Package ‘Biostrings’

February 20, 2025

Title Efficient manipulation of biological strings

Description Memory efficient string containers, string matching
algorithms, and other utilities, for fast manipulation of large
biological sequences or sets of sequences.

biocViews SequenceMatching, Alignment, Sequencing, Genetics,
Datalmport, DataRepresentation, Infrastructure

URL https://bioconductor.org/packages/Biostrings

BugReports https://github.com/Bioconductor/Biostrings/issues
Version 2.75.3

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.0.0), BiocGenerics (>= 0.37.0), S4Vectors (>=
0.27.12), IRanges (>=2.31.2), XVector (>= 0.37.1),
GenomelnfoDb

Imports methods, utils, grDevices, stats, crayon
LinkingTo S4Vectors, IRanges, X Vector

Suggests graphics, pwalign, BSgenome (>= 1.13.14),
BSgenome.Celegans.UCSC.ce2 (>=1.3.11),
BSgenome.Dmelanogaster. UCSC.dm3 (>= 1.3.11),
BSgenome.Hsapiens.UCSC.hg18, drosophila2probe, hgu95av2probe,
hgul33aprobe, GenomicFeatures (>= 1.3.14), hgu95av2cdf, affy
(>=1.41.3), affydata (>= 1.11.5), RUnit, BiocStyle, knitr,
testthat (>= 3.0.0), covr

VignetteBuilder knitr

Collate utils.R [UPAC_CODE_MAP.R AMINO_ACID_CODE.R GENETIC_CODE.R
XStringCodec-class.R seqtype.R coloring.R XString-class.R
XStringSet-class.R XStringSet-comparison.R XStringViews-class.R
MaskedXString-class.R XStringSetList-class.R seqinfo-methods.R
xscat.R XStringSet-io.R letter.R getSeq.R letterFrequency.R
dinucleotideFrequencyTest.R chartr.R reverseComplement.R
translate.R toComplex.R replaceAt.R replaceLetterAt.R

1

https://bioconductor.org/packages/Biostrings
https://github.com/Bioconductor/Biostrings/issues

2 Contents

injectHardMask.R padAndClip.R strsplit-methods.R misc.R
SparseList-class.R MIndex-class.R lowlevel-matching.R
match-utils.R matchPattern.R maskMotif.R matchL.RPatterns.R
trimLRPatterns.R matchProbePair.R matchPWM.R findPalindromes.R
PDict-class.R matchPDict.R XStringPartialMatches-class.R
XStringQuality-class.R QualityScaledXStringSet.R

pmatchPattern.R needwunsQS.R MultipleAlignment.R matchprobes.R
moved_to_pwalign.R zzz.R

git_url https://git.bioconductor.org/packages/Biostrings
git_branch devel

git_last_commit 1169409

git_last_commit_date 2024-12-14

Repository Bioconductor 3.21

Date/Publication 2025-02-20

Author Hervé Pages [aut, cre],

Patrick Aboyoun [aut],

Robert Gentleman [aut],

Saikat DebRoy [aut],

Vince Carey [ctb],

Nicolas Delhomme [ctb],

Felix Ernst [ctb],

Wolfgang Huber [ctb] (‘'matchprobes’ vignette),

Beryl Kanali [ctb] (Converted 'MultipleAlignments' vignette from Sweave
to RMarkdown),

Haleema Khan [ctb] (Converted 'matchprobes’ vignette from Sweave to
RMarkdown),

Aidan Lakshman [ctb],

Kieran O'Neill [ctb],

Valerie Obenchain [ctb],

Marcel Ramos [ctb],

Albert Vill [ctb],

Jen Wokaty [ctb] (Converted 'matchprobes' vignette from Sweave to
RMarkdown),

Erik Wright [ctb]

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Contents

AAString-class L
AMINO_ACID_CODE e
Biostrings internals Lo
chartr
detail
dinucleotideFrequencyTest L
DNAString-class e

Contents

3
findPalindromes 11
GENETIC_CODE e 14
GELSEQ . .« . o e e e e 17
SIEEEXPIZ . o i i e e e e e e 18
HNF4alpha e 19
injectHardMasko o 19
IUPAC_CODE_MAP e e s e 21
letter e e e 22
letterFrequency 23
longestConsecutive e e e e 29
lowlevel-matching e 30
MaskedXString-class e 35
maskMotif 37
match-utils 39
matchLRPatterns 41
matchPatterno 43
matchPDict e 47
matchPDict-inexact e 56
matchProbePair o 60
matchprobes 62
matchPWM L 63
MiIndex-class e 66
MISC « . v o e e e e e e e e e e e e 67
moved_to_pwalign 68
MultipleAlignment-class e e 69
needwunsQS L e e e e e e 73
nucleotideFrequency 74
padAndClip 79
PDict-class e e 81
pmatchPattern 85
predefined_scoring_matrices 86
QualityScaledXStringSet-class 86
replaceAt e 89
replaceletterAt 93
reverseComplemento 95
RNAString-class e e 97
seqginfo-methods Lo 99
toCompleX e 100
translate L 101
trimLRPatterns e 104
XSCAL . . v vt e e e e e e e e e e e e e 107
XString-class e 108
XStringPartialMatches-class Lo 110
XStringQuality-class 111
XStringSet-class 113
XStringSet-compariSon e e e e e e e e e e e 119
XStringSet-10 122

XStringSetList-class 129

4 AAString-class

XStringViews-class e e e 131
yeastSEQCHRI 133
Index 135
AAString-class AAString objects
Description

An AAString object allows efficient storage and manipulation of a long amino acid sequence.

Usage

AAString(x="", start=1, nchar=NA)

Predefined constants:

AA_ALPHABET # full Amino Acid alphabet
AA_STANDARD # first 20 letters only
AA_PROTEINOGENIC # first 22 letters only

Arguments

X A single string.

start, nchar Where to start reading from in x and how many letters to read.
Details

The AAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with an AAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the AAString container can only store a string based on the Amino Acid alphabet (see
below).

The Amino Acid alphabet

This alphabet contains all letters from the Single-Letter Amino Acid Code (see 7AMINO_ACID_CODE)
plus "x" (the stop letter), "-" (the gap letter), "+" (the hard masking letter), and " . " (the not a letter
or not available letter). It is stored in the AA_ALPHABET predefined constant (character vector).

The alphabet () function returns AA_ALPHABET when applied to an AAString object.
Constructor-like functions and generics
In the code snippet below, x can be a single string (character vector of length 1) or a BString object.

AAString(x="", start=1, nchar=NA): Tries to convert x into an AAString object by reading
nchar letters starting at position start in x.

AMINO_ACID_CODE 5

Accessor methods

In the code snippet below, x is an AAString object.

alphabet(x): If x is an AAString object, then return the Amino Acid alphabet (see above). See
the corresponding man pages when x is a BString, DNAString or RNAString object.
Display
The letters in an AAString object are colored when displayed by the show() method. Set global
option Biostrings.coloring to FALSE to turn off this coloring.
Author(s)
H. Pages

See Also

AMINO_ACID_CODE, letter, XString-class, alphabetFrequency

Examples

AA_ALPHABET

a <- AAString("MARKSLEMSIRx*")
length(a)

alphabet(a)

AMINO_ACID_CODE The Single-Letter Amino Acid Code

Description
Named character vector mapping single-letter amino acid representations to 3-letter amino acid
representations.

See Also
AAString, GENETIC_CODE

Examples

See all the 3-letter codes
AMINO_ACID_CODE

Convert an AAString object to a vector of 3-letter amino acid codes
aa <- AAString("”LANDEECQW")
AMINO_ACID_CODE[strsplit(as.character(aa), NULL)[[11]1]

6 chartr

Biostrings internals Biostrings internals

Description

Biostrings objects, classes and methods that are not intended to be used directly.

Author(s)

H. Pages

chartr Replace letters in a sequence or set of sequences

Description

Replace letters in a sequence or set of sequences.

Usage

S4 method for signature 'ANY,ANY,XString'
chartr(old, new, x)

replaceAmbiguities(x, new="N")

Arguments

old A character string specifying the characters to be replaced.

new A character string specifying the replacements. It must be a single letter for
replaceAmbiguities.

X The sequence or set of sequences to translate. If x is an XString, XStringSet,
XStringViews or MaskedXString object, then the appropriate chartr method is
called, otherwise the standard chartr R function is called.

Details

See ?chartr for the details.

Note that, unlike the standard chartr R function, the methods for XString, XStringSet, XStringViews
and MaskedXString objects do NOT support character ranges in the specifications.

replaceAmbiguities() is a simple wrapper around chartr() that replaces all [IUPAC ambiguities
with N for objects containing DNA or RNA sequence data.

Value

An object of the same class and length as the original object.

chartr 7
See Also
* chartr in the base package.
* The replaceAt function for extracting or replacing arbitrary subsequences from/in a sequence
or set of sequences.
* The replacelLetterAt function for a DNA-specific single-letter replacement functions useful
for SNP injections.
» IUPAC_CODE_MAP for the mapping between IUPAC nucleotide ambiguity codes and their mean-
ing.
* alphabetFrequency (and uniqueLetters) for tabulating letters in (and extracting the unique
letters from) a sequence or set of sequences.
* The XString, XStringSet, XStringViews, and MaskedXString classes.
Examples
oo
A BASIC chartr() EXAMPLE
T
x <- BString("MiXeD cAskE 123")

chartr(”iXs”, "why”, x)

--

TRANSFORMING DNA WITH BISULFITE (AND SEARCHING IT...)

--

library(BSgenome.Celegans.UCSC.ce2)
chrIl <- Celegans[["chrII"]]
alphabetFrequency(chrlI)

pattern <- DNAString("TGGGTGTATTTA")

Transforming and searching the + strand
plus_strand <- chartr("C", "T", chrlII)
alphabetFrequency(plus_strand)
matchPattern(pattern, plus_strand)
matchPattern(pattern, chrlII)

Transforming and searching the - strand
minus_strand <- chartr("G", "A", chrll)
alphabetFrequency(minus_strand)
matchPattern(reverseComplement(pattern), minus_strand)
matchPattern(reverseComplement(pattern), chrlII)

et
replaceAmbiguities()
e

dna <- DNAStringSet(c("TTTKYTT-GR", ", "NAASACVT"))

dna

replaceAmbiguities(dna)

8 dinucleotideFrequencyTest

detail Show (display) detailed object content

Description

This is a variant of show, offering a more detailed display of object content.

Usage

detail(x, ...)

Arguments
X An object. The default simply invokes show.
Additional arguments. The default definition makes no use of these arguments.
Value

None; the function is invoked for its side effect (detailed display of object content).

Author(s)

Martin Morgan

Examples

origMAlign <-
readDNAMultipleAlignment(filepath =
system.file("extdata”,
"msx2_mRNA.aln",
package="Biostrings"),
format="clustal")
detail(origMAlign)

dinucleotideFrequencyTest
Pearson’s chi-squared Test and G-tests for String Position Dependence

Description

Performs Person’s chi-squared test, G-test, or William’s corrected G-test to determine dependence
between two nucleotide positions.

dinucleotideFrequencyTest 9

Usage

dinucleotideFrequencyTest(x, i, j, test = c("chisq”, "G", "adjG"),
simulate.p.value = FALSE, B = 2000)

Arguments
X A DNAStringSet or RNAStringSet object.
i,] Single integer values for positions to test for dependence.
test One of "chisq"” (Person’s chi-squared test), "G" (G-test), or "adjG" (William’s

corrected G-test). See Details section.
simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details
The null and alternative hypotheses for this function are:
HO: positions i and j are independent

H1: otherwise

Let O and E be the observed and expected probabilities for base pair combinations at positions i
and j respectively. Then the test statistics are calculated as:

test="chisq": stat =sum(abs(O - E)"2/E)

test="G": stat=2 * sum(O * log(O/E))

test="adjG": stat =2 * sum(O * log(O/E))/q, where q = 1 + ((df - 1)"2 - 1)/(6*length(x)*(df -
2))

Under the null hypothesis, these test statistics are approximately distributed chi-squared(df = ((dis-
tinct bases at i) - 1) * ((distinct bases at j) - 1)).
Value

An htest object. See help(chisq.test) for more details.

Author(s)

P. Aboyoun

References
Ellrott, K., Yang, C., Sladek, EM., Jiang, T. (2002) "Identifying transcription factor binding sites
through Markov chain optimations", Bioinformatics, 18 (Suppl. 2), S100-S109.

Sokal, R.R., Rohlf, FJ. (2003) "Biometry: The Principle and Practice of Statistics in Biological
Research", W.H. Freeman and Company, New York.

Tomovic, A., Oakeley, E. (2007) "Position dependencies in transcription factor binding sites",
Bioinformatics, 23, 933-941.

10 DNAString-class

Williams, D.A. (1976) "Improved Likelihood ratio tests for complete contingency tables", Biometrika,
63, 33-37.

See Also

nucleotideFrequencyAt, XStringSet-class, chisq. test

Examples

data(HNF4alpha)

dinucleotideFrequencyTest (HNF4alpha, 1, 2)
dinucleotideFrequencyTest(HNF4alpha, 1, 2, test = "G")
dinucleotideFrequencyTest(HNF4alpha, 1, 2, test "adjG")

DNAString-class DNAString objects

Description

A DNAString object allows efficient storage and manipulation of a long DNA sequence.

Details
The DNAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with a DNAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the DNAString container can only store a string based on the DNA alphabet (see below).
In addition, the letters stored in a DNAString object are encoded in a way that optimizes fast search
algorithms.

The DNA alphabet

This alphabet contains all letters from the [UPAC Extended Genetic Alphabet (see ?TUPAC_CODE_MAP)
plus "-" (the gap letter), "+" (the hard masking letter), and "." (the not a letter or not available
letter). It is stored in the DNA_ALPHABET predefined constant (character vector).

The alphabet () function returns DNA_ALPHABET when applied to a DNAString object.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1), a BString object
or an RNAString object.

DNAString(x="", start=1, nchar=NA): Tries to convert x into a DNAString object by reading
nchar letters starting at position start in x.

findPalindromes 11

Accessor methods

In the code snippet below, x is a DNAString object.

alphabet(x, baseOnly=FALSE): If x is a DNAString object, then return the DNA alphabet (see
above). See the corresponding man pages when x is a BString, RNAString or AAString object.

Display

The letters in a DNAString object are colored when displayed by the show() method. Set global
option Biostrings.coloring to FALSE to turn off this coloring.

Author(s)

H. Pages

See Also

* The DNAStringSet class to represent a collection of DNAString objects.
* The XString and RNAString classes.

* reverseComplement

* alphabetFrequency

* TUPAC_CODE_MAP

e letter

Examples

DNA_BASES

DNA_ALPHABET

dna <- DNAString("TTGAAAA-CTC-N")

dna # 'options(Biostrings.coloring=FALSE)' to turn off coloring

length(dna)
alphabet (dna) # DNA_ALPHABET
alphabet(dna, baseOnly=TRUE) # DNA_BASES

findPalindromes Searching a sequence for palindromes

Description

The findPalindromes function can be used to find palindromic regions in a sequence.

palindromeArmLength, palindromeLeftArm, and palindromeRightArm are utility functions for
operating on palindromic sequences. They should typically be used on the output of findPalindromes.

12 findPalindromes

Usage

findPalindromes(subject, min.armlength=4,
max.looplength=1, min.looplength=0, max.mismatch=0,
allow.wobble=FALSE)

palindromeArmLength(x, max.mismatch=0, allow.wobble=FALSE)
palindromeLeftArm(x, max.mismatch=0, allow.wobble=FALSE)
palindromeRightArm(x, max.mismatch=0, allow.wobble=FALSE)

Arguments

subject An XString object containing the subject string, or an XStringViews object.

min.armlength An integer giving the minimum length of the arms of the palindromes to search
for.

max.looplength An integer giving the maximum length of "the loop" (i.e the sequence sep-
arating the 2 arms) of the palindromes to search for. Note that by default
(max.looplength=1), findPalindromes will search for strict palindromes only.

min.looplength An integer giving the minimum length of "the loop" of the palindromes to search
for.

max.mismatch The maximum number of mismatching letters allowed between the 2 arms of
the palindromes to search for.

allow.wobble Logical indicating whether wobble base pairs (G/U or G/T base pairings) should
be treated as mismatches (the default) or matches.

X An XString object containing a 2-arm palindrome, or an XStringViews object
containing a set of 2-arm palindromes.

Details

The findPalindromes function finds palindromic substrings in a subject string. The palindromes
that can be searched for are either strict palindromes or 2-arm palindromes (the former being a
particular case of the latter) i.e. palindromes where the 2 arms are separated by an arbitrary sequence
called "the loop".

If the subject string is a nucleotide sequence (i.e. DNA or RNA), the 2 arms must contain sequences
that are reverse complement from each other. Otherwise, they must contain sequences that are the
same.

Value

findPalindromes returns an XStringViews object containing all palindromes found in subject
(one view per palindromic substring found).

palindromeArmLength returns the arm length (integer) of the 2-arm palindrome x. It will raise
an error if x has no arms. Note that any sequence could be considered a 2-arm palindrome if
we were OK with arms of length O but we are not: x must have arms of length greater or equal
to 1 in order to be considered a 2-arm palindrome. When applied to an XStringViews object x,
palindromeArmLength behaves in a vectorized fashion by returning an integer vector of the same
length as x.

findPalindromes 13

palindromelLeftArm returns an object of the same class as the original object x and containing the
left arm of x.

palindromeRightArm does the same as palindromeLeftArm but on the right arm of x.

Like palindromeArmLength, both palindromeLeftArm and palindromeRightArm will raise an
error if x has no arms. Also, when applied to an XStringViews object x, both behave in a vectorized
fashion by returning an XStringViews object of the same length as x.

Author(s)

H. Pages, with contributions from Erik Wright and Thomas McCarthy

See Also

maskMotif, matchPattern, matchLRPatterns, matchProbePair, XStringViews-class, DNAString-
class

Examples

x@ <- BString("abbbaabbcbbaccacabbbcchcaabbabacca™)

pals@a <- findPalindromes(x@, min.armlength=3, max.looplength=5)
pals@a

palindromeArmLength(pals@a)

palindromeLeftArm(pals@a)

palindromeRightArm(pals@a)

pals@b <- findPalindromes(x@, min.armlength=9, max.looplength=5,
max.mismatch=3)

pals@b

palindromeArmLength(pals@b, max.mismatch=3)

palindromeLeftArm(pals@b, max.mismatch=3)

palindromeRightArm(pals@b, max.mismatch=3)

Whitespaces matter:

x1 <- BString("Delia saw I was aileD")
palindromeArmLength(x1)
palindromeLeftArm(x1)
palindromeRightArm(x1)

x2 <- BString("was it a car or a cat I saw")
palindromeArmLength(x2)
palindromeLeftArm(x2)

palindromeRightArm(x2)

On a DNA or RNA sequence:

x3 <- DNAString("CCGAAAACCATGATGGTTGCCAG")
findPalindromes(x3)
findPalindromes(RNAString(x3))

Note that palindromes can be nested:
x4 <- DNAString("ACGTTNAACGTCCAAAATTTTCCACGTTNAACGT")

14 GENETIC_CODE

findPalindromes (x4, max.looplength=19)

Treat wobble base pairings as matches:

x5 <= RNAString("AUGUCUNNNNAGGCGU")

findPalindromes(x5, max.looplength=4, min.looplength=4)
findPalindromes (x5, max.looplength=4, min.looplength=4, max.mismatch=2)
findPalindromes (x5, max.looplength=4, min.looplength=4, allow.wobble=TRUE)

A real use case:

library(BSgenome.Dmelanogaster.UCSC.dm3)

chrX <- Dmelanogaster$chrX

chrX_pals@ <- findPalindromes(chrX, min.armlength=40, max.looplength=80)
chrX_pals@

palindromeArmLength(chrX_pals@) # 251 70 262

Allowing up to 2 mismatches between the 2 arms:

chrX_pals2 <- findPalindromes(chrX, min.armlength=40, max.looplength=80,
max.mismatch=2)

chrX_pals2

palindromeArmLength(chrX_pals2, max.mismatch=2) # 254 77 44 48 40 264

GENETIC_CODE The Standard Genetic Code and its known variants

Description

Two predefined objects (GENETIC_CODE and RNA_GENETIC_CODE) that represent The Standard Ge-
netic Code.

Other genetic codes are stored in predefined table GENETIC_CODE_TABLE from which they can con-
veniently be extracted with getGeneticCode.

Usage

The Standard Genetic Code:
GENETIC_CODE
RNA_GENETIC_CODE

A1l the known genetic codes:
GENETIC_CODE_TABLE
getGeneticCode(id_or_name2="1", full.search=FALSE, as.data.frame=FALSE)

Arguments

id_or_name2 A single string that uniquely identifies the genetic code to extract. Should be
one of the values in the id or name2 columns of GENETIC_CODE_TABLE.

full.search By default, only the id and name2 columns of GENETIC_CODE_TABLE are searched
for an exact match with id_or_name2. If full. search is TRUE, then the search
is extended to the name column of GENETIC_CODE_TABLE and id_or_name2 only
needs to be a substring of one of the names in that column (also case is ignored).

