
Package ‘BayesSpace’
September 11, 2024

Version 1.15.0

Date 2021-11-03

Title Clustering and Resolution Enhancement of Spatial Transcriptomes

Description Tools for clustering and enhancing the resolution of spatial gene
expression experiments. BayesSpace clusters a low-dimensional representation
of the gene expression matrix, incorporating a spatial prior to encourage
neighboring spots to cluster together. The method can enhance the resolution
of the low-dimensional representation into ``sub-spots'', for which features
such as gene expression or cell type composition can be imputed.

Depends R (>= 4.0.0), SingleCellExperiment

Imports Rcpp (>= 1.0.4.6), stats, purrr, scater, scran,
SummarizedExperiment, coda, rhdf5, S4Vectors, Matrix,
assertthat, mclust, RCurl, DirichletReg, xgboost, utils,
ggplot2, scales, BiocFileCache, BiocSingular

License MIT + file LICENSE

RoxygenNote 7.1.1

LinkingTo Rcpp, RcppArmadillo, RcppDist, RcppProgress

NeedsCompilation yes

SystemRequirements C++11

Encoding UTF-8

Suggests testthat, knitr, rmarkdown, igraph, spatialLIBD, dplyr,
viridis, patchwork, RColorBrewer, Seurat

VignetteBuilder knitr

biocViews Software, Clustering, Transcriptomics, GeneExpression,
SingleCell, ImmunoOncology, DataImport

BugReports https://github.com/edward130603/BayesSpace/issues

URL edward130603.github.io/BayesSpace

git_url https://git.bioconductor.org/packages/BayesSpace

git_branch devel

git_last_commit 251a88c

1

https://github.com/edward130603/BayesSpace/issues

2 Contents

git_last_commit_date 2024-04-30

Repository Bioconductor 3.20

Date/Publication 2024-09-11

Author Edward Zhao [aut],
Matt Stone [aut, cre],
Xing Ren [ctb],
Raphael Gottardo [ctb]

Maintainer Matt Stone <mstone@fredhutch.org>

Contents
.adjust_hex_centers . 3
.bsData . 3
.clean_chain . 4
.compute_interspot_distances . 4
.find_neighbors . 5
.flatten_matrix_list . 5
.infer_param_dims . 6
.init_cluster . 6
.make_hex_spots . 7
.make_index_names . 7
.make_spot_vertices . 8
.make_square_spots . 8
.make_subspot_coldata . 9
.make_subspot_offsets . 9
.make_triangle_subspots . 10
.make_vertices . 10
.prepare_inputs . 11
.read_chain . 11
.select_spot_positions . 12
.select_subspot_positions . 12
BayesSpace . 13
cluster . 13
clusterPlot . 14
deconvolve . 15
enhanceFeatures . 16
exampleSCE . 17
featurePlot . 18
find_neighbors . 19
getRDS . 20
mcmcChain . 20
Mode . 22
qTune . 22
readVisium . 23
spatialCluster . 24
spatialEnhance . 26

.adjust_hex_centers 3

spatialPlot . 28
spatialPreprocess . 29

Index 31

.adjust_hex_centers Adjust hex spot positions so hexagons are adjacent to each other in
plot

Description

Spots are regular hexagons with one unit of horizontal distance between centers

Usage

.adjust_hex_centers(spot_positions)

Value

Shifted spot centers

.bsData Access BayesSpace metadata

Description

Access BayesSpace metadata

Usage

.bsData(sce, name, default = NULL, warn = FALSE)

Arguments

sce SingleCellExperiment

name Metadata name

Value

Requested metadata

4 .compute_interspot_distances

.clean_chain Tidy C++ outputs before writing to disk.

Description

1) Convert each parameter to matrix (n_iterations x n_indices) 2) Add appropriate colnames 3) Thin
evenly (for enhance)

Usage

.clean_chain(out, method = c("cluster", "enhance"), thin = 100)

Arguments

out List returned by cluster() or deconvolve().
method Whether the output came from clustering or enhancement. (Different params

are included in each.)
thin Thinning rate. Some enhanced parameters are thinned within C++ loop, others

(mu and Ychange) need to be thinned afterwards.

Value

List with standardized parameters

.compute_interspot_distances

Estimate the distance between two neighboring spots

Description

Fit linear models between each image pixel coordinate and its corresponding array coordinate to
estimate the pixel distance between two spots along each axis. Add these distances to estimate the
L1 distance between two spots, then add a small buffer.

Usage

.compute_interspot_distances(sce, scale.factor = 1.02)

Arguments

sce SingleCellExperiment (must include row, col, imagerow, imagecol in colData)
scale.factor Scale estimated L1 difference up by this amount.

