise retention time
differences) for more details.

• groupFun = groupConsecutive: the groupConsecutive() function groups values together
if their difference is smaller than diffRt. This function iterates over the sorted retention times
starting the grouping from the lowest value. If the difference of a feature to more than one
group is smaller diffRt it is assigned to the group to which its retention time is closest (most
similar) to the mean retention time of that group. This leads to smaller group sizes. Be aware
that with this grouping differences in retention times between individual features within a
group could still be larger diffRt. See groupConsecutive() for details and examples.

• groupFun = MsCoreUtils::group: this function consecutively groups elements together if
their difference in retention time is smaller than diffRt. If two features are grouped into one
group, also all other features with a retention time within the defined window to any of the
two features are also included into the feature group. This grouping is recursively expanded
which can lead, depending on diffRt, to very large feature groups spanning a large retention
time window. See MsCoreUtils::group() for details.

Other grouping functions might be added in future. Alternatively it is also possible to provide a
custom function for the grouping operation.

Usage

SimilarRtimeParam(diffRt = 1, groupFun = groupClosest)

S4 method for signature 'numeric,SimilarRtimeParam'
groupFeatures(object, param, ...)

S4 method for signature 'SummarizedExperiment,SimilarRtimeParam'
groupFeatures(object, param, rtime = "rtime", ...)

Arguments

diffRt numeric(1) defining the retention time window within which features should
be grouped. All features with a rtime difference smaller or equal than diffRt
are grouped.

groupFun function that can be used to group values. Defaults to groupFun = groupClosest.
See description for details and alternatives.

object input object that provides the retention times that should be grouped. The
MsFeatures package defines a method for object being either a numeric or
a SummarizedExperiment.

param SimilarRtimeParam object with the settings for the method.
... additional parameters passed to the groupFun function.
rtime for object being a SummarizedExperiment(): character(1) specifying the

column in rowData(object) that contains the retention time values.

groupFeatures-similar-rtime 13

Value

Depending on parameter object:

• for object being a numeric: returns a factor defining the feature groups.

• for object being SummarizedExperiment: returns the input object with the feature group
definition added to a column "feature_group" in the result object’s rowData.

Author(s)

Johannes Rainer

See Also

groupFeatures() for the general concept of feature grouping.

featureGroups() for the function to extract defined feature groups from a SummarizedExperiment.

Other feature grouping methods: groupFeatures-similar-abundance

Examples

Simple grouping of a numeric vector.
##
Define a numeric vector that could represent retention times of features
x <- c(2, 3, 4, 5, 10, 11, 12, 14, 15)

Group the values using a `group` function. This will create larger
groups.
groupFeatures(x, param = SimilarRtimeParam(2, MsCoreUtils::group))

Group values using the default `groupClosest` function. This creates
smaller groups in which all elements have a difference smaller than the
defined `diffRt` with each other.
groupFeatures(x, param = SimilarRtimeParam(2, groupClosest))

Grouping on a SummarizedExperiment
##
load the test SummarizedExperiment object
library(SummarizedExperiment)
data(se)

No feature groups defined yet
featureGroups(se)

Determine the column that contains retention times
rowData(se)

Column "rtmed" contains the (median) retention time for each feature
Group features that are eluting within 10 seconds
res <- groupFeatures(se, SimilarRtimeParam(10), rtime = "rtmed")

featureGroups(res)

14 groupSimilarityMatrix

Evaluating differences between retention times within each feature group
rts <- split(rowData(res)$rtmed, featureGroups(res))
lapply(rts, function(z) abs(diff(z)) <= 10)

One feature group ("FG.053") has elements with a difference larger 10:
rts[["FG.053"]]
abs(diff(rts[["FG.053"]]))

But the difference between the **sorted** retention times is < 10:
abs(diff(sort(rts[["FG.053"]])))

Feature grouping with pre-defined feature groups: groupFeatures will
sub-group the pre-defined feature groups, features with the feature group
being `NA` are skipped. Below we perform the feature grouping only on
features 40 to 70
fgs <- rep(NA, nrow(rowData(se)))
fgs[40:70] <- "FG"
featureGroups(se) <- fgs
res <- groupFeatures(se, SimilarRtimeParam(10), rtime = "rtmed")
featureGroups(res)

groupSimilarityMatrix Group rows of a diagonal matrix using a threshold

Description

This function groups elements (rows or columns) of a diagonal matrix, such as a pairwise correlation
matrix or similarity matrix, with a value >= threshold. This creates clusters of elements in which
all elements have a value >= threshold with any other element in that cluster. On a correlation
matrix (such as created with cor) it will generate small clusters of highly correlated elements. Note
however that single elements in one cluster could also have a correlation >= threshold to another
element in another cluster. The average similarity to its own cluster will however be higher to that
of the other.

Usage

groupSimilarityMatrix(x, threshold = 0.9, full = TRUE, ...)