GENETIC_CODE 15

as.data.frame Should the genetic code be returned as a data frame instead of a named character
vector?

Details

Formally, a genetic code is a mapping between the 64 tri-nucleotide sequences (called codons) and
amino acids.

The Standard Genetic Code (a.k.a. The Canonical Genetic Code, or simply The Genetic Code) is
the particular mapping that encodes the vast majority of genes in nature.

GENETIC_CODE and RNA_GENETIC_CODE are predefined named character vectors that represent this
mapping.

All the known genetic codes are summarized in GENETIC_CODE_TABLE, which is a predefined data

frame with one row per known genetic code. Use getGeneticCode to extract one genetic code at a
time from this object.

Value

GENETIC_CODE and RNA_GENETIC_CODE are both named character vectors of length 64 (the number
of all possible tri-nucleotide sequences) where each element is a single letter representing either an
amino acid or the stop codon "*" (aka termination codon).

The names of the GENETIC_CODE vector are the DNA codons i.e. the tri-nucleotide sequences (di-
rected 5’ to 3”) that are assumed to belong to the "coding DNA strand" (aka "sense DNA strand" or
"non-template DNA strand") of the gene.

The names of the RNA_GENETIC_CODE are the RNA codons i.e. the tri-nucleotide sequences (di-
rected 5’ to 3’) that are assumed to belong to the mRNA of the gene.

Note that the values in the GENETIC_CODE and RNA_GENETIC_CODE vectors are the same, only their
names are different. The names of the latter are those of the former where all occurrences of T
(thymine) have been replaced by U (uracil).

Finally, both vectors have an alt_init_codons attribute on them, that lists the alternative initiation
codons. Note that codons that always translate to M (Methionine) (e.g. ATG in GENETIC_CODE or
AUG in RNA_GENETIC_CODE) are omitted from the alt_init_codons attribute.

GENETIC_CODE_TABLE is a data frame that contains all the known genetic codes listed at ftp://
ftp.ncbi.nih.gov/entrez/misc/data/gc.prt. The data frame has one row per known genetic
code and the 5 following columns:

* name: The long and very descriptive name of the genetic code.

* name2: The short name of the genetic code (not all genetic codes have one).

* id: The id of the genetic code.

* AAs: A 64-character string representing the genetic code itself in a compact form (i.e. one
letter per codon, the codons are assumed to be ordered like in GENETIC_CODE).

* Starts: A 64-character string indicating the Initiation Codons.

By default (i.e. when as.data.frame is set to FALSE), getGeneticCode returns a named char-
acter vector of length 64 similar to GENETIC_CODE i.e. it contains 1-letter strings from the Amino
Acid alphabet (see ?AA_ALPHABET) and its names are identical to names(GENETIC_CODE). In ad-
dition it has an attribute on it, the alt_init_codons attribute, that lists the alternative initiation

ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt
ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

16 GENETIC_CODE

codons. Note that codons that always translate to M (Methionine) (e.g. ATG) are omitted from the
alt_init_codons attribute.

When as.data. frame is set to TRUE, getGeneticCode returns a data frame with 64 rows (one per
codon), rownames (3-letter strings representing the codons), and the 2 following columns:
e AA: A 1-letter string from the Amino Acid alphabet (see ?AA_ALPHABET) representing the
amino acid mapped to the codon ("*" is used to mark the stop codon).
e Start: A l-letter string indicating an alternative mapping for the codon i.e. what amino acid

the codon is mapped to when it’s the first tranlated codon.

The rownames of the data frame are identical to names (GENETIC_CODE).

Author(s)

H. Pages

References

All the known genetic codes are described here:
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

The "official names" of the various codes ("Standard", "SGCOQ", "Vertebrate Mitochondrial", "SGC1",
etc..) and their ids (1, 2, etc...) were taken from the print-form ASN.1 version of the above document
(version 4.0 at the time of this writing):

ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

See Also
e AA_ALPHABET and AMINO_ACID_CODE.

e The translate and trinucleotideFrequency functions.
* DNAString, RNAString, and AAString objects.

THE STANDARD GENETIC CODE
T

GENETIC_CODE

Codon ATG is *alwaysx translated to M (Methionine)
GENETIC_CODE[L["ATG"]]

Codons TTG and CTG are "normally” translated to L except when they are
the first translated codon (a.k.a. start codon or initiation codon),
in which case they are translated to M:

attr (GENETIC_CODE, "alt_init_codons™")

GENETIC_CODEL["TTG"]]

GENETIC_CODEL["CTG"]]

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

getSeq 17

sort(table(GENETIC_CODE)) # the same amino acid can be encoded by 1
to 6 different codons

RNA_GENETIC_CODE
all(GENETIC_CODE == RNA_GENETIC_CODE) # TRUE

Bt e
ALL THE KNOWN GENETIC CODES
e
GENETIC_CODE_TABLE[1:3 , 1]

getGeneticCode("SGCO") # The Standard Genetic Code, again
stopifnot(identical (getGeneticCode("SGC@"), GENETIC_CODE))

getGeneticCode("SGC1") # Vertebrate Mitochondrial
getGeneticCode("ascidian”, full.search=TRUE) # Ascidian Mitochondrial
B
EXAMINE THE DIFFERENCES BETWEEN THE STANDARD CODE AND A NON-STANDARD
ONE
2

idx <- which(GENETIC_CODE != getGeneticCode("SGC1"))
rbind(Standard=GENETIC_CODE[idx], SGCl=getGeneticCode("SGC1")[idx])

getSeq getSeq

Description

A generic function for extracting a set of sequences (or subsequences) from a sequence container
like a BSgenome object or other.

Usage

getSeq(x, ...)

Arguments

X A BSgenome object or any other supported object. Do showMethods("getSeq")
to get the list of all supported types for x.

Any additional arguments needed by the specialized methods.

18 gregexpr2

Value

An XString object or an XStringSet object or a character vector containing the extracted sequence(s).

See man pages of individual methods for the details e.g. with ?” getSeq,BSgenome-method™ to
access the man page of the method for BSgenome objects (make sure the BSgenome package is
loaded first).

See Also

getSeq,BSgenome-method, XString-class, XStringSet-class

Examples

Note that you need to load the package(s) defining the specialized
methods to have showMethods() display them and to be able to access
their man pages:

library(BSgenome)

showMethods("getSeq")

gregexpr2 A replacement for R standard gregexpr function

Description

This is a replacement for the standard gregexpr function that does exact matching only. Standard

gregexpr() misses matches when they are overlapping. The gregexpr2 function finds all matches

but it only works in "fixed" mode i.e. for exact matching (regular expressions are not supported).
Usage

gregexpr2(pattern, text)

Arguments
pattern character string to be matched in the given character vector
text a character vector where matches are sought

Value

A list of the same length as text each element of which is an integer vector as in gregexpr, except
that the starting positions of all (even overlapping) matches are given. Note that, unlike gregexpr,
gregexpr2 doesn’t attach a "match.length" attribute to each element of the returned list because,
since it only works in "fixed" mode, then all the matches have the length of the pattern. Another
difference with gregexpr is that with gregexpr2, the pattern argument must be a single (non-NA,
non-empty) string.

Author(s)
H. Pages

HNF4alpha 19

See Also

gregexpr, matchPattern

Examples

gregexpr(”aa”, c("XaaaYaa", "a"), fixed=TRUE)

gregexpr2(”aa”, c("XaaaYaa", "a"))
HNF4alpha Known HNF4alpha binding sequences
Description

Seventy one known HNF4alpha binding sequences

Details

A DNAStringSet containing 71 known binding sequences for HNF4alpha.

Author(s)

P. Aboyoun

References

Ellrott, K., Yang, C., Sladek, EM., Jiang, T. (2002) "Identifying transcription factor binding sites
through Markov chain optimations", Bioinformatics, 18 (Suppl. 2), S100-S109.

Examples

data(HNF4alpha)
HNF4alpha

injectHardMask Injecting a hard mask in a sequence

Description
injectHardMask allows the user to "fill" the masked regions of a sequence with an arbitrary letter
(typically the "+" letter).

Usage

injectHardMask(x, letter="+")

20 injectHardMask

Arguments
X A MaskedXString or XStringViews object.
letter A single letter.

Details

The name of the injectHardMask function was chosen because of the primary use that it is in-
tended for: converting a pile of active "soft masks" into a "hard mask". Here the pile of active
"soft masks" refers to the active masks that have been put on top of a sequence. In Biostrings, the
original sequence and the masks defined on top of it are bundled together in one of the dedicated
containers for this: the MaskedBString, MaskedDNAString, MaskedRNAString and Masked AAS-
tring containers (this is the MaskedXString family of containers). The original sequence is always
stored unmodified in a MaskedXString object so no information is lost. This allows the user to acti-
vate/deactivate masks without having to worry about losing the letters that are in the regions that are
masked/unmasked. Also this allows better memory management since the original sequence never
needs to be copied, even when the set of active/inactive masks changes.

However, there are situations where the user might want to really get rid of the letters that are in
some particular regions by replacing them with a junk letter (e.g. "+") that is guaranteed to not
interfer with the analysis that s/he is currently doing. For example, it’s very likely that a set of
motifs or short reads will not contain the "+" letter (this could easily be checked) so they will never
hit the regions filled with "+". In a way, it’s like the regions filled with "+" were masked but we
call this kind of masking "hard masking".

Some important differences between "soft" and "hard" masking:
e injectHardMask creates a (modified) copy of the original sequence. Using "soft masking"
does not.

* A function that is "mask aware" like alphabetFrequency or matchPattern will really skip
the masked regions when "soft masking" is used i.e. they will not walk thru the regions that
are under active masks. This might lead to some speed improvements when a high percentage
of the original sequence is masked. With "hard masking", the entire sequence is walked thru.

* Matches cannot span over masked regions with "soft masking". With "hard masking" they
can.

Value

An XString object of the same length as the orignal object x if x is a MaskedXString object, or of
the same length as subject(x) if it’s an XStringViews object.

Author(s)

H. Pages

See Also

maskMotif, MaskedXString-class, replaceLetterAt, chartr, XString, XStringViews-class

IUPAC_CODE_MAP 21

Examples
B m o
A. WITH AN XStringViews OBJECT
B
v2 <- Views("abCDefgHIJK", start=c(8, 3), end=c(14, 4))
injectHardMask(v2)

injectHardMask(v2, letter="=")

#H -
B. WITH A MaskedXString OBJECT

#H# -
mask® <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))

X <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

masks(x) <- mask@

X

subject <- injectHardMask(x)

Matches can span over masked regions with "hard masking":
matchPattern("ACggggggA”, subject, max.mismatch=6)

but not with "soft masking”:

matchPattern("ACggggggA"”, x, max.mismatch=6)

TUPAC_CODE_MAP The IUPAC Extended Genetic Alphabet

Description

The IUPAC_CODE_MAP named character vector contains the mapping from the IUPAC nucleotide
ambiguity codes to their meaning.

The mergeIUPACLetters function provides the reverse mapping.

Usage
TUPAC_CODE_MAP
mergeIUPACLetters(x)

Arguments

X A vector of non-empty character strings made of IUPAC letters.

Details

IUPAC nucleotide ambiguity codes are used for representing sequences of nucleotides where the
exact nucleotides that occur at some given positions are not known with certainty.

22 letter

Value

TUPAC_CODE_MAP is a named character vector where the names are the [UPAC nucleotide ambiguity
codes and the values are their corresponding meanings. The meaning of each code is described by
a string that enumarates the base letters ("A", "C", "G" or "T") associated with the code.

The value returned by mergeIUPACLetters is an unnamed character vector of the same length as
its argument x where each element is an [UPAC nucleotide ambiguity code.

Author(s)

H. Pages

References

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE: Cornish-Bowden (1985) Nucl.
Acids Res. 13: 3021-3030.

See Also

DNAString, RNAString

Examples

IUPAC_CODE_MAP

some_iupac_codes <- c("R", "M", "G", "N", "V")
TUPAC_CODE_MAP[some_iupac_codes]
mergeIUPACLetters(IUPAC_CODE_MAP[some_iupac_codes])

mergeIUPACLetters(c(”Ca", "Acc”, "aA", "MAAmC", "gM", "AB", "bS", "mk"))

letter Subsetting a string

Description

Extract a substring from a string by picking up individual letters by their position.

Usage

letter(x, i)

Arguments
X A character vector, or an XString, XStringViews or MaskedXString object.

i An integer vector with no NAs.

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

letterFrequency 23

Details

Unlike with the substr or substring functions, i must contain valid positions.

Value

A character vector of length 1 when x is an XString or MaskedXString object (the masks are ignored
for the latter).

A character vector of the same length as x when x is a character vector or an XStringViews object.

Note that, because i must contain valid positions, all non-NA elements in the result are guaranteed
to have exactly length(i) characters.

See Also

subseq, XString-class, XStringViews-class, MaskedXString-class

Examples

x <- c("abcd”, "ABC")
i<-c(3,1,1,2, 1

With a character vector:
letter(x[1], 3:1)

letter(x, 3)

letter(x, i)

#letter(x, 4) # Error!

With a BString object:
letter(BString(x[1]), i) # returns a character vector
BString(x[11)[i] # returns a BString object

With an XStringViews object:
x2 <- as(BStringSet(x), "Views")
letter(x2, i)

letterFrequency Calculate the frequency of letters in a biological sequence, or the con-
sensus matrix of a set of sequences

Description

Given a biological sequence (or a set of biological sequences), the alphabetFrequency function
computes the frequency of each letter of the relevant alphabet.

letterFrequency is similar, but more compact if one is only interested in certain letters. It can
also tabulate letters "in common".

letterFrequencyInSlidingView is a more specialized version of letterFrequency for (non-
masked) XString objects. It tallys the requested letter frequencies for a fixed-width view, or window,
that is conceptually slid along the entire input sequence.

24

letterFrequency

The consensusMatrix function computes the consensus matrix of a set of sequences, and the
consensusString function creates the consensus sequence from the consensus matrix based upon
specified criteria.

In this man page we call "DNA input" (or "RNA input") an XString, XStringSet, XStringViews or
MaskedXString object of base type DNA (or RNA).

Usage

alphabetFrequency(x, as.prob=FALSE, ...)
hasOnlyBaselLetters(x)
uniquelLetters(x)

letterFrequency(x, letters, OR="|", as.prob=FALSE, ...)
letterFrequencyInSlidingView(x, view.width, letters, OR="|", as.prob=FALSE)

consensusMatrix(x, as.prob=FALSE, shift=0L, width=NULL, ...)

S4 method for signature 'matrix’
consensusString(x, ambiguityMap="?", threshold=0.5)
S4 method for signature 'DNAStringSet'
consensusString(x, ambiguityMap=IUPAC_CODE_MAP,
threshold=0.25, shift=0L, width=NULL)
S4 method for signature 'RNAStringSet'
consensusString(x,
ambiguityMap=
structure(as.character (RNAStringSet (DNAStringSet (IUPAC_CODE_MAP))),
names=
as.character (RNAStringSet (DNAStringSet (names(IUPAC_CODE_MAP))))),
threshold=0.25, shift=0L, width=NULL)

Arguments

X An XString, XStringSet, XStringViews or MaskedXString object for alphabetFrequency,
letterFrequency, or uniquelLetters.

DNA or RNA input for hasOnlyBaselLetters.
An XString object for letterFrequencyInSlidingView.
A character vector, or an XStringSet or XStringViews object for consensusMatrix.
A consensus matrix (as returned by consensusMatrix), or an XStringSet or
XStringViews object for consensusString.

as.prob If TRUE then probabilities are reported, otherwise counts (the default).

view.width For letterFrequencyInSlidingView, the constant (e.g. 35, 48, 1000) size of
the "window" to slide along x. The specified letters are tabulated in each
window of length view.width. The rows of the result (see value) correspond to
the various windows.

letters For letterFrequency or letterFrequencyInSlidingView, a character vector
(e.g. "C", "CG", c("C", "G")) giving the letters to tabulate. When x is DNA or

letterFrequency 25

RNA input, letters must come from alphabet(x). Except with OR=0, multi-
character elements of letters ('nchar’ > 1) are taken as groupings of letters into
subsets, to be tabulated in common ("or"’d), as if their alphabetFrequency’s were
added (Arithmetic). The columns of the result (see value) correspond to the
individual and sets of letters which are counted separately. Unrelated (and, with
some post-processing, related) counts may of course be obtained in separate
calls.

OR For letterFrequency or letterFrequencyInSlidingView, the string (default
|) to use as a separator in forming names for the "grouped" columns, e.g. "CIG".
The otherwise exceptional value @ (zero) disables or’ing and is provided for con-
venience, allowing a single multi-character string (or several strings) of letters
that should be counted separately. If some but not all letters are to be counted
separately, they must reside in separate elements of letters (with 'nchar’ 1 unless
they are to be grouped with other letters), and OR cannot be 0.

ambiguityMap Either a single character to use when agreement is not reached or a named char-
acter vector where the names are the ambiguity characters and the values are the
combinations of letters that comprise the ambiguity (e.g. 1ink{ IUPAC_CODE_MAP}).
When ambiguityMap is a named character vector, occurrences of ambiguous
letters in x are replaced with their base alphabet letters that have been equally
weighted to sum to 1. (See Details for some examples.)

threshold The minimum probability threshold for an agreement to be declared. When
ambiguityMap is a single character, threshold is a single number in (0, 1].
When ambiguityMap is a named character vector (e.g. 1ink{ IUPAC_CODE_MAP}),
threshold is a single number in (0, 1/sum(nchar(ambiguityMap) == 1)].

Further arguments to be passed to or from other methods.

For the XStringViews and XStringSet methods, the collapse argument is ac-
cepted.

Except for letterFrequency or letterFrequencyInSlidingView, and with
DNA or RNA input, the baseOnly argument is accepted. If baseOnly is TRUE,
the returned vector (or matrix) only contains the frequencies of the letters that
belong to the "base" alphabet of x i.e. to the alphabet returned by alphabet(x,
baseOnly=TRUE).

shift An integer vector (recycled to the length of x) specifying how each sequence in x
should be (horizontally) shifted with respect to the first column of the consensus
matrix to be returned. By default (shift=0), each sequence in x has its first letter
aligned with the first column of the matrix. A positive shift value means that
the corresponding sequence must be shifted to the right, and a negative shift
value that it must be shifted to the left. For example, a shift of 5 means that it
must be shifted 5 positions to the right (i.e. the first letter in the sequence must
be aligned with the 6th column of the matrix), and a shift of -3 means that it
must be shifted 3 positions to the left (i.e. the 4th letter in the sequence must be
aligned with the first column of the matrix).

width The number of columns of the returned matrix for the consensusMatrix method
for XStringSet objects. When width=NULL (the default), then this method re-
turns a matrix that has just enough columns to have its last column aligned with
the rightmost letter of all the sequences in x after those sequences have been

26 letterFrequency

shifted (see the shift argument above). This ensures that any wider consen-
sus matrix would be a "padded with zeros" version of the matrix returned when
width=NULL.

The length of the returned sequence for the consensusString method for XStringSet
objects.

Details

alphabetFrequency, letterFrequency, and letterFrequencyInSlidingView are generic func-
tions defined in the Biostrings package.

letterFrequency is similar to alphabetFrequency but specific to the letters of interest, hence
more compact, especially with OR non-zero.

letterFrequencyInSlidingView yields the same result, on the sequence x, that letterFrequency
would, if applied to the hypothetical (and possibly huge) XStringViews object consisting of all the
intervals of length view.width on x. Taking advantage of the knowledge that successive "views"
are nearly identical, for letter counting purposes, it is both lighter and faster.

For letterFrequencyInSlidingView, a masked (MaskedXString) object x is only supported through
a cast to an (ordinary) XString such as unmasked (which includes its masked regions).

When consensusString is executed with a named character ambiguityMap argument, it weights
each input string equally and assigns an equal probability to each of the base letters represented by
an ambiguity letter. So for DNA and a threshold of 0.25, a "G" and an "R" would result in an "R"
since 1/2 "G" + 1/2 "R" =3/4 "G" + 1/4 "A" => "R"; two "G"’s and one "R" would result in a "G"
since 2/3 "G" + 1/3 "R" =5/6 "G" + 1/6 "A" => "G"; and one "A" and one "N" would result in an
"N" since 1/2"A" + 1/2"N"=5/8 "A" + 1/8 "C" + 1/8 "G" + 1/8 "T" =>"N".