Value

doubles xdist, ydist, radius

.find_neighbors 5

.find_neighbors Find neighboring spots based on array coordinates

Description

Find neighboring spots based on array coordinates

Usage

.find_neighbors(sce, platform)

Arguments

sce SingleCellExperiment

platform If "Visium", select six neighboring spots around center; if "ST", select four ad-
jacent spots.

Value

df_j a list of neighbor indices (zero-indexed) for each spot

.flatten_matrix_list Convert a list of matrices to a single matrix, where each row is a flat-
tened matrix from the original list

Description

Convert a list of matrices to a single matrix, where each row is a flattened matrix from the original
list

Usage

.flatten_matrix_list(xs, ...)

Arguments

xs List of matrices

Value

Matrix

6 .init_cluster

.infer_param_dims Infer original dimensions of parameter (per iteration) from colnames

Description

Used to avoid writing colnames directly to HDF5 as attribute, which fails for large parameters (e.g.
Y)

Usage

.infer_param_dims(cnames)

Arguments

cnames List of column names

Value

Numeric vector (nrow, ncol)

.init_cluster Initialize cluster assignments

Description

Initialize cluster assignments

Usage

.init_cluster(Y, q, init = NULL, init.method = c("mclust", "kmeans"))

Arguments

q Number of clusters

init Vector of initial cluster assignments

init.method Initialization clustering algorithm

sce SingleCellExperiment

inputs Results from .prepare_inputs()

Value

Vector of cluster assignments.

.make_hex_spots 7

.make_hex_spots Make vertices for each hex spot

Description

Make vertices for each hex spot

Usage

.make_hex_spots(cdata, fill)

Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.make_index_names Make colnames for parameter indices.

Description

Scalar parameters are named "name". Vector parameters are named "name[i]". Matrix parameters
are named "name[i,j]".

Usage

.make_index_names(name, m = NULL, n = NULL, dim = 1)

Arguments

name Parameter name

m, n Dimensions of parameter (m=nrow, n=ncol)

dim Dimensionality of parameter (0=scalar, 1=vector, 2=matrix)

Value

List of names for parameter values

8 .make_square_spots

.make_spot_vertices Compute vertex coordinates for each spot in frame of plot

Description

Compute vertex coordinates for each spot in frame of plot

Usage

.make_spot_vertices(spot_positions, vertex_offsets)

Arguments

spot_positions Center for hex, top left for square

vertex_offsets Data frame of (x, y) offsets wrt spot position for each vertex of spot

Value

Cartesian product of positions and offsets, with coordinates computed as (pos + offset)

.make_square_spots Make vertices for each square spot

Description

Squares are simple, just mae a unit square at each array coordinate

Usage

.make_square_spots(cdata, fill = "spatial.cluster", scale.factor = 1)

Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.make_subspot_coldata 9

.make_subspot_coldata Add subspot labels and offset row/col locations before making en-
hanced SCE.

Description

Subspots are stored as (1.1, 2.1, 3.1, ..., 1.2, 2.2, 3.2, ...)

Usage

.make_subspot_coldata(positions, sce, n_subspots_per)

Arguments

sce Original sce (to obtain number of spots and original row/col)

n_subspots_per Number of subspots per spot

cdata Table of colData (imagerow and imagecol; from deconv$positions)

Value

Data frame with added subspot names, parent spot indices, and offset row/column coordinates

.make_subspot_offsets Define offsets for each subspot layout.

Description

Hex spots are divided into 6 triangular subspots, square spots are divided into 9 squares. Offsets are
relative to the spot center.

Usage

.make_subspot_offsets(n_subspots_per)

Arguments

n_subspots_per Number of subspots per spot

Value

Matrix of x and y offsets, one row per subspot

10 .make_vertices

.make_triangle_subspots

Make vertices for each triangle subspot of a hex

Description

Make vertices for each triangle subspot of a hex

Usage

.make_triangle_subspots(cdata, fill = "spatial.cluster")

Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.make_vertices Make vertices outlining spots/subspots for geom_polygon()

Description

Make vertices outlining spots/subspots for geom_polygon()

Usage

.make_vertices(sce, fill, platform, is.enhanced)

Arguments

sce SingleCellExperiment with row/col in colData

fill Name of a column in colData(sce) or a vector of values to use as fill for each
spot

platform "Visium" or "ST", used to determine spot layout

is.enhanced If true, sce contains enhanced subspot data instead of spot-level expression.
Used to determine spot layout.

Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.prepare_inputs 11

.prepare_inputs Prepare cluster/deconvolve inputs from SingleCellExperiment object

Description

Prepare cluster/deconvolve inputs from SingleCellExperiment object

Usage

.prepare_inputs(
sce,
use.dimred = "PCA",
d = 15,
positions = NULL,
position.cols = c("imagecol", "imagerow"),
radius = NULL,
xdist = NULL,
ydist = NULL

)

Value

List of PCs, names of columns with x/y positions, and inter-spot distances

.read_chain Load saved chain from disk.