Arguments

x symmetrix numeric matrix.

threshold numeric(1) above which rows in x should be grouped.

full logical(1) whether the full matrix should be considered, or just the upper
triangular matrix (including the diagonal).

... ignored.

groupSimilarityMatrix 15

Details

The algorithm is defined as follows:

• all pairs of values in x which are >= threshold are identified and sorted decreasingly.

• starting with the pair with the highest correlation, groups are defined:

• if none of the two is in a group, both are put into the same new group.

• if one of the two is already in a group, the other is put into the same group if all correlations
of it to that group are >= threshold (and are not NA).

• if both are already in the same group nothing is done.

• if both are in different groups: an element is put into the group of the other if a) all correla-
tions of it to members of the other’s group are not NA and >= threshold and b) the average
correlation to the other group is larger than the average correlation to its own group.

This ensures that groups are defined in which all elements have a correlation >= threshold with
each other and the correlation between members of the same group is maximized.

Value

integer same length than nrow(x), grouped elements (rows) defined by the same value.

Author(s)

Johannes Rainer

See Also

Other grouping operations: groupClosest(), groupConsecutive()

Examples

x <- rbind(
c(1, 0.9, 0.6, 0.8, 0.5),
c(0.9, 1, 0.7, 0.92, 0.8),
c(0.6, 0.7, 1, 0.91, 0.7),
c(0.8, 0.92, 0.91, 1, 0.9),
c(0.5, 0.8, 0.7, 0.9, 1)
)

groupSimilarityMatrix(x, threshold = 0.9)

groupSimilarityMatrix(x, threshold = 0.1)

Add also a correlation between 3 and 2
x[2, 3] <- 0.9
x[3, 2] <- 0.9
x
groupSimilarityMatrix(x, threshold = 0.9)

Add a higher correlation between 4 and 5
x[4, 5] <- 0.99

16 se

x[5, 4] <- 0.99
x
groupSimilarityMatrix(x, threshold = 0.9)

Increase correlation between 2 and 3
x[2, 3] <- 0.92
x[3, 2] <- 0.92
x
groupSimilarityMatrix(x, threshold = 0.9) ## Don't break previous cluster!

hidden_aliases Internal page for hidden aliases

Description

Internal page for hidden aliases

Value

Not applicable

Examples

NULL

se Quantified LC-MS preprocessing result test data

Description

The se variable is a SummarizedExperiment() object representing the results from a xcms-based
pre-processing of an LC-MS untargeted metabolomics data set. The raw data files are provided in
the faahKO package. The pre-processing of this data set is described in detail in the xcms vignette
of the xcms package. This object was created from the XCMSnExp result object with the quantify
method.

Examples

Load the data
data(se)

library(SummarizedExperiment)

Access row (feature) data
rowData(se)

Index

∗ feature grouping methods
groupFeatures-similar-abundance, 9
groupFeatures-similar-rtime, 11

∗ grouping operations
groupClosest, 4
groupConsecutive, 6
groupSimilarityMatrix, 14

∗ internal
hidden_aliases, 16

AbundanceSimilarityParam
(groupFeatures-similar-abundance),
9

AbundanceSimilarityParam-class
(hidden_aliases), 16

assayNames(), 10

corRows, 2
corRows(), 10

featureGroups, 3
featureGroups(), 8, 10, 13
featureGroups,SummarizedExperiment-method

(featureGroups), 3
featureGroups<- (featureGroups), 3
featureGroups<-,SummarizedExperiment-method

(featureGroups), 3

groupClosest, 4, 7, 15
groupClosest(), 6
groupConsecutive, 5, 6, 15
groupConsecutive(), 5, 12
groupFeatures, 7
groupFeatures(), 3, 9–11, 13
groupFeatures,matrix,AbundanceSimilarityParam-method

(groupFeatures-similar-abundance),
9

groupFeatures,numeric,SimilarRtimeParam-method
(groupFeatures-similar-rtime),
11

groupFeatures,SummarizedExperiment,AbundanceSimilarityParam-method
(groupFeatures-similar-abundance),
9

groupFeatures,SummarizedExperiment,SimilarRtimeParam-method
(groupFeatures-similar-rtime),
11

groupFeatures-similar-abundance, 9
groupFeatures-similar-rtime, 11
groupSimilarityMatrix, 5, 7, 14
groupSimilarityMatrix(), 5, 9, 10, 12

hidden_aliases, 16

MsCoreUtils::group(), 12

se, 16
SimilarRtimeParam

(groupFeatures-similar-rtime),
11

SimilarRtimeParam-class
(hidden_aliases), 16

stats::cor(), 2, 3
SummarizedExperiment(), 3, 9–12, 16
SummarizedExperiment::colData(), 9, 11

17

	corRows
	featureGroups
	groupClosest
	groupConsecutive
	groupFeatures
	groupFeatures-similar-abundance
	groupFeatures-similar-rtime
	groupSimilarityMatrix
	hidden_aliases
	se
	Index