Value

alphabetFrequency returns an integer vector when x is an XString or MaskedXString object.
When x is an XStringSet or XStringViews object, then it returns an integer matrix with length(x)
rows where the i-th row contains the frequencies for x[[i]]. If x is a DNA, RNA, or AA input,
then the returned vector is named with the letters in the alphabet. If the baseOnly argument is TRUE,
then the returned vector has only 5 elements for DNA/RNA input (4 elements corresponding to the
4 nucleotides + the ’other’ element) and 21 elements for AA input (20 elements corresponding to
the 20 base amino acids + the ’other’ element).

letterFrequency returns, similarly, an integer vector or matrix, but restricted and/or collated ac-
cording to letters and OR.

letterFrequencyInSlidingView returns, for an XString object x of length (nchar) L, an integer
matrix with L-view.width+1 rows, the i-th of which holding the letter frequencies of substring(x,
i, i+tview.width-1).

hasOnlyBaselLetters returns TRUE or FALSE indicating whether or not x contains only base letters
(i.e. As, Cs, Gs and Ts for DNA input, As, Cs, Gs and Us for RNA input, or any of the 20 standard
amino acids for AA input).

uniqueletters returns a vector of 1-letter or empty strings. The empty string is used to represent
the nul character if x happens to contain any. Note that this can only happen if the base class of x is
BString.

An integer matrix with letters as row names for consensusMatrix.

letterFrequency 27

A standard character string for consensusString.

Author(s)

H. Pages and P. Aboyoun; H. Jaffee for letterFrequency and letterFrequencyInSliding View

See Also

alphabet, coverage, oligonucleotideFrequency, countPDict, XString-class, XStringSet-class,
XStringViews-class, MaskedXString-class, strsplit

Examples

B m o
alphabetFrequency()

B o o o
data(yeastSEQCHR1)

yeast1l <- DNAString(yeastSEQCHRT)

alphabetFrequency(yeast1)
alphabetFrequency(yeastl1, baseOnly=TRUE)

hasOnlyBaselLetters(yeast1)
uniquelLetters(yeast1)

With input made of multiple sequences:
library(drosophila2probe)

probes <- DNAStringSet(drosophila2probe)
alphabetFrequency(probes[1:50], baseOnly=TRUE)
alphabetFrequency(probes, baseOnly=TRUE, collapse=TRUE)

#H -
letterFrequency()

-
letterFrequency(probes[[1]], letters="ACGT", OR=0)

base_letters <- alphabet(probes, baseOnly=TRUE)

base_letters

letterFrequency(probes[[1]], letters=base_letters, OR=0)
base_letter_freqs <- letterFrequency(probes, letters=base_letters, OR=0)
head(base_letter_freqs)

GC_content <- letterFrequency(probes, letters="CG")

head(GC_content)

letterFrequency(probes, letters="CG", collapse=TRUE)

i e e ittt
letterFrequencyInSlidingView()

#H -
data(yeastSEQCHR1)

X <- DNAString(yeastSEQCHR1)

view.width <- 48

letters <- c("A", "CG")

two_columns <- letterFrequencyInSlidingView(x, view.width, letters)

28

head (two_columns)
tail(two_columns)

letterFrequency

three_columns <- letterFrequencyInSlidingView(x, view.width, letters, OR=0)

head(three_columns)
tail(three_columns)
stopifnot(identical (two_columns[, "C|G"],
three_columns[, "C"] + three_columns[, "G"]))

Note that, alternatively, 'three_columns' can also be obtained by
creating the views on 'x' (as a Views object) and by calling

alphabetFrequency() on it. But, of course, that is be #*much* less
efficient (both, in terms of memory and speed) than using

letterFrequencyInSlidingView():

v <- Views(x, start=seq_len(length(x) - view.width + 1), width=view.width)

\

three_columns2 <- alphabetFrequency(v, baseOnly=TRUE)[, c("A", "C", "G")]

stopifnot(identical (three_columns2, three_columns))

Set the width of the view to length(x) to get the global frequencies:

letterFrequencyInSlidingView(x, letters="ACGTN", view.width=length(x), OR=0)

#H -
consensusx*()

-
Read in ORF data:

file <- system.file("extdata"”, "someORF.fa", package="Biostrings")

orf <- readDNAStringSet(file)

To illustrate, the following example assumes the ORF data
to be aligned for the first 10 positions (patently false):
orf10@ <- DNAStringSet(orf, end=10)

consensusMatrix(orf1@, baseOnly=TRUE)

The following example assumes the first 10 positions to be aligned
after some incremental shifting to the right (patently false):
consensusMatrix(orf1@, baseOnly=TRUE, shift=0:6)
consensusMatrix(orf1@, baseOnly=TRUE, shift=0:6, width=10)

For the character matrix containing the "exploded” representation
of the strings, do:
as.matrix(orf10, use.names=FALSE)

consensusMatrix() can be used to just compute the alphabet frequency
for each position in the input sequences:
consensusMatrix(probes, baseOnly=TRUE)

After sorting, the first 5 probes might look similar (at least on
their first bases):

consensusString(sort(probes)[1:5])

consensusString(sort(probes)[1:5], ambiguityMap = "N", threshold = 0.5)

Consensus involving ambiguity letters in the input strings
consensusString (DNAStringSet (c("NNNN","ACTG")))

longestConsecutive 29

consensusString (DNAStringSet (c("AANN","ACTG")))
consensusString(DNAStringSet (c("ACAG","ACAR")))
consensusString (DNAStringSet (c("ACAG","ACAR", "ACAG")))

#H -
C. RELATIONSHIP BETWEEN consensusMatrix() AND coverage()

#H -
Applying colSums() on a consensus matrix gives the coverage that

would be obtained by piling up (after shifting) the input sequences
on top of an (imaginary) reference sequence:

cm <- consensusMatrix(orf10, shift=0:6, width=10)

colSums(cm)

Note that this coverage can also be obtained with:
as.integer(coverage(IRanges(rep(1, length(orf)), width(orf)), shift=0:6, width=10))

longestConsecutive Obtain the length of the longest substring containing only ’letter’

Description
This function accepts a character vector and computes the length of the longest substring containing
only letter for each element of x.

Usage

longestConsecutive(seq, letter)

Arguments

seq Character vector.

letter Character vector of length 1, containing one single character.
Details

The elements of x can be in upper case, lower case or mixed. NAs are handled.

Value

An integer vector of the same length as x.

Author(s)
'W. Huber

Examples

v <= c("AAACTGTGFG", "GGGAATT", "CCAAAAAAAAAATT")
longestConsecutive(v, "A")

30 lowlevel-matching

lowlevel-matching Low-level matching functions

Description

In this man page we define precisely and illustrate what a "match" of a pattern P in a subject S
is in the context of the Biostrings package. This definition of a "match" is central to most pattern
matching functions available in this package: unless specified otherwise, most of them will adhere
to the definition provided here.

hasLetterAt checks whether a sequence or set of sequences has the specified letters at the specified
positions.

neditAt, isMatchingAt and which.isMatchingAt are low-level matching functions that only
look for matches at the specified positions in the subject.

Usage

hasLetterAt(x, letter, at, fixed=TRUE)

neditAt() and related utils:

neditAt(pattern, subject, at=1,
with.indels=FALSE, fixed=TRUE)

neditStartingAt(pattern, subject, starting.at=1,
with.indels=FALSE, fixed=TRUE)

neditEndingAt(pattern, subject, ending.at=1,
with.indels=FALSE, fixed=TRUE)

isMatchingAt() and related utils:
isMatchingAt(pattern, subject, at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)
isMatchingStartingAt(pattern, subject, starting.at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)
isMatchingEndingAt(pattern, subject, ending.at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)

which.isMatchingAt() and related utils:

which.isMatchingAt(pattern, subject, at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

which.isMatchingStartingAt(pattern, subject, starting.at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

which.isMatchingEndingAt(pattern, subject, ending.at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

lowlevel-matching 31

Arguments
X A character vector, or an XString or XStringSet object.
letter A character string or an XString object containing the letters to check.

at, starting.at, ending.at
An integer vector specifying the starting (for starting.at and at) or end-
ing (for ending.at) positions of the pattern relatively to the subject. With
auto.reduce.pattern (below), either a single integer or a constant vector of
length nchar (pattern) (below), to which the former is immediately converted.
For the hasLetterAt function, letter and at must have the same length.

pattern The pattern string (but see auto. reduce.pattern, below).
subject A character vector, or an XString or XStringSet object containing the subject
sequence(s).

max.mismatch, min.mismatch

Integer vectors of length >= 1 recycled to the length of the at (or starting.at,
or ending.at) argument. More details below.

with.indels See details below.

fixed Only with a DNAString or RNAString-based subject can a fixed value other
than the default (TRUE) be used.
If TRUE (the default), an IUPAC ambiguity code in the pattern can only match
the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity
code in the pattern can match any letter in the subject that is associated with
the code, and vice versa. See TUPAC_CODE_MAP for more information about the
IUPAC Extended Genetic Alphabet.
fixed can also be a character vector, a subset of c("pattern”, "subject”).
fixed=c("pattern”, "subject”) is equivalent to fixed=TRUE (the default).
An empty vector is equivalent to fixed=FALSE. With fixed="subject", ambi-
guities in the pattern only are interpreted as wildcards. With fixed="pattern”,
ambiguities in the subject only are interpreted as wildcards.

follow. index Whether the single integer returned by which.isMatchingAt (and related utils)
should be the first *value* in at for which a match occurred, or its *index* in
at (the default).

auto.reduce.pattern
Whether pattern should be effectively shortened by 1 letter, from its beginning
forwhich.isMatchingStartingAt and from its end for which.isMatchingEndingAt,
for each successive (at, max.mismatch) "pair".

Details

A "match" of pattern P in subject S is a substring S’ of S that is considered similar enough to P
according to some distance (or metric) specified by the user. 2 distances are supported by most
pattern matching functions in the Biostrings package. The first (and simplest) one is the "number of
mismatching letters". It is defined only when the 2 strings to compare have the same length, so when
this distance is used, only matches that have the same number of letters as P are considered. The
second one is the "edit distance" (aka Levenshtein distance): it’s the minimum number of operations
needed to transform P into S’, where an operation is an insertion, deletion, or substitution of a single
letter. When this metric is used, matches can have a different number of letters than P.

32

lowlevel-matching

The neditAt function implements these 2 distances. If with.indels is FALSE (the default), then the
first distance is used i.e. neditAt returns the "number of mismatching letters" between the pattern
P and the substring S’ of S starting at the positions specified in at (note that neditAt is vectorized
so a long vector of integers can be passed thru the at argument). If with.indels is TRUE, then the
"edit distance" is used: for each position specified in at, P is compared to all the substrings S’ of S
starting at this position and the smallest distance is returned. Note that this distance is guaranteed
to be reached for a substring of length < 2*length(P) so, of course, in practice, P only needs to be
compared to a small number of substrings for every starting position.

Value

hasLetterAt: A logical matrix with one row per element in x and one column per letter/position to
check. When a specified position is invalid with respect to an element in x then the corresponding
matrix element is set to NA.

neditAt: If subject is an XString object, then return an integer vector of the same length as
at. If subject is an XStringSet object, then return the integer matrix with length(at) rows and
length(subject) columns defined by:

sapply(unname(subject),
function(x) neditAt(pattern, x, ...))

neditStartingAt is identical to neditAt except that the at argument is now called starting.at.
neditEndingAt is similar to neditAt except that the at argument is now called ending.at and
must contain the ending positions of the pattern relatively to the subject.

isMatchingAt: If subject is an XString object, then return the logical vector defined by:
min.mismatch <= neditAt(...) <= max.mismatch
If subject is an XStringSet object, then return the logical matrix with length(at) rows and
length(subject) columns defined by:
sapply(unname(subject),

function(x) isMatchingAt(pattern, x, ...))

isMatchingStartingAt is identical to isMatchingAt except that the at argument is now called
starting.at. isMatchingEndingAt is similar to isMatchingAt except that the at argument is
now called ending. at and must contain the ending positions of the pattern relatively to the subject.

which.isMatchingAt: The default behavior (follow. index=FALSE) is as follow. If subject is an
XString object, then return the single integer defined by:

which(isMatchingAt(...))[1]

If subject is an XStringSet object, then return the integer vector defined by:

lowlevel-matching 33

sapply(unname(subject),
function(x) which.isMatchingAt(pattern, x, ...))

If follow. index=TRUE, then the returned value is defined by:

at[which.isMatchingAt(..., follow.index=FALSE)]

which.isMatchingStartingAt is identical to which.isMatchingAt except that the at argument
is now called starting.at. which.isMatchingEndingAt is similar to which.isMatchingAt ex-
cept that the at argument is now called ending.at and must contain the ending positions of the
pattern relatively to the subject.

See Also

nucleotideFrequencyAt, matchPattern, matchPDict, matchLRPatterns, trimLRPatterns, IUPAC_CODE_MAP,
XString-class, align-utils in the pwalign package

Examples

B mm o
hasLetterAt()

B m o o
X <- DNAStringSet(c("AAACGT", "AACGT", "ACGT", "TAGGA"))

hasLetterAt(x, "AAAAAA", 1:6)

hasLetterAt() can be used to answer questions like: "which elements
in 'x' have an A at position 2 and a G at position 47"

gl <- hasLetterAt(x, "AG", c(2, 4))

which(rowSums(ql) == 2)

or "how many probes in the drosophila2 chip have T, G, T, A at

position 2, 4, 13 and 20, respectively?”
library(drosophila2probe)

probes <- DNAStringSet(drosophila2probe)

g2 <- haslLetterAt(probes, "TGTA", c(2, 4, 13, 20))

sum(rowSums (g2) == 4)

or "what's the probability to have an A at position 25 if there is
one at position 13?"

g3 <- haslLetterAt(probes, "AACGT", c(13, 25, 25, 25, 25))

sum(q3[, 11 & gq3[, 21) / sum(q3[, 11)

Probabilities to have other bases at position 25 if there is an A
at position 13:

sum(q3[, 11 & g3[, 31) / sum(q3[, 11) # C

sum(q3[, 11 & gq3[, 41) / sum(q3[, 11) # G

sum(q3[, 11 & g3L , 51) / sum(q3[, 11) # T

See ?nucleotideFrequencyAt for another way to get those results.

e e R PR
neditAt() / isMatchingAt() / which.isMatchingAt()

34

lowlevel-matching

B m o o
subject <- DNAString("GTATA")

Pattern "AT" matches subject "GTATA" at position 3 (exact match)
neditAt("AT", subject, at=3)
isMatchingAt("AT"”, subject, at=3)

... but not at position 1
neditAt("AT", subject)
isMatchingAt("AT", subject)

... unless we allow 1 mismatching letter (inexact match)
isMatchingAt("AT", subject, max.mismatch=1)

Here we look at 6 different starting positions and find 3 matches if
we allow 1 mismatching letter
isMatchingAt("AT"”, subject, at=0:5, max.mismatch=1)

No match
neditAt("NT", subject, at=1:4)
isMatchingAt("NT"”, subject, at=1:4)

2 matches if N is interpreted as an ambiguity (fixed=FALSE)
neditAt(”"NT", subject, at=1:4, fixed=FALSE)
isMatchingAt("NT", subject, at=1:4, fixed=FALSE)

max.mismatch != @ and fixed=FALSE can be used together
neditAt(”"NCA", subject, at=0:5, fixed=FALSE)
isMatchingAt("NCA", subject, at=0:5, max.mismatch=1, fixed=FALSE)

some_starts <- c(10:-10, NA, 6)

subject <- DNAString("ACGTGCA")

is_matching <- isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1)
some_starts[is_matching]

which.isMatchingAt("CAT"”, subject, at=some_starts, max.mismatch=1)
which.isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1,
follow.index=TRUE)

i
WITH INDELS

B =
subject <- BString("ABCDEFxxxCDEFxxxABBCDE")

neditAt("ABCDEF", subject, at=9)

neditAt("ABCDEF"”, subject, at=9, with.indels=TRUE)
isMatchingAt("ABCDEF"”, subject, at=9, max.mismatch=1, with.indels=TRUE)
isMatchingAt ("ABCDEF"”, subject, at=9, max.mismatch=2, with.indels=TRUE)
neditAt("ABCDEF", subject, at=17)

neditAt ("ABCDEF", subject, at=17, with.indels=TRUE)
neditEndingAt("ABCDEF", subject, ending.at=22)

neditEndingAt ("ABCDEF", subject, ending.at=22, with.indels=TRUE)

MaskedXString-class 35

MaskedXString-class MaskedXString objects

Description

The MaskedBString, MaskedDNAString, MaskedRNAString and MaskedA AString classes are con-
tainers for storing masked sequences.

All those containers derive directly (and with no additional slots) from the MaskedXString virtual
class.

Details

In Biostrings, a pile of masks can be put on top of a sequence. A pile of masks is represented by
a MaskCollection object and the sequence by an XString object. A MaskedXString object is the
result of bundling them together in a single object.

Note that, no matter what masks are put on top of it, the original sequence is always stored unmod-
ified in a MaskedXString object. This allows the user to activate/deactivate masks without having
to worry about losing the information stored in the masked/unmasked regions. Also this allows
efficient memory management since the original sequence never needs to be copied (modifying it
would require to make a copy of it first - sequences cannot and should never be modified in place in
Biostrings), even when the set of active/inactive masks changes.

Accessor methods

In the code snippets below, x is a MaskedXString object. For masks(x) and masks(x) <-y, it can
also be an XString object and y must be NULL or a MaskCollection object.

unmasked(x): Turns x into an XString object by dropping the masks.

masks(x): Turns x into a MaskCollection object by dropping the sequence.

masks(x) <-y: If x is an XString object and y is NULL, then this doesn’t do anything.
If x is an XString object and y is a MaskCollection object, then this turns x into a MaskedXString
object by putting the masks in y on top of it.
If x is a MaskedXString object and y is NULL, then this is equivalent to x <- unmasked(x).
If x is a MaskedXString object and y is a MaskCollection object, then this replaces the masks
currently on top of x by the masks in y.

alphabet(x): Equivalent to alphabet (unmasked(x)). See ?alphabet for more information.

length(x): Equivalent to length(unmasked(x)). See ?~length,XString-method™ for more
information.

"maskedwidth' and related methods

In the code snippets below, x is a MaskedXString object.

maskedwidth(x): Get the number of masked letters in x. A letter is considered masked iff it’s
masked by at least one active mask.

maskedratio(x): Equivalent to maskedwidth(x) / length(x).
nchar(x): Equivalent to length(x) - maskedwidth(x).

36 MaskedXString-class

Coercion

In the code snippets below, x is a MaskedXString object.

as(x, "Views"): Turns x into a Views object where the views are the unmasked regions of the
original sequence ("unmasked" means not masked by at least one active mask).

Other methods

In the code snippets below, x is a MaskedXString object.

collapse(x): Collapses the set of masks in x into a single mask made of all active masks.

gaps(x): Reverses all the masks i.e. each mask is replaced by a mask where previously unmasked
regions are now masked and previously masked regions are now unmasked.

Author(s)

H. Pages

See Also

* maskMotif

* injectHardMask

* alphabetFrequency
* reverseComplement
* XString-class

¢ MaskCollection-class

¢ Views-class

Examples

A. MASKING BY POSITION

#H -
mask@ <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))
X <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

length(x) # same as width(mask®)

nchar(x) # same as length(x)

masks(x) <- mask@

X

length(x) # has not changed

nchar(x) # has changed

gaps(x)

Prepare a MaskCollection object of 3 masks ('mymasks') by running the
examples in the man page for these objects:
example(MaskCollection, package="IRanges")

Put it on 'x':
masks(x) <- mymasks

maskMotif

X
alphabetFrequency(x)

Deactivate all masks:
active(masks(x)) <- FALSE
X

Activate mask "C":
active(masks(x))["C"] <- TRUE
X

Turn MaskedXString object into a Views object:
as(x, "Views")

Drop the masks:
masks(x) <- NULL

X
alphabetFrequency(x)

B m o
B. MASKING BY CONTENT
2

See ?maskMotif for masking by content

maskMotif Masking by content (or by position)

Description

Functions for masking a sequence by content (or by position).

Usage

maskMotif (x, motif, min.block.width=1, ...)
mask(x, start=NA, end=NA, pattern)

Arguments
X The sequence to mask.
motif The motif to mask in the sequence.

min.block.width
The minimum width of the blocks to mask.

Additional arguments for matchPattern.
start An integer vector containing the starting positions of the regions to mask.
end An integer vector containing the ending positions of the regions to mask.

pattern The motif to mask in the sequence.

38 maskMotif

Value

A MaskedXString object for maskMotif and an XStringViews object for mask.

Author(s)

H. Pages

See Also

read.Mask, matchPattern, XString-class, MaskedXString-class, XStringViews-class, MaskCollection-
class

Examples

e
EXAMPLE 1
HHE =

maskMotif (BString("AbcbbcbEEE"), "bcb")
maskMotif (BString("AbcbcbEEE"), "bcb")

maskMotif () can be used in an incremental way to mask more than 1

motif. Note that maskMotif() does not try to mask again what's

already masked (i.e. the new mask will never overlaps with the

previous masks) so the order in which the motifs are masked actually
matters as it will affect the total set of masked positions.

X0 <- BString("AbcbEEEEEbcbbEEEcbbchc™)

x1 <- maskMotif(x@, "E")

x1

x2 <- maskMotif(x1, "bcb")
X2

x3 <- maskMotif(x2, "b")
x3

Note that inverting the order in which "b" and "bcb” are masked would
lead to a different final set of masked positions.

