library(tidytof)
library(dplyr)
Often, clustering single-cell data to identify communities of cells with shared characteristics is a major goal of high-dimensional cytometry data analysis.
To do this, {tidytof}
provides the tof_cluster()
verb. Several clustering methods are implemented in {tidytof}
, including the following:
Each of these methods are wrapped by tof_cluster()
.
tof_cluster()
To demonstrate, we can apply the PhenoGraph clustering algorithm to {tidytof}
’s built-in phenograph_data
. Note that phenograph_data
contains 3000 total cells (1000 each from 3 clusters identified in the original PhenoGraph publication). For demonstration purposes, we also metacluster our PhenoGraph clusters using k-means clustering.
data(phenograph_data)
set.seed(203L)
phenograph_clusters <-
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = starts_with("cd"),
num_neighbors = 50L,
distance_function = "cosine",
method = "phenograph"
) |>
tof_metacluster(
cluster_col = .phenograph_cluster,
metacluster_cols = starts_with("cd"),
num_metaclusters = 3L,
method = "kmeans"
)
phenograph_clusters |>
dplyr::select(sample_name, .phenograph_cluster, .kmeans_metacluster) |>
head()
#> # A tibble: 6 × 3
#> sample_name .phenograph_cluster .kmeans_metacluster
#> <chr> <chr> <chr>
#> 1 H1_PhenoGraph_cluster1 5 2
#> 2 H1_PhenoGraph_cluster1 1 2
#> 3 H1_PhenoGraph_cluster1 5 2
#> 4 H1_PhenoGraph_cluster1 1 2
#> 5 H1_PhenoGraph_cluster1 1 2
#> 6 H1_PhenoGraph_cluster1 5 2
The outputs of both tof_cluster()
and tof_metacluster()
are a tof_tbl
identical to the input tibble, but now with the addition of an additional column (in this case, “.phenograph_cluster” and “.kmeans_metacluster”) that encodes the cluster id for each cell in the input tof_tbl
. Note that all output columns added to a tibble or tof_tbl
by {tidytof}
begin with a full-stop (”.”) to reduce the likelihood of collisions with existing column names.
Because the output of tof_cluster
is a tof_tbl
, we can use dplyr
’s count
method to assess the accuracy of our clustering procedure compared to the original clustering from the PhenoGraph paper.
phenograph_clusters |>
dplyr::count(phenograph_cluster, .kmeans_metacluster, sort = TRUE)
#> # A tibble: 4 × 3
#> phenograph_cluster .kmeans_metacluster n
#> <chr> <chr> <int>
#> 1 cluster2 1 1000
#> 2 cluster3 3 1000
#> 3 cluster1 2 995
#> 4 cluster1 3 5
Here, we can see that our clustering procedure groups most cells from the same PhenoGraph cluster with one another (with a small number of mistakes).
To change which clustering algorithm tof_cluster
uses, alter the method
flag.
# use the kmeans algorithm
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = contains("cd"),
method = "kmeans"
)
# use the flowsom algorithm
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = contains("cd"),
method = "flowsom"
)
To change the columns used to compute the clusters, change the cluster_cols
flag. And finally, if you want to return a one-column tibble
that only includes the cluster labels (as opposed to the cluster labels added as a new column to the input tof_tbl
), set augment
to FALSE
.