Also note that the order doesn't matter if the motifs to mask don't
overlap (we assume that the motifs are unique) i.e. if the prefix of
each motif is not the suffix of any other motif. This is of course
the case when all the motifs have only 1 letter.

HHE e
EXAMPLE 2
HHE = m o m e

X <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

Mask the N-blocks

x1 <- maskMotif(x, "N")
x1

as(x1, "Views")
gaps(x1)

as(gaps(x1), "Views")

match-utils

Mask the AC-blocks

x2 <- maskMotif(x1, "AC")

X2
gaps(x2)

Mask the GA-blocks

x3 <- maskMotif(x2, "GA", min.block.width=5)
x3 # masks 2 and 3 overlap

gaps(x3)

EXAMPLE 3

T

library(BSgenome.Dmelanogaster.UCSC.dm3)
chrU <- Dmelanogaster$chru

chru

alphabetFrequency(chru)
chrU <- maskMotif(chrU, "N")

chru

alphabetFrequency(chru)

as(chrU, "Views")

as(gaps(chrU), "Views")

mask2 <- Mask(mask.width=length(chru),
start=c(50000, 350000, 543900), width=25000)

names(mask2) <- "some

ugly regions”

masks(chrU) <- append(masks(chrU), mask2)

chru
as(chrU, "Views")

as(gaps(chrU), "Views")

e

EXAMPLE 4

e
Note that unlike maskMotif (), mask() returns an XStringViews object!

masking "by position”
mask ("AxyxyxBC", 2, 6)

masking "by content”
mask ("AxyxyxBC", "xyx")

noN_chrU <- mask(chru
noN_chru

., "N™)

alphabetFrequency(noN_chrU, collapse=TRUE)

39

match-utils

Utility functions operating on the matches returned by a high-level
matching function

40 match-utils

Description

Miscellaneous utility functions operating on the matches returned by a high-level matching function
like matchPattern, matchPDict, etc...

Usage

mismatch(pattern, x, fixed=TRUE)
nmatch(pattern, x, fixed=TRUE)
nmismatch(pattern, x, fixed=TRUE)

S4 method for signature 'MIndex'
coverage(x, shift=0L, width=NULL, weight=1L)
S4 method for signature 'MaskedXString'
coverage(x, shift=0L, width=NULL, weight=1L)

Arguments
pattern The pattern string.
X An XString Views object for mismatch (typically, one returned by matchPattern(pattern,
subject)).
An Mlndex object for coverage, or any object for which a coverage method is
defined. See ?coverage.
fixed See ?" lowlevel-matching™.
shift, width See ?coverage.
weight An integer vector specifying how much each element in x counts.
Details

The mismatch function gives the positions of the mismatching letters of a given pattern relatively
to its matches in a given subject.

The nmatch and nmismatch functions give the number of matching and mismatching letters pro-
duced by the mismatch function.

The coverage function computes the "coverage" of a subject by a given pattern or set of patterns.

Value

mismatch: a list of integer vectors.
nmismatch: an integer vector containing the length of the vectors produced by mismatch.

coverage: an Rle object indicating the coverage of x. See ?coverage for the details. If x is an
Mindex object, the coverage of a given position in the underlying sequence (typically the subject
used during the search that returned x) is the number of matches (or hits) it belongs to.

See Also

lowlevel-matching, matchPattern, matchPDict, XString-class, XStringViews-class, MIndex-class,
coverage, align-utils in the pwalign package

matchLRPatterns 41

Examples

-
mismatch() / nmismatch()

#H -
subject <- DNAString("ACGTGCA")

m <- matchPattern(”NCA", subject, max.mismatch=1, fixed=FALSE)
mismatch(”NCA", m)

nmismatch("”NCA", m)

e LR PR e
coverage()
G S e
coverage(m)

See ?matchPDict for examples of using coverage() on an MIndex object...

matchLRPatterns Find paired matches in a sequence

Description

The matchLRPatterns function finds paired matches in a sequence i.e. matches specified by a left
pattern, a right pattern and a maximum distance between the left pattern and the right pattern.

Usage

matchLRPatterns(Lpattern, Rpattern, max.gaplength, subject,
max.Lmismatch=0, max.Rmismatch=0,
with.Lindels=FALSE, with.Rindels=FALSE,
Lfixed=TRUE, Rfixed=TRUE)

Arguments
Lpattern The left part of the pattern.
Rpattern The right part of the pattern.

max.gaplength The max length of the gap in the middle i.e the max distance between the left
and right parts of the pattern.

subject An XString, XStringViews or MaskedXString object containing the target se-
quence.

max.Lmismatch The maximum number of mismatching letters allowed in the left part of the pat-
tern. If non-zero, an inexact matching algorithm is used (see the matchPattern
function for more information).

max.Rmismatch Same as max.Lmismatch but for the right part of the pattern.

42 matchLRPatterns

with.Lindels If TRUE then indels are allowed in the left part of the pattern. In that case
max.Lmismatch is interpreted as the maximum "edit distance" allowed in the
left part of the pattern.
See the with.indels argument of the matchPattern function for more infor-
mation.

with.Rindels Same as with.Lindels but for the right part of the pattern.

Lfixed Only with a DNAString or RNAString subject can a Lfixed value other than the
default (TRUE) be used.
With Lfixed=FALSE, ambiguities (i.e. letters from the [IUPAC Extended Genetic
Alphabet (see IUPAC_CODE_MAP) that are not from the base alphabet) in the left
pattern and in the subject are interpreted as wildcards i.e. they match any letter
that they stand for.
Lfixed can also be a character vector, a subset of c("pattern”, "subject”).
Lfixed=c("pattern”, "subject") is equivalent to Lfixed=TRUE (the default).
An empty vector is equivalent to Lfixed=FALSE. With Lfixed="subject", am-
biguities in the pattern only are interpreted as wildcards. With Lfixed="pattern”,
ambiguities in the subject only are interpreted as wildcards.

Rfixed Same as Lfixed but for the right part of the pattern.

Value

An XStringViews object containing all the matches, even when they are overlapping (see the ex-
amples below), and where the matches are ordered from left to right (i.e. by ascending starting
position).

Author(s)

H. Pages

See Also

matchPattern, matchProbePair, trimLRPatterns, findPalindromes, reverseComplement, XString-
class, XStringViews-class, MaskedXString-class

Examples

library(BSgenome.Dmelanogaster.UCSC.dm3)

subject <- Dmelanogaster$chr3R

Lpattern <- "AGCTCCGAG"

Rpattern <- "TTGTTCACA"

matchLRPatterns(Lpattern, Rpattern, 500, subject) # 1 match

Note that matchLRPatterns() will return all matches, even when they are
overlapping:

subject <- DNAString(”AAATTAACCCTT")

matchLRPatterns("AA", "TT", @, subject) # 1 match

matchLRPatterns("AA"”, "TT", 1, subject) # 2 matches

matchLRPatterns("”AA", "TT", 3, subject) # 3 matches

matchLRPatterns("AA", "TT", 7, subject) # 4 matches

matchPattern 43

matchPattern String searching functions

Description

A set of functions for finding all the occurrences (aka "matches" or "hits") of a given pattern (typi-
cally short) in a (typically long) reference sequence or set of reference sequences (aka the subject)

Usage

matchPattern(pattern, subject,
max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,
algorithm="auto")

countPattern(pattern, subject,
max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,
algorithm="auto")

vmatchPattern(pattern, subject,
max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,
algorithm="auto”, ...)

vcountPattern(pattern, subject,
max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,

algorithm="auto”, ...)
Arguments
pattern The pattern string.
subject An XString, XStringViews or MaskedXString object for matchPattern and
countPattern.

An XStringSet or XStringViews object for vmatchPattern and vcountPattern.

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ?~ lowlevel-matching™
for the details). If non-zero, an algorithm that supports inexact matching is used.

with.indels If TRUE then indels are allowed. In that case, min.mismatch must be @ and
max.mismatch is interpreted as the maximum "edit distance" allowed between
the pattern and a match. Note that in order to avoid pollution by redundant
matches, only the "best local matches" are returned. Roughly speaking, a "best
local match" is a match that is locally both the closest (to the pattern P) and the
shortest. More precisely, a substring S’ of the subject S is a "best local match"
iff:

44 matchPattern

(a) nedit(P, S') <= max.mismatch

(b) for every substring S1 of S':
nedit(P, S1) > nedit(P, S')

(c) for every substring S2 of S that contains S':
nedit(P, S2) >= nedit(P, S')

One nice property of "best local matches" is that their first and last letters are
guaranteed to match the letters in P that they align with.

fixed If TRUE (the default), an IUPAC ambiguity code in the pattern can only match
the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity
code in the pattern can match any letter in the subject that is associated with the
code, and vice versa. See ?~ lowlevel-matching™ for more information.

n on n n

algorithm One of the following: "auto”, "naive-exact”, "naive-inexact”, "boyer-moore”,
"shift-or"” or "indels”.

Additional arguments for methods.

Details

LEINNT

Available algorithms are: “naive exact”, “naive inexact”, “Boyer-Moore-like”, “shift-or” and “in-
dels”. Not all of them can be used in all situations: restrictions apply depending on the "search
criteria" i.e. on the values of the pattern, subject, max.mismatch, min.mismatch, with.indels
and fixed arguments.

It is important to note that the algorithm argument is not part of the search criteria. This is because
the supported algorithms are interchangeable, that is, if 2 different algorithms are compatible with
a given search criteria, then choosing one or the other will not affect the result (but will most likely
affect the performance). So there is no "wrong choice" of algorithm (strictly speaking).

Using algorithm="auto" (the default) is recommended because then the best suited algorithm will
automatically be selected among the set of algorithms that are valid for the given search criteria.

Value

An XStringViews object for matchPattern.
A single integer for countPattern.
An MIndex object for vmatchPattern.

An integer vector for vcountPattern, with each element in the vector corresponding to the number
of matches in the corresponding element of subject.

Note

Use matchPDict if you need to match a (big) set of patterns against a reference sequence.

Use pairwiseAlignment from the pwalign package if you need to solve a (Needleman-Wunsch)
global alignment, a (Smith-Waterman) local alignment, or an (ends-free) overlap alignment prob-
lem.

matchPattern

See Also

* lowlevel-matching

* matchPDict

* pairwiseAlignment
* mismatch

* matchLRPatterns

* matchProbePair

* maskMotif

* alphabetFrequency
* XStringViews class
¢ Mindex class

* pairwiseAlignment in the pwalign package

Examples

B oo
A. matchPattern()/countPattern()
et

A simple inexact matching example with a short subject:
X <- DNAString("AAGCGCGATATG")

ml <- matchPattern(”"GCNNNAT", x)

ml

m2 <- matchPattern(”GCNNNAT", x, fixed=FALSE)

m2

as.matrix(m2)

With DNA sequence of yeast chromosome number 1:

data(yeastSEQCHR1)

yeast1l <- DNAString(yeastSEQCHR1)

Ppil <- "GAACNNNNNCTC" # a restriction enzyme pattern

match1.Ppil <- matchPattern(Ppil, yeastl, fixed=FALSE)

match2.Ppil <- matchPattern(Ppil, yeastl, max.mismatch=1, fixed=FALSE)

With a genome containing isolated Ns:
library(BSgenome.Celegans.UCSC.ce2)

chrll <- Celegans[["chrII"]]

alphabetFrequency(chrlI)

matchPattern(”N"”, chrlI)

matchPattern("TGGGTGTCTTT", chrII) # no match
matchPattern("TGGGTGTCTTT", chrII, fixed=FALSE) # 1 match

Using wildcards (”"N") in the pattern on a genome containing N-blocks:
library(BSgenome.Dmelanogaster.UCSC.dm3)

chrX <- maskMotif(Dmelanogaster$chrX, "N")

as(chrX, "Views") # 4 non masked regions

matchPattern("TTTATGNTTGGTA”, chrX, fixed=FALSE)

Can also be achieved with no mask:

46

matchPattern

masks(chrX) <- NULL
matchPattern("TTTATGNTTGGTA", chrX, fixed="subject")

B m oo
B. vmatchPattern()/vcountPattern()
B m o

Load Fly upstream sequences (i.e. the sequences 2000 bases upstream of
annotated transcription starts):
dm3_upstream_filepath <- system.file("extdata",
"dm3_upstream2000.fa.gz",
package="Biostrings")
dm3_upstream <- readDNAStringSet(dm3_upstream_filepath)
dm3_upstream

Ebox <- DNAString("”CANNTG")

subject <- dm3_upstream

mindex <- vmatchPattern(Ebox, subject, fixed="subject")

nmatch_per_seq <- elementNROWS(mindex) # Get the number of matches per
subject element.

sum(nmatch_per_seq) # Total number of matches.

table(nmatch_per_seq)

Let's have a closer look at one of the upstream sequences with most
matches:

i@ <- which.max(nmatch_per_seq)

subject@ <- subject[[i0]]

ir@ <- mindex[[i@]] # matches in 'subject®' as an IRanges object

ire

Views(subject@, ir@) # matches in 'subject@' as a Views object

T
C. WITH INDELS
e

library(BSgenome.Celegans.UCSC.ce2)
subject <- Celegans$chrI

patternl <- DNAString("ACGGACCTAATGTTATC")
pattern2 <- DNAString("ACGGACCTVATGTTRTC")

Allowing up to 2 mismatching letters doesn't give any match:
mla <- matchPattern(patternl, subject, max.mismatch=2)

But allowing up to 2 edit operations gives 3 matches:

system.time(mlb <- matchPattern(patternl, subject, max.mismatch=2,
with.indels=TRUE))

m1b

pwalign::pairwiseAlignment() returns the (first) best match only:

if (interactive()) {
library(pwalign)
mat <- nucleotideSubstitutionMatrix(match=1, mismatch=0, baseOnly=TRUE)
Note that this call to pairwiseAlignment() will need to

matchPDict 47

allocate 733.5 Mb of memory (i.e. length(pattern) * length(subject)

* 3 bytes).

system.time(pwa <- pairwiseAlignment(patternl, subject, type="local”,
substitutionMatrix=mat,
gapOpening=0, gapExtension=1))

pwa

With IUPAC ambiguities in the pattern:

m2a <- matchPattern(pattern2, subject, max.mismatch=2,
fixed="subject")

m2b <- matchPattern(pattern2, subject, max.mismatch=2,
with.indels=TRUE, fixed="subject")

All the matches in 'mlb' and 'm2a' should also appear in 'm2b':
stopifnot(suppressWarnings(all(ranges(mib) %in% ranges(m2b))))
stopifnot(suppressWarnings(all(ranges(m2a) %in% ranges(m2b))))

Bt oo
D. WHEN 'with.indels=TRUE', ONLY "BEST LOCAL MATCHES" ARE REPORTED
HHE = m o m e

With deletions in the subject:

subject <- BString("ACDEFxxxCDEFxxxABCE")

matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)

With insertions in the subject:

subject <- BString("AiBCDiEFxxxABCDiiFxxxAiBCDEFxxxABCiDEF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)

With substitutions (note that the "best local matches” can introduce
indels and therefore be shorter than 6):

subject <- BString("AsCDEFxxxABDCEFxxxBACDEFxxxABCEDF")
matchPattern(”ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)

matchPDict Matching a dictionary of patterns against a reference

Description

A set of functions for finding all the occurrences (aka "matches" or "hits") of a set of patterns (aka
the dictionary) in a reference sequence or set of reference sequences (aka the subject)

The following functions differ in what they return: matchPDict returns the "where" information
i.e. the positions in the subject of all the occurrences of every pattern; countPDict returns the "how
many times" information i.e. the number of occurrences for each pattern; and whichPDict returns
the "who" information i.e. which patterns in the input dictionary have at least one match.

48

matchPDict

vcountPDict and vwhichPDict are vectorized versions of countPDict and whichPDict, respec-
tively, that is, they work on a set of reference sequences in a vectorized fashion.

This man page shows how to use these functions (aka the *PDict functions) for exact matching
of a constant width dictionary i.e. a dictionary where all the patterns have the same length (same
number of nucleotides).

See ? matchPDict-inexact™ for how to use these functions for inexact matching or when the
original dictionary has a variable width.

Usage

matchPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

countPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

whichPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto"”, verbose=FALSE)

vcountPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto"”, collapse=FALSE, weight=1L,
verbose=FALSE, ...)

vwhichPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

Arguments

pdict A PDict object containing the preprocessed dictionary.

All these functions also work with a dictionary that has not been preprocessed (in
other words, the pdict argument can receive an XStringSet object). Of course, it
won’t be as fast as with a preprocessed dictionary, but it will generally be slightly
faster than using matchPattern/countPattern or vmatchPattern/vcountPattern
in a "lapply/sapply loop", because, here, looping is done at the C-level. How-
ever, by using a non-preprocessed dictionary, many of the restrictions that apply

to preprocessed dictionaries don’t apply anymore. For example, the dictionary
doesn’t need to be rectangular or to be a DNAStringSet object: it can be any
type of XStringSet object and have a variable width.

subject An XString or MaskedXString object containing the subject sequence for matchPDict,
countPDict and whichPDict.
An XStringSet object containing the subject sequences for vcountPDict and
vwhichPDict.
If pdict is a PDict object (i.e. a preprocessed dictionary), then subject must
be of base class DNAString. Otherwise, subject must be of the same base class
as pdict.

matchPDict 49

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ?isMatchingAt
for the details). This man page focuses on exact matching of a constant width
dictionary so max.mismatch=0 in the examples below. See ? matchPDict-inexact”
for inexact matching.

with.indels Only supported by countPDict, whichPDict, vcountPDict and vwhichPDict
at the moment, and only when the input dictionary is non-preprocessed (i.e.
XStringSet).
If TRUE then indels are allowed. In that case, min.mismatch must be @ and
max.mismatch is interpreted as the maximum "edit distance" allowed between
any pattern and any of its matches. See ? matchPattern™ for more information.

fixed Whether IUPAC ambiguity codes should be interpreted literally or not (see
?isMatchingAt for more information). This man page focuses on exact match-
ing of a constant width dictionary so fixed=TRUE in the examples below. See
? matchPDict-inexact™ for inexact matching.

algorithm Ignored if pdict is a preprocessed dictionary (i.e. a PDict object). Other-
wise, can be one of the following: "auto”, "naive-exact”, "naive-inexact”,
"boyer-moore” or "shift-or"”. See ?matchPattern for more information.
Note that "indels" is not supported for now.

verbose TRUE or FALSE.

collapse, weight
collapse must be FALSE, 1, or 2.
If collapse=FALSE (the default), then weight is ignored and vcountPDict re-
turns the full matrix of counts (M@). If collapse=1, then M@ is collapsed "hori-
zontally" i.e. it is turned into a vector with length equal to length(pdict).
If weight=1L (the default), then this vector is defined by rowSums(M@). If
collapse=2, then M@ is collapsed "vertically" i.e. it is turned into a vector with
length equal to length(subject). If weight=1L (the default), then this vector
is defined by colSums(M@).
If collapse=1 or collapse=2, then the elements in subject (collapse=1) or
in pdict (collapse=2) can be weighted thru the weight argument. In that case,
the returned vector is defined by M@ %*% rep(weight, length.out=length(subject))
and rep(weight, length.out=length(pdict)) %=*% M@, respectively.

Additional arguments for methods.

Details

In this man page, we assume that you know how to preprocess a dictionary of DNA patterns that
can then be used with any of the *PDict functions described here. Please see ?PDict if you don’t.

When using the *PDict functions for exact matching of a constant width dictionary, the standard
way to preprocess the original dictionary is by calling the PDict constructor on it with no extra
arguments. This returns the preprocessed dictionary in a PDict object that can be used with any of
the *PDict functions.

Value

If M denotes the number of patterns in the pdict argument (M <- length(pdict)), then matchPDict
returns an MIndex object of length M, and countPDict an integer vector of length M.

50 matchPDict

whichPDict returns an integer vector made of the indices of the patterns in the pdict argument that
have at least one match.

If N denotes the number of sequences in the subject argument (N <- length(subject)), then
vcountPDict returns an integer matrix with M rows and N columns, unless the collapse argument
is used. In that case, depending on the type of weight, an integer or numeric vector is returned (see
above for the details).

vwhichPDict returns a list of N integer vectors.

Author(s)
H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

PDict-class, MIndex-class, matchPDict-inexact, isMatchingAt, coverage ,MIndex-method, matchPattern,
alphabetFrequency, DNAStringSet-class, XStringViews-class, MaskedDNAString-class

Examples

HHE = e
A. A SIMPLE EXAMPLE OF EXACT MATCHING
B = m e

Creating the pattern dictionary:
library(drosophila2probe)
dict@ <- DNAStringSet(drosophila2probe)

dicto # The original dictionary.
length(dict@) # Hundreds of thousands of patterns.
pdict@ <- PDict(dict@) # Store the original dictionary in

a PDict object (preprocessing).

Using the pattern dictionary on chromosome 3R:
library(BSgenome.Dmelanogaster.UCSC.dm3)

chr3R <- Dmelanogaster$chr3R # Load chromosome 3R
chr3r
mi@ <- matchPDict(pdict®@, chr3R) # Search...

Looking at the matches:
start_index <- startIndex(mio)
length(start_index)
start_index[[8220]]

end_index <- endIndex(mi@)
end_index[[8220]]

nmatch_per_pat <- elementNROWS(mi@)
nmatch_per_pat[[8220]]

mio[[8220]] # Get the matches for the 8220th pattern.

Get the start index.

Same as the original dictionary.
Starts of the 8220th pattern.

Get the end index.

Ends of the 8220th pattern.

Get the number of matches per pattern.

% o H

matchPDict 51

start(mio[[822011) # Equivalent to startIndex(mi@)[[8220]].
sum(nmatch_per_pat) # Total number of matches.
table(nmatch_per_pat)

i@ <- which(nmatch_per_pat == max(nmatch_per_pat))

pdicto[[io]] # The pattern with most occurrences.
mio[[ie]] # Its matches as an IRanges object.
Views(chr3R, mi@[[i0]]) # And as an XStringViews object.

Get the coverage of the original subject:
cov3R <- as.integer(coverage(mi@, width=length(chr3R)))
max (cov3R)
mean (cov3R)
sum(cov3R != @) / length(cov3R) # Only 2.44% of chr3R is covered.
if (interactive()) {
library(graphics)
plotCoverage <- function(cx, start, end)
{
graphics::plot.new()
graphics::plot.window(c(start, end), c(@, 20))
graphics::axis(1)
graphics::axis(2)
graphics::axis(4)
graphics::lines(start:end, cx[start:end], type="1")
}
plotCoverage(cov3R, 27600000, 27900000)
3

Bt e
B. NAMING THE PATTERNS
Bt e

The names of the original patterns, if any, are propagated to the
PDict and MIndex objects:

names(dict@) <- mkAllStrings(letters, 4)[seq_len(length(dict@))]
dicteo

dicto[["abcd"]]

pdict@n <- PDict(dict@)

names(pdicton)[1:30]

pdict@n[["abcd"1]

midn <- matchPDict(pdict@n, chr3R)

names(mion)[1:30]

mion[["abcd"]1]

This is particularly useful when unlisting an MIndex object:
unlist(mi@)[1:10]
unlist(mi@n)[1:10] # keep track of where the matches are coming from

HHE = e
C. PERFORMANCE
B = m e

If getting the number of matches is what matters only (without
regarding their positions), then countPDict() will be faster,

52

especially when there is a high number of matches:

nmatch_per_pat@ <- countPDict(pdict®@, chr3R)
stopifnot(identical (nmatch_per_pat@, nmatch_per_pat))

if (interactive()) {
What's the impact of the dictionary width on performance?
Below is some code that can be used to figure out (will take a long
time to run). For different widths of the original dictionary, we
look at:
o pptime: preprocessing time (in sec.) i.e. time needed for
#it building the PDict object from the truncated input
sequences;
o nnodes: nb of nodes in the resulting Aho-Corasick tree;
o nupatt: nb of unique truncated input sequences;
o matchtime: time (in sec.) needed to find all the matches;
o totalcount: total number of matches.
getPDictStats <- function(dict, subject)
{
ans_width <- width(dict[1])
ans_pptime <- system.time(pdict <- PDict(dict))[["elapsed”]]
pptb <- pdict@threeparts@pptb
ans_nnodes <- nnodes(pptb)
ans_nupatt <- sum(!duplicated(pdict))
ans_matchtime <- system.time(
mi@ <- matchPDict(pdict, subject)
Y[["elapsed"]]
ans_totalcount <- sum(elementNROWS(mi@))
list(
width=ans_width,
pptime=ans_pptime,
nnodes=ans_nnodes,
nupatt=ans_nupatt,
matchtime=ans_matchtime,
totalcount=ans_totalcount
)
}
stats <- lapply(8:25,
function(width)
getPDictStats(DNAStringSet(dict@, end=width), chr3R))
stats <- data.frame(do.call(rbind, stats))

stats
3
-
D. USING A NON-PREPROCESSED DICTIONARY
——

dict3 <- DNAStringSet(mkAllStrings(DNA_BASES, 3)) # all trinucleotides
dict3
pdict3 <- PDict(dict3)

The 3 following calls are equivalent (from faster to slower):

matchPDict

matchPDict

res3a <- countPDict(pdict3, chr3R)
res3b <- countPDict(dict3, chr3R)
res3c <- sapply(dict3,

function(pattern) countPattern(pattern, chr3R))
stopifnot(identical(res3a, res3b))
stopifnot(identical(res3a, res3c))

One reason for using a non-preprocessed dictionary is to get rid of
all the constraints associated with preprocessing, e.g., when

preprocessing with PDict(), the input dictionary must be DNA and a
Trusted Band must be defined (explicitly or implicitly).

See '?PDict' for more information about these constraints.

In particular, using a non-preprocessed dictionary can be

useful for the kind of inexact matching that can't be achieved

with a PDict object (if performance is not an issue).

See '? matchPDict-inexact™' for more information about inexact

matching.

dictD <- xscat(dict3, "N”, reverseComplement(dict3))

The 2 following calls are equivalent (from faster to slower):
resDa <- matchPDict(dictD, chr3R, fixed=FALSE)
resDb <- sapply(dictD,

function(pattern)

matchPattern(pattern, chr3R, fixed=FALSE))
stopifnot(all(sapply(seq_len(length(dictD)),
function(i)
identical(resDal[[il]], as(resDb[[i]], "IRanges"”)))))

A non-preprocessed dictionary can be of any base class i.e. BString,
RNAString, and AAString, in addition to DNAString:
matchPDict (AAStringSet(c("DARC"”, "EGH")), AAString("KMFPRNDEGHSTTWTEE"))

B — o
E. vcountPDict()
B m o

Load Fly upstream sequences (i.e. the sequences 2000 bases upstream of
annotated transcription starts):
dm3_upstream_filepath <- system.file("extdata",
"dm3_upstream2000.fa.gz",
package="Biostrings")
dm3_upstream <- readDNAStringSet(dm3_upstream_filepath)
dm3_upstream

subject <- dm3_upstream[1:100]

matl <- vcountPDict(pdict@, subject)
dim(mat1) # length(pdict@) x length(subject)
nhit_per_probe <- rowSums(mat1)
table(nhit_per_probe)

Without vcountPDict(), 'matl' could have been computed with:
mat2 <- sapply(unname(subject), function(x) countPDict(pdict@, x))

53

54

matchPDict

stopifnot(identical(mat1, mat2))
but using vcountPDict() is faster (10x or more, depending of the
average length of the sequences in 'subject').

if (interactive()) {
This will fail (with message "allocMatrix: too many elements
specified”) because, on most platforms, vectors and matrices in R
are limited to 2”31 elements:
subject <- dm3_upstream
vcountPDict(pdict@, subject)
length(pdict@) * length(dm3_upstream)
1 * length(pdict@) * length(dm3_upstream) # > 231
But this will work:
nhit_per_seq <- vcountPDict(pdict@, subject, collapse=2)
sum(nhit_per_seq >= 1) # nb of subject sequences with at least 1 hit
table(nhit_per_seq) # max is 74
which.max(nhit_per_seq) # 1133
sum(countPDict(pdict@, subject[[1133]1]1)) # 74

B m o
F. RELATIONSHIP BETWEEN vcountPDict(), countPDict() AND

vcountPattern()

B m o
subject <- dm3_upstream

The 4 following calls are equivalent (from faster to slower):
mat3a <- vcountPDict(pdict3, subject)
mat3b <- vcountPDict(dict3, subject)
mat3c <- sapply(dict3,

function(pattern) vcountPattern(pattern, subject))
mat3d <- sapply(unname(subject),

function(x) countPDict(pdict3, x))
stopifnot(identical(mat3a, mat3b))
stopifnot(identical(mat3a, t(mat3c)))
stopifnot(identical(mat3a, mat3d))

The 3 following calls are equivalent (from faster to slower):
nhitpp3a <- vcountPDict(pdict3, subject, collapse=1) # rowSums(mat3a)
nhitpp3b <- vcountPDict(dict3, subject, collapse=1)
nhitpp3c <- sapply(dict3,

function(pattern) sum(vcountPattern(pattern, subject)))
stopifnot(identical (nhitpp3a, nhitpp3b))
stopifnot(identical(nhitpp3a, nhitpp3c))

The 3 following calls are equivalent (from faster to slower):
nhitps3a <- vcountPDict(pdict3, subject, collapse=2) # colSums(mat3a)
nhitps3b <- vcountPDict(dict3, subject, collapse=2)
nhitps3c <- sapply(unname(subject),

function(x) sum(countPDict(pdict3, x)))
stopifnot(identical(nhitps3a, nhitps3b))
stopifnot(identical(nhitps3a, nhitps3c))

matchPDict 55

B oo
G. vwhichPDict()

B oo
subject <- dm3_upstream

The 4 following calls are equivalent (from faster to slower):

vwp3a <- vwhichPDict(pdict3, subject)

vwp3b <- vwhichPDict(dict3, subject)

vwp3c <- lapply(seq_len(ncol(mat3a)), function(j) which(mat3al[, j] != 0oL))
vwp3d <- lapply(unname(subject), function(x) whichPDict(pdict3, x))
stopifnot(identical (vwp3a, vwp3b))

stopifnot(identical(vwp3a, vwp3c))

stopifnot(identical (vwp3a, vwp3d))

table(sapply(vwp3a, length))

which.min(sapply(vwp3a, length))

Get the trinucleotides not represented in upstream sequence 21823:
dict3[-vwp3al[[21823]]1] # 2 trinucleotides

Sanity check:
tnf <- trinucleotideFrequency(subject[[21823]])
stopifnot(all(names(tnf)[tnf == @] == dict3[-vwp3al[[21823]1]))

H. MAPPING PROBE SET IDS BETWEEN CHIPS WITH vwhichPDict()
Bttt
Here we show a simple (and very naive) algorithm for mapping probe
set IDs between the hgu95av2 and hgul33a chips (Affymetrix).

2 probe set IDs are considered mapped iff they share at least one

probe.

WARNING: This example takes about 1@ minutes to run.

if (interactive()) {

library(hgu95av2probe)
library(hgul33aprobe)

probes1 <- DNAStringSet(hgu95av2probe)
probes2 <- DNAStringSet(hgul33aprobe)
pdict2 <- PDict(probes2)

Get the mapping from probesl to probes2 (based on exact matching):
map1to2 <- vwhichPDict(pdict2, probesl)

The following helper function uses the probe level mapping to induce
the mapping at the probe set IDs level (from hgu95av2 to hgul33a).
To keep things simple, 2 probe set IDs are considered mapped iff
each of them contains at least one probe mapped to one probe of
the other:
mapProbeSetIDs1to2 <- function(psID)

unique (hgul33aprobe$Probe.Set.Name[unlist(

map1to2[hgu95av2probe$Probe.Set.Name == psID]
D

Use the helper function to build the complete mapping:

56

ps
ma

matchPDict-inexact

IDs1 <- unique(hgu95av2probe$Probe.Set.Name)
pPSIDs1to2 <- lapply(psIDs1, mapProbeSetIDs1to2) # about 3 min.

names(mapPSIDs1to2) <- psIDs1

##
ta

#it
##
#it
#it
#i#
#it
#it

Do some basic stats:
ble(sapply(mapPSIDs1to2, length))

[ADVANCED USERS ONLY]

An alternative that is slightly faster is to put all the probes
(hgu95av2 + hgul33a) in a single PDict object and then query its
'dups@' slot directly. This slot is a Dups object containing the
mapping between duplicated patterns.

Note that we can do this only because all the probes have the
same length (25) and because we are doing exact matching:

probes12 <- DNAStringSet(c(hgu95av2probe$sequence, hgul33aprobe$sequence))

pd
du

ma

{

3

ma
na

#i#
st

ict12 <- PDict(probesi2)
ps@ <- pdict12@dups@

pProbeSetIDs1to2alt <- function(psID)

ii1 <- unique(togroup(dups@, which(hgu95av2probe$Probe.Set.Name == psID)))
ii2 <- members(dups@, ii1) - length(probes1)

ii2 <- ii2[ii2 >= 1L]

unique(hgul33aprobe$Probe.Set.Name[ii2])

pPSIDs1to2alt <- lapply(psIDs1, mapProbeSetIDs1to2alt) # about 5 min.
mes (mapPSIDs1to2alt) <- psIDsl

'mapPSIDs1to2alt' and 'mapPSIDs1to2' contain the same mapping:
opifnot(identical(lapply(mapPSIDs1to2alt, sort),
lapply(mapPSIDs1to2, sort)))

matchPDict-inexact Inexact matching with matchPDict()/countPDict()/whichPDict()

Description

The
(the
This
dicti

matchPDict, countPDict and whichPDict functions efficiently find the occurrences in a text
subject) of all patterns stored in a preprocessed dictionary.

man page shows how to use these functions for inexact (or fuzzy) matching or when the original
onary has a variable width.

See ?matchPDict for how to use these functions for exact matching of a constant width dictionary
i.e. a dictionary where all the patterns have the same length (same number of nucleotides).

matchPDict-inexact 57

Details

In this man page, we assume that you know how to preprocess a dictionary of DNA patterns that
can then be used with matchPDict, countPDict or whichPDict. Please see ?PDict if you don’t.

matchPDict and family support different kinds of inexact matching but with some restrictions.
Inexact matching is controlled via the definition of a Trusted Band during the preprocessing step
and/or via the max.mismatch, min.mismatch and fixed arguments. Defining a Trusted Band is
also required when the original dictionary is not rectangular (variable width), even for exact match-
ing. See ?PDict for how to define a Trusted Band.

Here is how matchPDict and family handle the Trusted Band defined on pdict:

¢ (1) Find all the exact matches of all the elements in the Trusted Band.

* (2) For each element in the Trusted Band that has at least one exact match, compare the head
and the tail of this element with the flanking sequences of the matches found in (1).

Note that the number of exact matches found in (1) will decrease exponentially with the width of
the Trusted Band. Here is a simple guideline in order to get reasonably good performance: if TBW
is the width of the Trusted Band (TBW <- tb.width(pdict)) and L the number of letters in the
subject (L <- nchar(subject)), then L / (4*TBW) should be kept as small as possible, typically <
10 or 20.

In addition, when a Trusted Band has been defined during preprocessing, then matchPDict and
family can be called with fixed=FALSE. In this case, IUPAC ambiguity codes in the head or the tail
of the PDict object are treated as ambiguities.

Finally, fixed="pattern” can be used to indicate that [UPAC ambiguity codes in the subject should
be treated as ambiguities. It only works if the density of codes is not too high. It works whether or
not a Trusted Band has been defined on pdict.

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

PDict-class, MIndex-class, matchPDict

B e
A. USING AN EXPLICIT TRUSTED BAND
Bt e

library(drosophila2probe)
dict@ <- DNAStringSet(drosophila2probe)
dict®@ # the original dictionary

58

Preprocess the original dictionary by defining a Trusted Band that
spans nucleotides 1 to 9 of each pattern.

pdict9 <- PDict(dict@, tb.end=9)

pdict9

tail(pdict9)

sum(duplicated(pdict9))

table(patternFrequency(pdict9))

library(BSgenome.Dmelanogaster.UCSC.dm3)

chr3R <- Dmelanogaster$chr3R

chr3r

table(countPDict(pdict9, chr3R, max.mismatch=1))
table(countPDict(pdict9, chr3R, max.mismatch=3))
table(countPDict(pdict9, chr3R, max.mismatch=5))

At
B. COMPARISON WITH EXACT MATCHING
HHE = m o m

When the original dictionary is of constant width, exact matching
(i.e. 'max.mismatch=0' and 'fixed=TRUE) will be more efficient with
a full-width Trusted Band (i.e. a Trusted Band that covers the enti
dictionary) than with a Trusted Band of width < width(dict@).
pdict® <- PDict(dicto)

count®@® <- countPDict(pdict@, chr3R)

count@b <- countPDict(pdict9, chr3R, max.mismatch=0)
identical(count@b, count®) # TRUE

B =
C. USING AN EXPLICIT TRUSTED BAND ON A VARIABLE WIDTH DICTIONARY
HHE

Here is a small variable width dictionary that contains IUPAC

ambiguities (pattern 1 and 3 contain an N):

dict® <- DNAStringSet(c("TACCNG", "TAGT", "CGGNT", "AGTAG", "TAGT"))
(Note that pattern 2 and 5 are identical.)

If we only want to do exact matching, then it is recommended to use
the widest possible Trusted Band i.e. to set its width to
'min(width(dict@))' because this is what will give the best
performance. However, when 'dict@' contains IUPAC ambiguities (like
in our case), it could be that one of them is falling into the
Trusted Band so we get an error (only base letters can go in the
Trusted Band for now):
Not run:
PDict(dict@, tb.end=min(width(dict®))) # Error!

End(Not run)
In our case, the Trusted Band cannot be wider than 3:

pdict <- PDict(dict@, tb.end=3)
tail(pdict)

matchPDict-inexact

re

matchPDict-inexact 59

subject <- DNAString("TAGTACCAGTTTCGGG")

m <- matchPDict(pdict, subject)
elementNROWS(m) # pattern 2 and 5 have 1 exact match
m[[2]1]

We can take advantage of the fact that our Trusted Band doesn't cover
the entire dictionary to allow inexact matching on the uncovered parts
(the tail in our case):

m <- matchPDict(pdict, subject, fixed=FALSE)
elementNROWS(m) # now pattern 1 has 1 match too
mC[1]1]

m <- matchPDict(pdict, subject, max.mismatch=1)
elementNROWS(m) # now pattern 4 has 1 match too
mL[4]1]

m <- matchPDict(pdict, subject, max.mismatch=1, fixed=FALSE)
elementNROWS(m) # now pattern 3 has 1 match too

m[[3]] # note that this match is "out of limit”
Views(subject, m[[3]1])

m <- matchPDict(pdict, subject, max.mismatch=2)
elementNROWS(m) # pattern 4 gets 1 additional match
mL[4]1]

Unlist all matches:
unlist(m)

B m o
D. WITH IUPAC AMBIGUITY CODES IN THE PATTERNS

#H# -
The Trusted Band cannot contain IUPAC ambiguity codes so patterns

with ambiguity codes can only be preprocessed if we can define a

Trusted Band with no ambiguity codes in it.

dict <- DNAStringSet(c("AAACAAKS", "GGGAAA", "TNCCGGG"))
pdict <- PDict(dict, tb.start=3, tb.width=4)
subject <- DNAString("AAACAATCCCGGGAAACAAGG")

matchPDict(pdict, subject)
matchPDict(pdict, subject, fixed="subject"”)

Sanity checks:
resl <- as.list(matchPDict(pdict, subject))
res2 <- as.list(matchPDict(dict, subject))
res3 <- lapply(dict,

function(pattern)

as(matchPattern(pattern, subject), "IRanges"))

stopifnot(identical(res1, res2))
stopifnot(identical(res1, res3))

60 matchProbePair
resl <- as.list(matchPDict(pdict, subject, fixed="subject"))
res2 <- as.list(matchPDict(dict, subject, fixed="subject"))
res3 <- lapply(dict,
function(pattern)
as(matchPattern(pattern, subject, fixed="subject”), "IRanges"))
stopifnot(identical(res1, res2))
stopifnot(identical(resl, res3))
B o
E. WITH IUPAC AMBIGUITY CODES IN THE SUBJECT
s
'fixed="pattern”' (or 'fixed=FALSE') can be used to indicate that
IUPAC ambiguity codes in the subject should be treated as ambiguities.
pdict <- PDict(c("ACAC”, "TCCG"))
matchPDict(pdict, DNAString("ACNCCGT"))
matchPDict(pdict, DNAString("”ACNCCGT"), fixed="pattern")
matchPDict(pdict, DNAString("ACWCCGT"), fixed="pattern")
matchPDict(pdict, DNAString("ACRCCGT"), fixed="pattern")
matchPDict(pdict, DNAString("”ACKCCGT"), fixed="pattern")
dict <- DNAStringSet(c("TTC", "CTT"))
pdict <- PDict(dict)
subject <- DNAString("CYTCACTTC")
mil <- matchPDict(pdict, subject, fixed="pattern")
mi2 <- matchPDict(dict, subject, fixed="pattern")
stopifnot(identical(as.list(mil), as.list(mi2)))
matchProbePair Find "theoretical amplicons" mapped to a probe pair
Description
In the context of a computer-simulated PCR experiment, one wants to find the amplicons mapped
to a given primer pair. The matchProbePair function can be used for this: given a forward and a
reverse probe (i.e. the chromosome-specific sequences of the forward and reverse primers used for
the experiment) and a target sequence (generally a chromosome sequence), the matchProbePair
function will return all the "theoretical amplicons" mapped to this probe pair.
Usage
matchProbePair (Fprobe, Rprobe, subject,
algorithm="auto"”, logfile=NULL,
verbose=FALSE, ...)
Arguments
Fprobe The forward probe.