# will result in a tibble with only 1 column (the cluster labels)
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = contains("cd"),
method = "kmeans",
augment = FALSE
) |>
head()
#> # A tibble: 6 × 1
#> .kmeans_cluster
#> <chr>
#> 1 9
#> 2 9
#> 3 2
#> 4 19
#> 5 12
#> 6 19
sessionInfo()
#> R Under development (unstable) (2024-11-20 r87352)
#> Platform: x86_64-apple-darwin20
#> Running under: macOS Monterey 12.7.6
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
#>
#> locale:
#> [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> time zone: America/New_York
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] HDCytoData_1.27.0 flowCore_2.19.0
#> [3] SummarizedExperiment_1.37.0 Biobase_2.67.0
#> [5] GenomicRanges_1.59.1 GenomeInfoDb_1.43.1
#> [7] IRanges_2.41.1 S4Vectors_0.45.2
#> [9] MatrixGenerics_1.19.0 matrixStats_1.4.1
#> [11] ExperimentHub_2.15.0 AnnotationHub_3.15.0
#> [13] BiocFileCache_2.15.0 dbplyr_2.5.0
#> [15] BiocGenerics_0.53.3 generics_0.1.3
#> [17] forcats_1.0.0 ggplot2_3.5.1
#> [19] dplyr_1.1.4 tidytof_1.1.0
#>
#> loaded via a namespace (and not attached):
#> [1] jsonlite_1.8.9 shape_1.4.6.1 magrittr_2.0.3
#> [4] farver_2.1.2 rmarkdown_2.29 zlibbioc_1.53.0
#> [7] vctrs_0.6.5 memoise_2.0.1 htmltools_0.5.8.1
#> [10] S4Arrays_1.7.1 curl_6.0.1 SparseArray_1.7.2
#> [13] sass_0.4.9 parallelly_1.39.0 bslib_0.8.0
#> [16] lubridate_1.9.3 cachem_1.1.0 igraph_2.1.1
#> [19] mime_0.12 lifecycle_1.0.4 iterators_1.0.14
#> [22] pkgconfig_2.0.3 Matrix_1.7-1 R6_2.5.1
#> [25] fastmap_1.2.0 GenomeInfoDbData_1.2.13 future_1.34.0
#> [28] digest_0.6.37 colorspace_2.1-1 AnnotationDbi_1.69.0
#> [31] RSQLite_2.3.8 labeling_0.4.3 filelock_1.0.3
#> [34] cytolib_2.19.0 fansi_1.0.6 yardstick_1.3.1
#> [37] timechange_0.3.0 httr_1.4.7 polyclip_1.10-7
#> [40] abind_1.4-8 compiler_4.5.0 bit64_4.5.2
#> [43] withr_3.0.2 doParallel_1.0.17 viridis_0.6.5
#> [46] DBI_1.2.3 ggforce_0.4.2 MASS_7.3-61
#> [49] lava_1.8.0 rappdirs_0.3.3 DelayedArray_0.33.2
#> [52] tools_4.5.0 future.apply_1.11.3 nnet_7.3-19
#> [55] glue_1.8.0 grid_4.5.0 recipes_1.1.0
#> [58] gtable_0.3.6 tzdb_0.4.0 class_7.3-22
#> [61] tidyr_1.3.1 data.table_1.16.2 hms_1.1.3
#> [64] tidygraph_1.3.1 utf8_1.2.4 XVector_0.47.0
#> [67] ggrepel_0.9.6 BiocVersion_3.21.1 foreach_1.5.2
#> [70] pillar_1.9.0 stringr_1.5.1 RcppHNSW_0.6.0
#> [73] splines_4.5.0 tweenr_2.0.3 lattice_0.22-6
#> [76] survival_3.7-0 bit_4.5.0 RProtoBufLib_2.19.0
#> [79] tidyselect_1.2.1 Biostrings_2.75.1 knitr_1.49
#> [82] gridExtra_2.3 xfun_0.49 graphlayouts_1.2.1
#> [85] hardhat_1.4.0 timeDate_4041.110 stringi_1.8.4
#> [88] UCSC.utils_1.3.0 yaml_2.3.10 evaluate_1.0.1
#> [91] codetools_0.2-20 ggraph_2.2.1 tibble_3.2.1
#> [94] BiocManager_1.30.25 cli_3.6.3 rpart_4.1.23
#> [97] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.13-1
#> [100] globals_0.16.3 png_0.1-8 parallel_4.5.0
#> [103] gower_1.0.1 readr_2.1.5 blob_1.2.4
#> [106] listenv_0.9.1 glmnet_4.1-8 viridisLite_0.4.2
#> [109] ipred_0.9-15 ggridges_0.5.6 scales_1.3.0
#> [112] prodlim_2024.06.25 purrr_1.0.2 crayon_1.5.3
#> [115] rlang_1.1.4 KEGGREST_1.47.0