Rprobe The reverse probe.

matchProbePair 61

subject A DNASTtring object (or an XStringViews object with a DNAString subject)
containing the target sequence.

algorithm One of the following: "auto”, "naive-exact”, "naive-inexact”, "boyer-moore"
or "shift-or"”. See matchPattern for more information.

logfile A file used for logging.

verbose TRUE or FALSE.

Additional arguments passed to matchPattern.

Details

The matchProbePair function does the following: (1) find all the "plus hits" i.e. the Fprobe and
Rprobe matches on the "plus" strand, (2) find all the "minus hits" i.e. the Fprobe and Rprobe
matches on the "minus" strand and (3) from the set of all (plus_hit, minus_hit) pairs, extract and
return the subset of "reduced matches" i.e. the (plus_hit, minus_hit) pairs such that (a) plus_hit <=
minus_hit and (b) there are no hits (plus or minus) between plus_hit and minus_hit. This set of
"reduced matches" is the set of "theoretical amplicons".

Additional arguments can be passed to matchPattern via the ... argument. This supports match-
ing to ambiguity codes. See matchPattern for more information on supported arguments.

Value

An XStringViews object containing the set of "theoretical amplicons".

Author(s)
H. Pages

See Also

matchPattern, matchLRPatterns, findPalindromes, reverseComplement, XStringViews-class

Examples

library(BSgenome.Dmelanogaster.UCSC.dm3)
subject <- Dmelanogaster$chr3R

With 20-nucleotide forward and reverse probes:

Fprobe <- "AGCTCCGAGTTCCTGCAATA"

Rprobe <- "CGTTGTTCACAAATATGCGG"

matchProbePair (Fprobe, Rprobe, subject) # 1 "theoretical amplicon”

With shorter forward and reverse probes, the risk of having multiple
"theoretical amplicons” increases:

Fprobe <- "AGCTCCGAGTTCC”

Rprobe <- "CGTTGTTCACAA"

matchProbePair(Fprobe, Rprobe, subject) # 2 "theoretical amplicons”
Fprobe <- "AGCTCCGAGTT"

Rprobe <- "CGTTGTTCACA"

matchProbePair(Fprobe, Rprobe, subject) # 9 "theoretical amplicons”

62 matchprobes

matchprobes (Deprecated) A function to match a query sequence to the sequences
of a set of probes.

Description

The query sequence, a character string (probably representing a transcript of interest), is scanned
for the presence of exact matches to the sequences in the character vector records. The indices of
the set of matches are returned.

The function is inefficient: it works on R’s character vectors, and the actual matching algorithm is
of time complexity length(query) times length(records)!

This function is now deprecated. See matchPattern, vmatchPattern and matchPDict for more
efficient sequence matching functions.

Usage

matchprobes(query, records, probepos=FALSE)

Arguments
query A character vector. For example, each element may represent a gene (transcript)
of interest. See Details.
records A character vector. For example, each element may represent the probes on a
DNA array.
probepos A logical value. If TRUE, return also the start positions of the matches in the
query sequence.
Details

toupper is applied to the arguments query and records before matching. The intention of this is
to make the matching case-insensitive. The function is embarrassingly naive. The matching is done
using the C library function strstr.

Value

A list. Its first element is a list of the same length as the input vector. Each element of the list is a
numeric vector containing the indices of the probes that have a perfect match in the query sequence.

If probepos is TRUE, the returned list has a second element: it is of the same shape as described
above, and gives the respective positions of the matches.

Author(s)

R. Gentleman, Laurent Gautier, Wolfgang Huber

See Also

matchPattern, vmatchPattern, matchPDict

matchPWM 63

Examples

Not run:

library(hgu95av2probe)
data("hgu95av2probe")

seq <- hgu95av2probe$sequence[1:20]
target <- paste(seq, collapse="")
matchprobes(target, seq, probepos=TRUE)

End(Not run)

matchPWM PWM creating, matching, and related utilities

Description

Position Weight Matrix (PWM) creating, matching, and related utilities for DNA data. (PWM for
amino acid sequences are not supported.)

Usage

PWM(x, type = c("log2probratio”, "prob"),
prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))

matchPWM(pwm, subject, min.score="80%", with.score=FALSE, ...)
countPWM(pwm, subject, min.score="80%", ...)
PWMscoreStartingAt(pwm, subject, starting.at=1)

Utility functions for basic manipulation of the Position Weight Matrix
maxWeights(x)

minWeights(x)

maxScore(x)

minScore(x)

unitScale(x)

S4 method for signature 'matrix’

reverseComplement(x, ...)

Arguments

X For PWM: a rectangular character vector or rectangular DNAStringSet object
("rectangular" means that all elements have the same number of characters) with
no IUPAC ambiguity letters, or a Position Frequency Matrix represented as an
integer matrix with row names containing at least A, C, G and T (typically the
result of a call to consensusMatrix).

FormaxWeights, minWeights, maxScore, minScore, unitScale and reverseComplement:
a Position Weight Matrix represented as a numeric matrix with row names A, C,
GandT.

64 matchPWM

type The type of Position Weight Matrix, either "log2probratio” or "prob". See De-
tails section for more information.

prior.params A positive numeric vector, which represents the parameters of the Dirichlet con-
jugate prior, with names A, C, G, and T. See Details section for more informa-

tion.

pwm A Position Weight Matrix represented as a numeric matrix with row names A,
C,Gand T.

subject Typically a DNAString object. A Views object on a DNAString subject, a

MaskedDNAString object, or a single character string, are also supported.
TUPAC ambiguity letters in subject are ignored (i.e. assigned weight 0) with a

warning.

min.score The minimum score for counting a match. Can be given as a character string
containing a percentage (e.g. "85%") of the highest possible score or as a single
number.

with.score TRUE or FALSE. If TRUE, then the score of each hit is included in the returned

object in a metadata column named score. Say the returned object is hits, this
metadata column can then be accessed with mcols(hits)$score.

starting.at An integer vector specifying the starting positions of the Position Weight Matrix
relatively to the subject.

Additional arguments for methods.

Details

The PWM function uses a multinomial model with a Dirichlet conjugate prior to calculate the esti-

mated probability of base b at position i. As mentioned in the Arguments section, prior.params

supplies the parameters for the DNA bases A, C, G, and T in the Dirichlet prior. These values re-

sult in a position independent initial estimate of the probabilities for the bases to be priorProbs =
prior.params/sum(prior.params) and the posterior (data infused) estimate for the probabilities

for the bases in each of the positions to be postProbs = (consensusMatrix(x) + prior.params)/(length(x)

+ sum(prior.params)). When type = "log2probratio”, the PWM =unitScale(log2(postProbs/priorProbs)).
When type = "prob”, the PWM = unitScale(postProbs).

Value

A numeric matrix representing the Position Weight Matrix for PWM.

A numeric vector containing the Position Weight Matrix-based scores for PWMscoreStartingAt.
An XStringViews object for matchPWM.

A single integer for countPWM.

A vector containing the max weight for each position in pwm for maxWeights.

A vector containing the min weight for each position in pwm for minWeights.

The highest possible score for a given Position Weight Matrix for maxScore.

The lowest possible score for a given Position Weight Matrix for minScore.

The modified numeric matrix given by (x - minScore(x)/ncol(x))/(maxScore(x) - minScore(x))
for unitScale.

matchPWM 65

A PWM obtained by reverting the column order in PWM x and by reassigning each row to its
complementary nucleotide for reverseComplement.

Author(s)
H. Pages and P. Aboyoun

References

Wasserman, WW, Sandelin, A., (2004) Applied bioinformatics for the identification of regulatory
elements, Nat Rev Genet., 5(4):276-87.

See Also

consensusMatrix, matchPattern, reverseComplement, DNAString-class, XStringViews-class

Examples

Data setup:

data(HNF4alpha)
library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R

chr3r

Create a PWM from a PFM or directly from a rectangular
DNAStringSet object:

pfm <- consensusMatrix(HNF4alpha)

pwm <- PWM(pfm) # same as 'PWM(HNF4alpha)'

Perform some general routines on the PWM:
round(pwm, 2)

maxWeights(pwm)

maxScore (pwm)

reverseComplement (pwm)

Score the first 5 positions:
PWMscoreStartingAt(pwm, chr3R, starting.at=1:5)

Match the plus strand:
hits <- matchPWM(pwm, chr3R)
nhit <- countPWM(pwm, chr3R) # same as 'length(hits)'

Use 'with.score=TRUE' to get the scores of the hits:
hits <- matchPWM(pwm, chr3R, with.score=TRUE)
head(mcols(hits)$score)

min(mcols(hits)$score / maxScore(pwm)) # should be >= 0.8

The scores can also easily be post-calculated:
scores <- PWMscoreStartingAt(pwm, subject(hits), start(hits))

Match the minus strand:
matchPWM(reverseComplement(pwm), chr3R)

66 Mindex-class

MIndex-class Mindex objects

Description

The Mlndex class is the basic container for storing the matches of a set of patterns in a subject
sequence.

Details

An MIndex object contains the matches (start/end locations) of a set of patterns found in an XString
object called "the subject string" or "the subject sequence" or simply "the subject".

matchPDict function returns an MIndex object.

Accessor methods
In the code snippets below, x is an MIndex object.
length(x): The number of patterns that matches are stored for.
names(x): The names of the patterns that matches are stored for.
startIndex(x): A list containing the starting positions of the matches for each pattern.

endIndex(x): A list containing the ending positions of the matches for each pattern.

elementNROWS(x): An integer vector containing the number of matches for each pattern.

Subsetting methods

In the code snippets below, x is an MIndex object.

x[[i1]: Extract the matches for the i-th pattern as an IRanges object.

Coercion

In the code snippets below, x is an MIndex object.
as(x, "CompressedIRangesList”): Turns x into an CompressedIRangesList object. This co-

ercion changes x from one IntegerRangesList subtype to another with the underlying Inte-
gerRanges values remaining unchanged.

Other utility methods and functions
In the code snippets below, x and mindex are MIndex objects and subject is the XString object
containing the sequence in which the matches were found.
unlist(x, recursive=TRUE, use.names=TRUE): Return all the matches in a single IRanges ob-
ject. recursive and use.names are ignored.

extractAllMatches(subject, mindex): Return all the matches in a single XStringViews object.

misc 67

Author(s)
H. Pages

See Also

matchPDict, PDict-class, IRanges-class, XStringViews-class

Examples

See ?matchPDict and ? matchPDict-inexact™ for some examples.

misc Some miscellaneous stuff

Description

Some miscellaneous stuff.

Usage

N50@(csizes)

Arguments

csizes A vector containing the contig sizes.

Value

N50: The N50 value as an integer.

The N50 contig size

Definition The N50 contig size of an assembly (aka the N50 value) is the size of the largest contig
such that the contigs larger than that have at least 50% the bases of the assembly.

How is it calculated? It is calculated by adding the sizes of the biggest contigs until you reach half
the total size of the contigs. The N50 value is then the size of the contig that was added last (i.e. the
smallest of the big contigs covering 50% of the genome).

What for? The N50 value is a standard measure of the quality of a de novo assembly.

Author(s)

Nicolas Delhomme <delhomme @embl.de>

See Also

XStringSet-class

68

Examples

moved_to_pwalign

Generate 10 random contigs of sizes comprised between 100 and 10000:
my.contig <- DNAStringSet(

sapply(

sample(c(100:10000), 10),

function(size)

paste(sample (DNA_BASES, size, replace=TRUE), collapse="")

)
)

Get their sizes:
my.size <- width(my.contig)

Calculate the N50 value of this set of contigs:

my.contig.N50 <- N50(my.size)

moved_

to_pwalign InDel objects

Description

Starting with BioC 3.19, the following functions are defined in the pwalign package:

writePairwiseAlignments
nucleotideSubstitutionMatrix
errorSubstitutionMatrices
qualitySubstitutionMatrices
insertion

deletion

unaligned

aligned

indel

nindel

PairwiseAlignments

pattern

alignedPattern
alignedSubject
PairwiseAlignmentsSingleSubject
nedit

mismatchTable
mismatchSummary
compareStrings

pid

pairwiseAlignment
stringDist

MultipleAlignment-class 69

MultipleAlignment-class
MultipleAlignment objects

Description

The MultipleAlignment class is a container for storing multiple sequence alignments.

Usage

Constructors:

DNAMultipleAlignment(x=character(), start=NA, end=NA, width=NA,
use.names=TRUE, rowmask=NULL, colmask=NULL)

RNAMultipleAlignment (x=character(), start=NA, end=NA, width=NA,
use.names=TRUE, rowmask=NULL, colmask=NULL)

AAMultipleAlignment (x=character(), start=NA, end=NA, width=NA,
use.names=TRUE, rowmask=NULL, colmask=NULL)

Read functions:

readDNAMultipleAlignment(filepath, format)
readRNAMultipleAlignment(filepath, format)
readAAMultipleAlignment(filepath, format)

Write funtions:
write.phylip(x, filepath)

... and more (see below)
Arguments
X Either a character vector (with no NAs), or an XString, XStringSet or XStringViews

object containing strings with the same number of characters. If writing out a
Phylip file, then x would be a MultipleAlignment object

start, end, width
Either NA, a single integer, or an integer vector of the same length as x specify-
ing how x should be "narrowed" (see ?narrow in the IRanges package for the

details).
use.names TRUE or FALSE. Should names be preserved?
filepath A character vector (of arbitrary length when reading, of length 1 when writing)

nn

containing the paths to the files to read or write. Note that special values like
or "|cmd” (typically supported by other I/O functions in R) are not supported
here. Also filepath cannot be a connection.

format Either "fasta” (the default), stockholm, or "clustal”.
rowmask a NormallRanges object that will set masking for rows

colmask a NormallRanges object that will set masking for columns

70 MultipleAlignment-class

Details

The MultipleAlignment class is designed to hold and represent multiple sequence alignments. The
rows and columns within an alignment can be masked for ad hoc analyses.

Accessor methods

In the code snippets below, x is a MultipleAlignment object.

unmasked(x): The underlying XStringSet object containing the multiple sequence alignment.

rownames(x): NULL or a character vector of the same length as x containing a short user-provided
description or comment for each sequence in x.

rowmask (x), rowmask(x, append, invert) <- value: Gets and sets the NormallRanges object
representing the masked rows in x. The append argument takes union, replace or intersect
to indicate how to combine the new value with rowmask(x). The invert argument takes a
logical argument to indicate whether or not to invert the new mask. The value argument can
be of any class that is coercible to a NormallRanges via the as function.

colmask(x), colmask(x, append, invert) <- value: Gets and sets the NormallRanges object
representing the masked columns in x. The append argument takes union, replace or
intersect to indicate how to combine the new value with colmask(x). The invert ar-
gument takes a logical argument to indicate whether or not to invert the new mask. The value
argument can be of any class that is coercible to a NormallRanges via the as function.

maskMotif (x, motif, min.block.width=1, ...): Returns a MultipleAlignment object with a
modified column mask based upon motifs found in the consensus string where the consensus
string keeps all the columns but drops the masked rows.

motif The motif to mask.
min.block.width The minimum width of the blocks to mask.
... Additional arguments for matchPattern.

maskGaps(x, min.fraction, min.block.width): Returns a MultipleAlignment object with a mod-
ified column mask based upon gaps in the columns. In particular, this mask is defined by
min.block.width or more consecutive columns that have min.fraction or more of their
non-masked rows containing gap codes.

min.fraction A value in [0, 1] that indicates the minimum fraction needed to call a gap in
the consensus string (default is 0. 5).

min.block.width A positive integer that indicates the minimum number of consecutive gaps
to mask, as defined by min. fraction (default is 4).

nrow(x): Returns the number of sequences aligned in x.

ncol(x): Returns the number of characters for each alignment in x.
dim(x): Equivalent to c(nrow(x), ncol(x)).

maskednrow(x): Returns the number of masked aligned sequences in x.
maskedncol (x): Returns the number of masked aligned characters in x.
maskeddim(x): Equivalent to c(maskednrow(x), maskedncol(x)).
maskedratio(x): Equivalent to maskeddim(x) / dim(x).

nchar(x): Returns the number of unmasked aligned characters in x, i.e. ncol (x) - maskedncol (x).

alphabet(x): Equivalent to alphabet (unmasked(x)).

MultipleAlignment-class 71

Coercion

In the code snippets below, x is a MultipleAlignment object.

as(from, "DNAStringSet"), as(from, "RNAStringSet"), as(from, "AAStringSet"), as(from, "BStringSet"):
Creates an instance of the specified XStringSet object subtype that contains the unmasked re-
gions of the multiple sequence alignment in x.

as.character(x, use.names): Convert x to a character vector containing the unmasked regions
of the multiple sequence alignment. use.names controls whether or not rownames(x) should
be used to set the names of the returned vector (default is TRUE).

as.matrix(x, use.names): Returns a character matrix containing the "exploded" representation
of the unmasked regions of the multiple sequence alignment. use.names controls whether or
not rownames (x) should be used to set the row names of the returned matrix (default is TRUE).

Utilities
In the code snippets below, x is a MultipleAlignment object.

consensusMatrix(x, as.prob, baseOnly): Creates an integer matrix containing the column fre-
quencies of the underlying alphabet with masked columns being represented with NA values.
If as. prob is TRUE, then probabilities are reported, otherwise counts are reported (the default).
If baseOnly is TRUE, then the non-base letters are collapsed into an "other” category.

consensusString(x, ...): Creates a consensus string for x with the symbol "#" representing a
masked column. See consensusString for details on the arguments.

consensusViews(x, ...): Similar to the consensusString method. It returns a XStringViews
on the consensus string containing subsequence contigs of non-masked columns. Unlike the
consensusString method, the masked columns in the underlying string contain a consensus
value rather than the "#" symbol.

alphabetFrequency(x, as.prob, collapse): Creates an integer matrix containing the row fre-
quencies of the underlying alphabet. If as.prob is TRUE, then probabilities are reported, other-
wise counts are reported (the default). If collapse is TRUE, then returns the overall frequency
instead of the frequency by row.

detail(x, invertColMask, hideMaskedCols): Allows for a full pager driven display of the ob-
ject so that masked cols and rows can be removed and the entire sequence can be visually
inspected. If hideMaskedCols is set to it’s default value of TRUE then the output will hide all
the the masked columns in the output. Otherwise, all columns will be displayed along with a
row to indicate the masking status. If invertColMask is TRUE then any displayed mask will be
flipped so as to represent things in a way consistent with Phylip style files instead of the mask
that is actually stored in the MultipleAlignment object. Please notice that invertColMask
will be ignored if hideMaskedCols is set to its default value of TRUE since in that case it will
not make sense to show any masking information in the output. Masked rows are always
hidden in the output.

Display

The letters in a DNAMultipleAlignment or RNAMultipleAlignment object are colored when dis-
played by the show() method. Set global option Biostrings.coloring to FALSE to turn off this
coloring.

72 MultipleAlignment-class

Author(s)
P. Aboyoun and M. Carlson

See Also

XStringSet-class, MaskedXString-class

Examples

create an object from file
origMAlign <-
readDNAMultipleAlignment(filepath =
system.file("extdata”,
"msx2_mRNA.aln",
package="Biostrings"),
format="clustal")

list the names of the sequences in the alignment
rownames (origMAlign)

rename the sequences to be the underlying species for MSX2

rownames(origMAlign) <- c("Human"”,"”Chimp","Cow", "Mouse”,"Rat"”,
"Dog","Chicken”,"Salmon")

origMAlign

See a detailed pager view
if (interactive()) {
detail(origMAlign)

3

operations to mask rows

For columns, just use colmask() and do the same kinds of operations
rowMasked <- origMAlign

rowmask (rowMasked) <- IRanges(start=1,end=3)

rowMasked

remove rowumn masks
rowmask (rowMasked) <- NULL
rowMasked

"select” rows of interest
rowmask (rowMasked, invert=TRUE) <- IRanges(start=4,end=7)
rowMasked

or mask the rows that intersect with masked rows
rowmask (rowMasked, append="intersect") <- IRanges(start=1,end=5)
rowMasked

TATA-masked
tataMasked <- maskMotif(origMAlign, "TATA")
colmask (tataMasked)

needwunsQS 73

automatically mask rows based on consecutive gaps

autoMasked <- maskGaps(origMAlign, min.fraction=0.5, min.block.width=4)
colmask (autoMasked)

autoMasked

calculate frequencies
alphabetFrequency (autoMasked)
consensusMatrix(autoMasked, baseOnly=TRUE)[, 84:90]

get consensus values
consensusString(autoMasked)
consensusViews (autoMasked)

cluster the masked alignments

library(pwalign)

sdist <- pwalign::stringDist(as(autoMasked, "DNAStringSet"”), method="hamming")
clust <- hclust(sdist, method = "single")

plot(clust)

fourgroups <- cutree(clust, 4)

fourgroups

write out the alignement object (with current masks) to Phylip format
write.phylip(x = autoMasked, filepath = tempfile(”foo.txt",tempdir()))

needwunsQS (Defunct) Needleman-Wunsch Global Alignment

Description

Simple gap implementation of Needleman-Wunsch global alignment algorithm.

Usage

needwunsQS(s1, s2, substmat, gappen = 8)

Arguments
s1,s2 an R character vector of length 1 or an XString object.
substmat matrix of alignment score values.
gappen penalty for introducing a gap in the alignment.
Details

Follows specification of Durbin, Eddy, Krogh, Mitchison (1998). This function is now defunct.
Please use pairwiseAlignment from the pwalign instead.

Value

An instance of class "PairwiseAlignments”.

74 nucleotideFrequency

Author(s)

Vince Carey (<stvjc@channing.harvard.edu>) (original author) and H. Pages (current main-
tainer).

References

R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis, Cambridge UP 1998,
sec 2.3.

See Also

pairwiseAlignment and PairwiseAlignments-class in the pwalign package, substitution_matrices

Examples

Not run:
This function is now defunct.
Please use pairwiseAlignment() from the pwalign package instead.

nucleotide alignment

mat <- matrix(-5L, nrow = 4, ncol = 4)

for (i in seq_len(4)) mat[i, i] <- oL

rownames(mat) <- colnames(mat) <- DNA_ALPHABET[1:4]

s1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 1000, replace=TRUE), collapse=""))
s2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 1000, replace=TRUE), collapse=""))
nw@ <- needwunsQS(s1, s2, mat, gappen = 0)

nwl <- needwunsQS(s1, s2, mat, gappen = 1)

nw5 <- needwunsQS(s1, s2, mat, gappen = 5)

amino acid alignment
needwunsQS("PAWHEAE", "HEAGAWGHEE", substmat = "BLOSUM5@")

End(Not run)

nucleotideFrequency Calculate the frequency of oligonucleotides in a DNA or RNA se-
quence (and other related functions)

Description

Given a DNA or RNA sequence (or a set of DNA or RNA sequences), the oligonucleotideFrequency
function computes the frequency of all possible oligonucleotides of a given length (called the
"width" in this particular context) in a sliding window that is shifted step nucleotides at a time.

The dinucleotideFrequency and trinucleotideFrequency functions are convenient wrappers
for calling oligonucleotideFrequency with width=2 and width=3, respectively.

The nucleotideFrequencyAt function computes the frequency of the short sequences formed by
extracting the nucleotides found at some fixed positions from each sequence of a set of DNA or
RNA sequences.

nucleotideFrequency 75

In this man page we call "DNA input" (or "RNA input") an XString, XStringSet, XStringViews or
MaskedXString object of base type DNA (or RNA).

Usage

oligonucleotideFrequency(x, width, step=1,
as.prob=FALSE, as.array=FALSE,
fast.moving.side="right"”, with.labels=TRUE, ...)

S4 method for signature 'XStringSet'

oligonucleotideFrequency(x, width, step=1,
as.prob=FALSE, as.array=FALSE,
fast.moving.side="right"”, with.labels=TRUE,
simplify.as="matrix")

dinucleotideFrequency(x, step=1,
as.prob=FALSE, as.matrix=FALSE,
fast.moving.side="right", with.labels=TRUE, ...)

trinucleotideFrequency(x, step=1,
as.prob=FALSE, as.array=FALSE,
fast.moving.side="right", with.labels=TRUE, ...)

nucleotideFrequencyAt(x, at,
as.prob=FALSE, as.array=TRUE,
fast.moving.side="right", with.labels=TRUE, ...)

Some related functions:
oligonucleotideTransitions(x, left=1, right=1, as.prob=FALSE)

mkAllStrings(alphabet, width, fast.moving.side="right")

Arguments

X Any DNA or RNA input for the *Frequency and oligonucleotideTransitions
functions.

An XStringSet or XStringViews object of base type DNA or RNA for nucleotideFrequencyAt.

width The number of nucleotides per oligonucleotide for oligonucleotideFrequency.
The number of letters per string for mkA11Strings.

step How many nucleotides should the window be shifted before counting the next
oligonucleotide (i.e. the sliding window step; default 1). If step is smaller than
width, oligonucleotides will overlap; if the two arguments are equal, adjacent
oligonucleotides will be counted (an efficient way to count codons in an ORF);
and if step is larger than width, nucleotides will be sampled step nucleotides
apart.

at An integer vector containing the positions to look at in each element of x.

as.prob If TRUE then probabilities are reported, otherwise counts (the default).

76

nucleotideFrequency

as.array, as.matrix

Controls the "shape" of the returned object. If TRUE (the default for nucleotideFrequencyAt)

then it’s a numeric matrix (or array), otherwise it’s just a "flat" numeric vector
i.e. a vector with no dim attribute (the default for the xFrequency functions).

fast.moving.side

with.labels

simplify.as

left, right

alphabet

Value

Which side of the strings should move fastest? Note that, when as.array is
TRUE, then the supplied value is ignored and the effective value is "left".

If TRUE then the returned object is named.
Further arguments to be passed to or from other methods.

Together with the as.array and as.matrix arguments, controls the "shape"
of the returned object when the input x is an XStringSet or XStringViews ob-
ject. Supported simplify.as values are "matrix” (the default), "1ist” and
"collapsed”. If simplify.as is "matrix”, the returned object is a matrix
with length(x) rows where the i-th row contains the frequencies for x[[i]].
If simplify.as is "list", the returned object is a list of the same length as
length(x) where the i-th element contains the frequencies for x[[i]]. If
simplify.as is "collapsed”, then the the frequencies are computed for the
entire object x as a whole (i.e. frequencies cumulated across all sequences in x).

The number of nucleotides per oligonucleotide for the rows and columns respec-
tively in the transition matrix created by oligonucleotideTransitions.

The alphabet to use to make the strings.

If x is an XString or MaskedXString object, the *Frequency functions return a numeric vector of
length 4*width. If as.array (or as.matrix) is TRUE, then this vector is formatted as an array (or
matrix). If x is an XStringSet or XStringViews object, the returned object has the shape specified
by the simplify.as argument.

Author(s)

H. Pages and P. Aboyoun; K. Vlahovicek for the step argument

See Also

alphabetFrequency, alphabet, hasLetterAt, XString-class, XStringSet-class, XStringViews-
class, MaskedXString-class, GENETIC_CODE, AMINO_ACID_CODE, reverseComplement, rev

Examples

R

A. BASIC xFrequency() EXAMPLES

R

data(yeastSEQCHR1)
yeast1l <- DNAString(yeastSEQCHRT)

dinucleotideFrequency(yeast1)
trinucleotideFrequency(yeast1)
oligonucleotideFrequency(yeastl, 4)

nucleotideFrequency 77

Get the counts of tetranucleotides overlapping by one nucleotide:
oligonucleotideFrequency(yeastl, 4, step=3)

Get the counts of adjacent tetranucleotides, starting from the first
nucleotide:
oligonucleotideFrequency(yeastl, 4, step=4)

Subset the sequence to change the starting nucleotide (here we start
counting from third nucleotide):

yeast2 <- subseq(yeastl, start=3)

oligonucleotideFrequency(yeast2, 4, step=4)

Get the less and most represented 6-mers:
f6 <- oligonucleotideFrequency(yeastl, 6)
f6[f6 == min(f6)]

f6[f6 == max(f6)]

Get the result as an array:

tri <- trinucleotideFrequency(yeastl, as.array=TRUE)

tri["A", "A", "C"] # == trinucleotideFrequency(yeast1)["AAC"]
tri["T", ,] # frequencies of trinucleotides starting with a "T"

With input made of multiple sequences:

library(drosophila2probe)

probes <- DNAStringSet(drosophila2probe)

dfmat <- dinucleotideFrequency(probes) # a big matrix
dinucleotideFrequency(probes, simplify.as="collapsed")
dinucleotideFrequency(probes, simplify.as="collapsed”, as.matrix=TRUE)

Bt e
B. OBSERVED DINUCLEOTIDE FREQUENCY VERSUS EXPECTED DINUCLEOTIDE
FREQUENCY

The expected frequency of dinucleotide "ab" based on the frequencies
of its individual letters "a" and "b" is:

#it exp_Fab = Fa * Fb / N if the 2 letters are different (e.g. CG)

#it exp_Faa = Fa * (Fa-1) / N if the 2 letters are the same (e.g. TT)
where Fa and Fb are the frequencies of "a" and "b" (respectively) and
N the length of the sequence.

Here is a simple function that implements the above formula for a

DNAString object 'x'. The expected frequencies are returned in a 4x4
matrix where the rownames and colnames correspond to the 1st and 2nd
base in the dinucleotide:

expectedDinucleotideFrequency <- function(x)

{
Individual base frequencies.
bf <- alphabetFrequency(x, baseOnly=TRUE)[DNA_BASES]
(as.matrix(bf) %x% t(bf) - diag(bf)) / length(x)

3

On Celegans chrl:

nucleotideFrequency

library(BSgenome.Celegans.UCSC.ce2)

chrl <- Celegans$chrl

obs_df <- dinucleotideFrequency(chrl, as.matrix=TRUE)
obs_df # CG has the lowest frequency

exp_df <- expectedDinucleotideFrequency(chrI)

A sanity check:

stopifnot(as.integer(sum(exp_df)) == sum(obs_df))

Ratio of observed frequency to expected frequency:
obs_df / exp_df # TA has the lowest ratio, not CG!

i
C. nucleotideFrequencyAt()
e e E RS
nucleotideFrequencyAt(probes, 13)

nucleotideFrequencyAt(probes, c(13, 20))

nucleotideFrequencyAt(probes, c(13, 20), as.array=FALSE)

nucleotideFrequencyAt() can be used to answer questions like: "how
many probes in the drosophila2 chip have T, G, T, A at position

2, 4, 13 and 20, respectively?”

nucleotideFrequencyAt(probes, c(2, 4, 13, 20))["T", "G", "T", "A"]

or "what's the probability to have an A at position 25 if there is
one at position 13?"

nf <- nucleotideFrequencyAt(probes, c(13, 25))

sum(nf["A", "A"1) / sum(nf["A", 1)

Probabilities to have other bases at position 25 if there is an A
at position 13:

sum(nf["A", "C"1) / sum(nf["A", 1) # C

sum(nf["A", "G"1) / sum(nf["A", 1) # G

sum(nfL"A", "T"1) / sum(nf["A", 1) # T

See ?haslLetterAt for another way to get those results.

-
D. oligonucleotideTransitions()

B — oo
Get nucleotide transition matrices for yeastl
oligonucleotideTransitions(yeast1)

oligonucleotideTransitions(yeastl, 2, as.prob=TRUE)

#H# -
E. ADVANCED *Frequency() EXAMPLES

-—-——————
Note that when dropping the dimensions of the 'tri' array, elements
in the resulting vector are ordered as if they were obtained with

'fast.moving.side="left"':

triL <- trinucleotideFrequency(yeast1, fast.moving.side="left")
all(as.vector(tri) == trilL) # TRUE

Convert the trinucleotide frequency into the amino acid frequency
based on translation:
tril <- trinucleotideFrequency(yeast1)

padAndClip 79

names(tril) <- GENETIC_CODE[names(tril)]
sapply(split(tril, names(tril)), sum) # 12512 occurrences of the stop codon

When the returned vector is very long (e.g. width >= 10), using

'with.labels=FALSE' can improve performance significantly.

Here for example, the observed speed up is between 25x and 500x:

f12 <- oligonucleotideFrequency(yeastl, 12, with.labels=FALSE) # very fast!

With the use of 'step', trinucleotideFrequency() is a very fast way to

calculate the codon usage table in an ORF (or a set of ORFs).

Taking the same example as in '?codons':

file <- system.file("extdata"”, "someORF.fa", package="Biostrings")

my_ORFs <- readDNAStringSet(file)

Strip flanking 1000 nucleotides around each ORF and remove first

sequence as it contains an intron:

my_ORFs <- DNAStringSet(my_ORFs, start=1001, end=-1001)[-1]

Codon usage for each ORF:

codon_usage <- trinucleotideFrequency(my_ORFs, step=3)

Codon usage across all ORFs:

global_codon_usage <- trinucleotideFrequency(my_ORFs, step=3,
simplify.as="collapsed")

stopifnot(all(colSums(codon_usage) == global_codon_usage)) # sanity check

Some related functions:

dictl <- mkAllStrings(LETTERS[1:3], 4)

dict2 <- mkAllStrings(LETTERS[1:3], 4, fast.moving.side="left")
stopifnot(identical(reverse(dict1), dict2))

padAndClip Pad and clip strings

Description

padAndClip first conceptually pads the supplied strings with an infinite number of padding letters
on both sides, then clip them.

stackStrings is a convenience wrapper to padAndClip that turns a variable-width set of strings
into a rectangular (i.e. constant-width) set, by padding and clipping the strings, after conceptually
shifting them horizontally.

Usage

n o n n o n

padAndClip(x, views, Lpadding.letter= , Rpadding.letter= ,
remove.out.of.view.strings=FALSE)

stackStrings(x, from, to, shift=0L,
Lpadding.letter=" ", Rpadding.letter=" ",
remove.out.of.view.strings=FALSE)

80 padAndClip
Arguments

X An XStringSet object containing the strings to pad and clip.

views A IntegerRanges object (recycled to the length of x if necessary) defining the

region to keep for each string. Because the strings are first conceptually padded
with an infinite number of padding letters on both sides, regions can go beyond
string limits.
Lpadding.letter, Rpadding.letter

A single letter to use for padding on the left, and another one to use for padding
on the right. Note that the default letter (" ") does not work if, for example,
x is a DNAStringSet object, because the space is not a valid DNA letter (see
?DNA_ALPHABET). So the Lpadding.letter and Rpadding.letter arguments
must be supplied if x is not a BStringSet object. For example, if x is a DNAS-
tringSet object, a typical choice is to use "+".

remove.out.of.view.strings

TRUE or FALSE. Whether or not to remove the strings that are out of view in the
returned object.

from, to Another way to specify the region to keep for each string, but with the restriction
that from and to must be single integers. So only 1 region can be specified, and
the same region is used for all the strings.

shift An integer vector (recycled to the length of x if necessary) specifying the amount
of shifting (in number of letters) to apply to each string before doing pad and
clip. Positive values shift to the right and negative values to the left.

Value

For padAndClip: An XStringSet object. If remove.out.of.view.strings is FALSE, it has the
same length and names as x, and its "shape", which is described by the integer vector returned by
width(), is the same as the shape of the views argument after recycling.

The class of the returned object is the direct concrete subclass of XStringSet that x belongs to or
derives from. There are 4 direct concrete subclasses of the XStringSet virtual class: BStringSet,
DNAStringSet, RNAStringSet, and AAStringSet. If x is an instance of one of those classes, then
the returned object has the same class as x (i.e. in that case, padAndClip acts as an endomorphism).
But if x derives from one of those 4 classes, then the returned object is downgraded to the class x
derives from. In that case, padAndClip does not act as an endomorphism.

For stackStrings: Same as padAndClip. In addition it is guaranteed to have a rectangular shape
i.e. to be a constant-width XStringSet object.

Author(s)

H. Pages

See Also

e The stackStringsFromBam function in the GenomicAlignments package for stacking the
read sequences (or their quality strings) stored in a BAM file on a region of interest.

» The XStringViews class to formally represent a set of views on a single string.

PDict-class 81

* The extractAt and replaceAt functions for extracting/replacing arbitrary substrings from/in
a string or set of strings.

* The XStringSet class.
* The IntegerRanges class in the IRanges package.

Examples

x <- BStringSet(c(seq1="ABCD"”, seq2="abcdefghijk"”, seq3="", seq4="XYZ"))

padAndClip(x, IRanges(3, 8:5), Lpadding.letter=">", Rpadding.letter="<")
padAndClip(x, IRanges(1:-2, 7), Lpadding.letter=">", Rpadding.letter="<")

stackStrings(x, 2, 8)

stackStrings(x, -2, 8, shift=c(o, -11, 6, 7),
Lpadding.letter="#", Rpadding.letter=".")

stackStrings(x, -2, 8, shift=c(0, -14, 6, 7),
Lpadding.letter="#", Rpadding.letter=".")

stackStrings(x, -2, 8, shift=c(0, -14, 6, 7),
Lpadding.letter="#", Rpadding.letter=".",
remove.out.of.view.strings=TRUE)

library(hgu95av2probe)
probes <- DNAStringSet(hgu95av2probe)
probes

stackStrings(probes, 0, 26,
Lpadding.letter="+", Rpadding.letter="-")

options(showHeadLines=15)

stackStrings(probes, 3, 23, shift=6*c(1:5, -(1:5)),
Lpadding.letter="+", Rpadding.letter="N",
remove.out.of.view.strings=TRUE)

PDict-class PDict objects

Description

The PDict class is a container for storing a preprocessed dictionary of DNA patterns that can later
be passed to the matchPDict function for fast matching against a reference sequence (the subject).

PDict is the constructor function for creating new PDict objects.

Usage

PDict(x, max.mismatch=NA, tb.start=NA, tb.end=NA, tb.width=NA,
algorithm="ACtree2", skip.invalid.patterns=FALSE)

82 PDict-class

Arguments

X A character vector, a DNAStringSet object or an XStringViews object with a
DNAString subject.

max.mismatch A single non-negative integer or NA. See the "Allowing a small number of mis-
matching letters" section below.

tb.start, tb.end, tb.width
A single integer or NA. See the "Trusted Band" section below.

algorithm "ACtree2" (the default) or "Twobit".
skip.invalid.patterns

This argument is not supported yet (and might in fact be replaced by the filter
argument very soon).

Details
THIS IS STILL WORK IN PROGRESS!

If the original dictionary x is a character vector or an XStringViews object with a DNAString sub-
ject, then the PDict constructor will first try to turn it into a DNAStringSet object.

By default (i.e. if PDict is called with max.mismatch=NA, tb.start=NA, tb.end=NA and tb.width=NA)
the following limitations apply: (1) the original dictionary can only contain base letters (i.e. only
As, Cs, Gs and Ts), therefore IUPAC ambiguity codes are not allowed; (2) all the patterns in the
dictionary must have the same length ("constant width" dictionary); and (3) later matchPdict can
only be used with max.mismatch=0.

A Trusted Band can be used in order to relax these limitations (see the "Trusted Band" section
below).

If you are planning to use the resulting PDict object in order to do inexact matching where valid hits
are allowed to have a small number of mismatching letters, then see the "Allowing a small number
of mismatching letters" section below.

Two preprocessing algorithms are currently supported: algorithm="ACtree2" (the default) and
algorithm="Twobit". With the "ACtree2" algorithm, all the oligonucleotides in the Trusted Band
are stored in a 4-ary Aho-Corasick tree. With the "Twobit" algorithm, the 2-bit-per-letter signatures
of all the oligonucleotides in the Trusted Band are computed and the mapping from these signatures
to the 1-based position of the corresponding oligonucleotide in the Trusted Band is stored in a way
that allows very fast lookup. Only PDict objects preprocessed with the "ACtree2” algo can then
be used with matchPdict (and family) and with fixed="pattern"” (instead of fixed=TRUE, the
default), so that IUPAC ambiguity codes in the subject are treated as ambiguities. PDict objects
obtained with the "Twobit” algo don’t allow this. See ? matchPDict-inexact™ for more infor-
mation about support of IUPAC ambiguity codes in the subject.

Trusted Band

What’s a Trusted Band?

A Trusted Band is a region defined in the original dictionary where the limitations described above
will apply.

Why use a Trusted Band?

PDict-class 83

Because the limitations described above will apply to the Trusted Band only! For example the
Trusted Band cannot contain [UPAC ambiguity codes but the "head" and the "tail" can (see below for
what those are). Also with a Trusted Band, if matchPdict is called with a non-null max.mismatch
value then mismatching letters will be allowed in the head and the tail. Or, if matchPdict is called
with fixed="subject”, then IUPAC ambiguity codes in the head and the tail will be treated as
ambiguities.

How to specify a Trusted Band?

Use the tb.start, tb.end and tb.width arguments of the PDict constructor in order to specify a
Trusted Band. This will divide each pattern in the original dictionary into three parts: a left part,
a middle part and a right part. The middle part is defined by its starting and ending nucleotide
positions given relatively to each pattern thru the tb.start, tb.end and tb.width arguments. It
must have the same length for all patterns (this common length is called the width of the Trusted
Band). The left and right parts are defined implicitely: they are the parts that remain before (prefix)
and after (suffix) the middle part, respectively. Therefore three DNAStringSet objects result from
this division: the first one is made of all the left parts and forms the head of the PDict object, the
second one is made of all the middle parts and forms the Trusted Band of the PDict object, and the
third one is made of all the right parts and forms the tail of the PDict object.

In other words you can think of the process of specifying a Trusted Band as drawing 2 vertical
lines on the original dictionary (note that these 2 lines are not necessarily straight lines but the
horizontal space between them must be constant). When doing this, you are dividing the dictionary
into three regions (from left to right): the head, the Trusted Band and the tail. Each of them is a
DNAStringSet object with the same number of elements than the original dictionary and the original
dictionary could easily be reconstructed from those three regions.

The width of the Trusted Band must be >= 1 because Trusted Bands of width O are not supported.

Finally note that calling PDict with tb.start=NA, tb.end=NA and tb.width=NA (the default) is
equivalent to calling it with tb.start=1, tb.end=-1 and tb.width=NA, which results in a full-
width Trusted Band i.e. a Trusted Band that covers the entire dictionary (no head and no tail).

Allowing a small number of mismatching letters

[TODO]

Accessor methods

In the code snippets below, x is a PDict object.

length(x): The number of patterns in x.

width(x): A vector of non-negative integers containing the number of letters for each pattern in x.
names(x): The names of the patterns in x.

head(x): The head of x or NULL if x has no head.

tb(x): The Trusted Band defined on x.

tb.width(x): The width of the Trusted Band defined on x. Note that, unlike width(tb(x)), this
is a single integer. And because the Trusted Band has a constant width, tb.width(x) is in
fact equivalent to unique (width(tb(x))), or towidth(tb(x))[11].

tail(x): The tail of x or NULL if x has no tail.

84 PDict-class

Subsetting methods

In the code snippets below, x is a PDict object.

x[[1]]: Extract the i-th pattern from x as a DNAString object.

Other methods
In the code snippet below, x is a PDict object.

duplicated(x): [TODO]
patternFrequency(x): [TODO]

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

matchPDict, DNA_ALPHABET, IUPAC_CODE_MAP, DNAStringSet-class, XString Views-class

Examples

B m
A. NO HEAD AND NO TAIL (THE DEFAULT)
et
library(drosophila2probe)

dict@ <- DNAStringSet(drosophila2probe)

dicte # The original dictionary.
length(dict@) # Hundreds of thousands of patterns.
unique(nchar(dict®)) # Patterns are 25-mers.

pdict@® <- PDict(dicte)

H+

Store the original dictionary in

a PDict object (preprocessing).
pdict@
class(pdict®@)
length(pdict®) # Same as length(dict@).
th.width(pdict®) # The width of the (implicit)

Trusted Band.
sum(duplicated(pdict@))
table(patternFrequency(pdict@)) # 9 patterns are repeated 3 times.
pdicto[[1]]
pdicto[[5]1]
et

B. NO HEAD AND A TAIL
HHE = m o

pmatchPattern 85

dictl <- c("ACNG", "GT", "CGT", "AC")
pdictl <- PDict(dictl, tb.end=2)
pdictl

class(pdict1)

length(pdict1)

width(pdict1)

head(pdict1)

tb(pdict1)

tb.width(pdict1)
width(tb(pdict1))

tail(pdict1)

pdict1[[3]1]

pmatchPattern Longest Common Prefix/Suffix/Substring searching functions

Description

Functions for searching the Longest Common Prefix/Suffix/Substring of two strings.

WARNING: These functions are experimental and might not work properly! Full documentation
will come later.

Thanks for your comprehension!

Usage

lcprefix(s1, s2)
lcesuffix(s1, s2)
lcsubstr(s1, s2)
pmatchPattern(pattern, subject, maxlength.out=1L)

Arguments
s1 Ist string, a character string or an XString object.
s2 2nd string, a character string or an XString object.
pattern The pattern string.
subject An XString object containing the subject string.

maxlength.out The maximum length of the output i.e. the maximum number of views in the
returned object.

See Also

matchPattern, XStringViews-class, XString-class

86 QualityScaledXStringSet-class

predefined_scoring_matrices
Predefined scoring matrices

Description

Predefined scoring matrices for nucleotide and amino acid alignments.

WARNING: All the BLOSUM* and PAM* scoring matrices listed below are now located in the
pwalign package and will soon be removed from the Biostrings package.

Usage

data(BLOSUM45)
data(BLOSUM5@)
data(BLOSUM62)
data(BLOSUM80Q)
data(BLOSUM100)
data(PAM30)
data(PAM40)
data(PAM70)
data(PAM120)
data(PAM250)

Format

See ?pwalign: :predefined_scoring_matrices in the pwalign package.

Details

See ?pwalign: :predefined_scoring_matrices in the pwalign package.

Examples

See ?pwalign::predefined_scoring_matrices in the pwalign package.

QualityScaledXStringSet-class
QualityScaledBStringSet, QualityScaledDNAStringSet, QualityScale-
dRNAStringSet and QualityScaledAAStringSet objects

Description

The QualityScaledBStringSet class is a container for storing aBStringSet object with an XStringQuality
object.

Similarly, the QualityScaledDNAStringSet (or QualityScaledRNAStringSet, or QualityScaledAAS-
tringSet) class is a container for storing a DNAStringSet (or RNAStringSet, or AAStringSet) ob-

jects with an XStringQuality object.

QualityScaledXStringSet-class 87

Usage

Constructors:
QualityScaledBStringSet(x, quality)
QualityScaledDNAStringSet(x, quality)
QualityScaledRNAStringSet(x, quality)
QualityScaledAAStringSet(x, quality)

Read/write a QualityScaledXStringSet object from/to a FASTQ file:
readQualityScaledDNAStringSet(filepath,
quality.scoring=c("phred”, "solexa", "illumina"),
nrec=-1L, skip=0L, seek.first.rec=FALSE,
use.names=TRUE)

writeQualityScaledXStringSet(x, filepath, append=FALSE,
compress=FALSE, compression_level=NA)

Arguments
X For the QualityScaled*StringSet constructors: Either a character vector, or
an XString, XStringSet or XStringViews object.
For writeQualityScaledXStringSet: A QualityScaledDNAStringSet object
or other QualityScaledXStringSet derivative.
quality An XStringQuality derivative.

filepath, nrec, skip, seek.first.rec, use.names, append, compress,
compression_level
See ?°XStringSet-io~.
quality.scoring
Specify the quality scoring used in the FASTQ file. Must be one of "phred”
(the default), "solexa”, or "illumina”. If set to "phred” (or "solexa” or
"illumina"), the qualities will be stored in a PhredQuality (or SolexaQuality
or [lluminaQuality, respectively) object.

Details

The QualityScaledBStringSet, QualityScaledDNAStringSet, QualityScaledRNAStringSet
and QualityScaledAAStringSet functions are constructors that can be used to "naturally" turn x
into an QualityScaledXStringSet object of the desired base type.

Accessor methods

The QualityScaledXStringSet class derives from the XStringSet class hence all the accessor meth-
ods defined for an XStringSet object can also be used on an QualityScaledXStringSet object. Com-
mon methods include (in the code snippets below, x is an QualityScaledXStringSet object):

length(x): The number of sequences in x.

width(x): A vector of non-negative integers containing the number of letters for each element in
X.

88 QualityScaledXStringSet-class

nchar(x): The same as width(x).

names(x): NULL or a character vector of the same length as x containing a short user-provided
description or comment for each element in x.

quality(x): The quality of the strings.

Subsetting and appending

In the code snippets below, x and values are XStringSet objects, and i should be an index specify-
ing the elements to extract.

x[1]: Return a new QualityScaledXStringSet object made of the selected elements.

Author(s)
P. Aboyoun

See Also

» BStringSet, DNAStringSet, RNAStringSet, and AAStringSet objects.
* XStringQuality objects.

* readDNAStringSet and writeXStringSet for reading/writing a DNAStringSet object (or
other XStringSet derivative) from/to a FASTA or FASTQ file.

Examples

B m oo o
QualityScaled*StringSet() CONSTRUCTORS
B m o

x1 <= DNAStringSet(c("TTGA”, "CTCN"))

gl <- PhredQuality(c("x+,-", "6789"))

gdnal <- QualityScaledDNAStringSet(x1, ql)

gdnal

#H -
READ/WRITE A QualityScaledDNAStringSet OBJECT FROM/TO A FASTQ FILE

#H -
filepath <- system.file("extdata”, "s_1_sequence.txt”,

package="Biostrings")

By default, readQualityScaledDNAStringSet() assumes that the FASTQ
file contains "Phred quality scores” (this is the standard Sanger
variant to assess reliability of a base call):

gdna2 <- readQualityScaledDNAStringSet(filepath)

qdna2

outfile2a <- tempfile()
writeQualityScaledXStringSet(qdna2, outfile2a)

outfile2b <- tempfile()

replaceAt 89

writeQualityScaledXStringSet(qdna2, outfile2b, compress=TRUE)

Use 'quality.scoring="solexa”' or 'quality.scoring="illumina"' if the
quality scores are Solexa quality scores:

gdna3 <- readQualityScaledDNAStringSet(filepath, quality.scoring="solexa")
gdna3

outfile3a <- tempfile()
writeQualityScaledXStringSet(qdna3, outfile3a)

outfile3b <- tempfile()
writeQualityScaledXStringSet(gdna3, outfile3b, compress=TRUE)

Sanity checks:

stopifnot(identical(readLines(outfile2a), readlLines(filepath)))
stopifnot(identical(readLines(outfile2a), readLines(outfile2b)))
stopifnot(identical(readlLines(outfile3a), readLines(filepath)))
stopifnot(identical(readLines(outfile3a), readLines(outfile3b)))

replaceAt Extract/replace arbitrary substrings from/in a string or set of strings.

Description

extractAt extracts multiple subsequences from XString object x, or from the individual sequences
of XStringSet object x, at the ranges of positions specified thru at.

replaceAt performs multiple subsequence replacements (a.k.a. substitutions) in XString object x,
or in the individual sequences of XStringSet object x, at the ranges of positions specified thru at.

Usage

extractAt(x, at)
replaceAt(x, at, value="")

Arguments
X An XString or XStringSet object.
at Typically a IntegerRanges object if x is an XString object, and an IntegerRanges-

List object if x is an XStringSet object.

Alternatively, the ranges can be specified with only 1 number per range (its start
position), in which case they are considered to be empty ranges (a.k.a. zero-
width ranges). So if at is a numeric vector, an IntegerList object, or a list of
numeric vectors, each number in it is interpreted as the start position of a zero-
width range. This is useful when using replaceAt to perform insertions.

The following applies only if x is an XStringSet object:

at is recycled to the length of x if necessary. If at is a IntegerRanges object (or a
numeric vector), it is first turned into a IntegerRangesList object of length 1 and

90

value

Value

replaceAt

then this IntegerRangesList object is recycled to the length of x. This is useful
for specifying the same ranges across all sequences in x. The effective shape of
at is described by its length together with the lengths of its list elements after
recycling.

As a special case, extractAt accepts at and value to be both of length 0, in
which case it just returns x unmodified (no-op).

The replacement sequences.

If x is an XString object, value is typically a character vector or an XStringSet
object that is recycled to the length of at (if necessary).

If x is an XStringSet object, value is typically a list of character vectors or a
CharacterList or XStringSetList object. If necessary, it is recycled "vertically"
first and then "horizontally" to bring it into the effective shape of at (see above).
"Vertical recycling" is the usual recycling whereas "horizontal recycling" recy-
cles the individual list elements .

As a special case, extractAt accepts at and value to be both of length 0, in
which case it just returns x unmodified (no-op).

For extractAt: An XStringSet object of the same length as at if x is an XString object. An
XStringSetList object of the same length as x (and same effective shape as at) if x is an XStringSet

object.

For replaceAt: An object of the same class as x. If x is an XStringSet object, its length and names
and metadata columns are preserved.

Note

Like subseq (defined and documented in the XVector package), extractAt does not copy the

sequence data!

extractAt is equivalent to extractList (defined and documented in the IRanges package) when
x is an XString object and at a IntegerRanges object.

Author(s)

H. Pages

See Also

* The subseq and subseqg<- functions in the XVector package for simpler forms of subse-
quence extractions and replacements.

e The extractList and unstrsplit functions defined and documented in the IRanges pack-

age.

* The replacelLetterAt function for a DNA-specific single-letter replacement functions useful
for SNP injections.

* The padAndClip function for padding and clipping strings.
* The XString, XStringSet, and XStringSetList classes.

* The IntegerRanges, IntegerRangesList, IntegerList, and CharacterList classes defined and
documented in the IRanges package.

replaceAt

Examples

B m o
(A) ON AN XString OBJECT
e
x <- BString("abcdefghijklm")

atl <- IRanges(5:1, width=3)
extractAt(x, atl)
names(at1) <- LETTERS[22:26]
extractAt(x, atl)

at2 <- IRanges(c(1, 5, 12), c(3, 4, 12), names=c("X", "Y", "Z"))
extractAt(x, at2)
extractAt(x, rev(at2))

value <- c("+",
replaceAt(x, at2, value=value)
replaceAt(x, rev(at2), value=rev(value))

n_n "y
’

at3 <- IRanges(c(14, 1, 1, 1, 1, 11), c(13, o, 10, @, 0, 10))
value <- 1:6

replaceAt(x, at3, value=value) # "24536kIm1”
replaceAt(x, rev(at3), value=rev(value)) # "54236klm1"

Deletions:

stopifnot(replaceAt(x, at2) == "defghijkm")
stopifnot(replaceAt(x, rev(at2)) == "defghijkm")
stopifnot(replaceAt(x, at3) == "klm")
stopifnot(replaceAt(x, rev(at3)) == "klm")

Insertions:
at4 <- IRanges(c(6, 10, 2, 5), width=0)

stopifnot(replaceAt(x, at4, value="-") == "a-bcd-e-fghi-jklm")
stopifnot(replaceAt(x, start(at4), value="-") == "a-bcd-e-fghi-jklm")
at5 <- c(5, 1, 6, 5) # 2 insertions before position 5

replaceAt(x, at5, value=c("+", "=" b "%x" "/"))

No-ops:

stopifnot(replaceAt(x, NULL, value=NULL) == x)

stopifnot(replaceAt(x, at2, value=extractAt(x, at2)) == x)

stopifnot(replaceAt(x, at3, value=extractAt(x, at3)) == x)
stopifnot(replaceAt(x, at4, value=extractAt(x, at4)) == x)
stopifnot(replaceAt(x, at5, value=extractAt(x, at5)) == x)

The order of successive transformations matters:
T1: insert "+" before position 1 and 4
T2: insert "-" before position 3

T1 followed by T2
x2a <- replaceAt(x, c(1, 4), value="+"
x3a <- replaceAt(x2a, 3, value="-")

92

T2 followed by T1
x2b <- replaceAt(x, 3, value="-")
x3b <- replaceAt(x2b, c(1, 4), value="+"

T1 and T2 simultaneously:
x3c <- replaceAt(x, c(1, 3, 4), value=c("+", "-", "+"))

==> 'x3a', 'x3b', and 'x3c' are all different!

Append "*x" to 'x3c':
replaceAt(x3c, length(x3c) + 1L, value="xx"

e R
(B) ON AN XStringSet OBJECT
ettt
x <- BStringSet(c(seq1="ABCD", seq2="abcdefghijk"”, seq3="XYZ"))

at6 <- IRanges(c(1, 3), width=1)
extractAt(x, at=at6)
unstrsplit(extractAt(x, at=at6))

at7 <- IRangesList(IRanges(c(2, 1), c(3, 0)),
IRanges(c(7, 2, 12, 7), c(6, 5, 11, 8)),
IRanges(2, 2))

Set inner names on 'at7'.

unlisted_at7 <- unlist(at7)

names(unlisted_at7) <-

paste@("rg", sprintf("%02d", seq_along(unlisted_at7)))
at7 <- relist(unlisted_at7, at7)

extractAt(x, at7) # same as 'as(mapply(extractAt, x, at7), "List")'
extractAt(x, at7[3]) # same as 'as(mapply(extractAt, x, at7[3]), "List")'

replaceAt(x, at7, value=extractAt(x, at7)) # no-op
replaceAt(x, at7) # deletions

at8 <- IRangesList(IRanges(1:5, width=0),

IRanges(c(6, 8, 10, 7, 2, 5),

width=c(e, 2, 0, 0, 0, 0)),

IRanges(c(1, 2, 1), width=c(0, 1, @)))
replaceAt(x, at8, value="-")
value8 <- relist(paste@("[", seq_along(unlist(at8)), "1"), at8)
replaceAt(x, at8, value=value8)
replaceAt(x, at8, value=as(c("+", "-", "x"), "List"))

Append "xx" to all sequences:
replaceAt(x, as(width(x) + 1L, "List"), value="*x"

B m oo
(C) ADVANCED EXAMPLES

B — o
library(hgu95av2probe)

probes <- DNAStringSet(hgu95av2probe)

replaceAt

replaceLetterAt 93

Split the probes in 5-mer chunks:
at <- successivelIRanges(rep(5, 5))
extractAt(probes, at)

Replace base 13 by its complement:

at <- IRanges(13, width=1)

base13 <- extractAt(probes, at)

basel3comp <- relist(complement(unlist(basel13)), basel3)
replaceAt(probes, at, value=basel3comp)

See ?xscat for a more efficient way to do this.

Replace all the occurences of a given pattern with another pattern:
midx <- vmatchPattern("VCGTT", probes, fixed=FALSE)

matches <- extractAt(probes, midx)

unlist(matches)

unique(unlist(matches))

probes2 <- replaceAt(probes, midx, value="-++-")

See strings with 2 or more susbtitutions:
probes2[elementNROWS (midx) >= 2]

2 sanity checks:

stopifnot(all(replaceAt(probes, midx, value=matches) == probes))
probes2b <- gsub("[ACG]CGTT", "-++-", as.character(probes))
stopifnot(identical(as.character(probes2), probes2b))

replacelLetterAt Replacing letters in a sequence (or set of sequences) at some specified
locations

Description

replacelLetterAt first makes a copy of a sequence (or set of sequences) and then replaces some of
the original letters by new letters at the specified locations.

.inplaceReplacelLetterAt is the IN PLACE version of replacelLetterAt: it will modify the
original sequence in place i.e. without copying it first. Note that in place modification of a sequence
is fundamentally dangerous because it alters all objects defined in your session that make reference
to the modified sequence. NEVER use . inplaceReplaceletterAt, unless you know what you are
doing!

Usage

replacelLetterAt(x, at, letter, if.not.extending="replace”, verbose=FALSE)

NEVER USE THIS FUNCTION!
.inplaceReplaceletterAt(x, at, letter)

94 replaceLetterAt

Arguments

X A DNAString or rectangular DNAStringSet object.

at The locations where the replacements must occur.
If x is a DNAString object, then at is typically an integer vector with no NAs
but a logical vector or Rle object is valid too. Locations can be repeated and in
this case the last replacement to occur at a given location prevails.
If x is a rectangular DNAStringSet object, then at must be a matrix of logicals
with the same dimensions as x.

letter The new letters.

If x is a DNAString object, then letter must be a DNAString object or a charac-
ter vector (with no NAs) with a total number of letters (sum(nchar(letter)))
equal to the number of locations specified in at.
If x is a rectangular DNAStringSet object, then letter must be a DNAStringSet
object or a character vector of the same length as x. In addition, the number of
letters in each element of letter must match the number of locations specified
in the corresponding row of at (all(width(letter) == rowSums(at))).
if.not.extending
What to do if the new letter is not "extending" the old letter? The new letter
"extends" the old letter if both are IUPAC letters and the new letter is as specific
or less specific than the old one (e.g. M extends A, Y extends Y, but Y doesn’t
extend S). Possible values are "replace” (the default) for replacing in all cases,
"skip"” for not replacing when the new letter does not extend the old letter,
"merge"” for merging the new IUPAC letter with the old one, and "error” for
raising an error.
Note that the gap ("-") and hard masking ("+") letters are not extending or
extended by any other letter.
Also note that "merge” is the only value for the if.not.extending argument
that guarantees the final result to be independent on the order the replacement is
performed (although this is only relevant when at contains duplicated locations,
otherwise the result is of course always independent on the order, whatever the
value of if.not.extending is).

verbose When TRUE, a warning will report the number of skipped or merged letters.

Details

.inplaceReplacelLetterAt semantic is equivalent to calling replacelLetterAt with if.not.extending="merge"
and verbose=FALSE.

Never use .inplaceReplacelLetterAt! It is used by the injectSNPs function in the BSgenome
package, as part of the "lazy sequence loading" mechanism, for altering the original sequences
of a BSgenome object at "sequence-load time". This alteration consists in injecting the [UPAC
ambiguity letters representing the SNPs into the just loaded sequence, which is the only time where
in place modification of the external data of an XString object is safe.

Value

A DNAString or DNAStringSet object of the same shape (i.e. length and width) as the orignal
object x for replacelLetterAt.

reverseComplement 95

Author(s)

H. Pages

See Also

* The replaceAt function for extracting or replacing arbitrary subsequences from/in a sequence
or set of sequences.

» TUPAC_CODE_MAP for the mapping between IUPAC nucleotide ambiguity codes and their mean-
ing.

e The chartr and injectHardMask functions.

* The DNAString and DNAStringSet class.

e The injectSNPs function and the BSgenome class in the BSgenome package.

Examples

Replace letters of a DNAString object:
replacelLetterAt (DNAString("AAMAA"Y, c(5, 1, 3, 1), "TYNC")
replacelLetterAt(DNAString ("AAMAA"), c(5, 1, 3, 1), "TYNC", if.not.extending="merge")

Replace letters of a DNAStringSet object (sorry for the totally
artifi