Description

Load saved chain from disk.

Usage

.read_chain(h5.fname, params = NULL, is.enhanced = FALSE)

Arguments

h5.fname Path to hdf5 file containing chain

params List of parameters to read from file (will read all by default)

Value

MCMC chain, represented as a coda::mcmc object

12 .select_subspot_positions

.select_spot_positions

Helper to extract x, y, fill ID from colData

Description

Helper to extract x, y, fill ID from colData

Usage

.select_spot_positions(cdata, x = "col", y = "row", fill = "spatial.cluster")

Value

Dataframe of (x.pos, y.pos, fill) for each spot

.select_subspot_positions

Helper to pull out subspot position columns Probably redundant with
select_spot_positions above, but we need subspot.idx

Description

Helper to pull out subspot position columns Probably redundant with select_spot_positions above,
but we need subspot.idx

Usage

.select_subspot_positions(
cdata,
x = "spot.col",
y = "spot.row",
fill = "spatial.cluster"

)

Value

Dataframe of (x.pos, y.pos, fill) for each spot

BayesSpace 13

BayesSpace BayesSpace: A package for processing spatial transcriptomes

Description

Tools for clustering and enhancing the resolution of spatial gene expression experiments. BayesS-
pace clusters a low-dimensional representation of the gene expression matrix, incorporating a spatial
prior to encourage neighboring spots to cluster together. The method can enhance the resolution of
the low-dimensional representation into "sub-spots", for which features such as gene expression or
cell type composition can be imputed.

Details

For an overview of the functionality provided by the package, please see the vignette: vignette("BayesSpace",
package="BayesSpace")

cluster Wrapper around C++ iterate_*() functions

Description

Wrapper around C++ iterate_*() functions

Usage

cluster(
Y,
q,
df_j,
init = rep(1, nrow(Y)),
model = c("t", "normal"),
precision = c("equal", "variable"),
mu0 = colMeans(Y),
lambda0 = diag(0.01, nrow = ncol(Y)),
gamma = 3,
alpha = 1,
beta = 0.01,
nrep = 1000

)

Value

List of clustering parameter values at each iteration

14 clusterPlot

clusterPlot Plot spatial cluster assignments.

Description

Plot spatial cluster assignments.

Usage

clusterPlot(
sce,
label = "spatial.cluster",
palette = NULL,
color = NULL,
platform = NULL,
is.enhanced = NULL,
...

)

Arguments

sce SingleCellExperiment. If fill is specified and is a string, it must exist as a
column in colData(sce).

label Labels used to color each spot. May be the name of a column in colData(sce),
or a vector of discrete values.

palette Optional vector of hex codes to use for discrete spot values.

color Optional hex code to set color of borders around spots. Set to NA to remove
borders.

platform Spatial sequencing platform. If "Visium", the hex spot layout will be used, oth-
erwise square spots will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

is.enhanced True if sce contains subspot-level data instead of spots. Spatial sequencing
platform. If true, the respective subspot lattice for each platform will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

... Additional arguments for geom_polygon(). size, to specify the linewidth of
these borders, is likely the most useful.

Value

Returns a ggplot object.

See Also

Other spatial plotting functions: featurePlot()

deconvolve 15

Examples

sce <- exampleSCE()
clusterPlot(sce)

deconvolve Wrapper around C++ iterate_deconv() function

Description

Wrapper around C++ iterate_deconv() function

Usage

deconvolve(
Y,
positions,
xdist,
ydist,
q,
init,
nrep = 1000,
model = "normal",
platform = c("Visium", "ST"),
verbose = TRUE,
jitter_scale = 5,
jitter_prior = 0.01,
mu0 = colMeans(Y),
gamma = 2,
lambda0 = diag(0.01, nrow = ncol(Y)),
alpha = 1,
beta = 0.01

)

Value

List of enhancement parameter values at each iteration

16 enhanceFeatures

enhanceFeatures Predict feature vectors from enhanced PCs.

Description

Predict feature vectors from enhanced PCs.

Usage

enhanceFeatures(
sce.enhanced,
sce.ref,
feature_names = NULL,
model = c("xgboost", "dirichlet", "lm"),
use.dimred = "PCA",
assay.type = "logcounts",
altExp.type = NULL,
feature.matrix = NULL,
nrounds = 0,
train.n = round(ncol(sce.ref) * 2/3)

)

Arguments

sce.enhanced SingleCellExperiment object with enhanced PCs.

sce.ref SingleCellExperiment object with original PCs and expression.

feature_names List of genes/features to predict expression/values for.

model Model used to predict enhanced values.

use.dimred Name of dimension reduction to use.

assay.type Expression matrix in assays(sce.ref) to predict.

altExp.type Expression matrix in altExps(sce.ref) to predict. Overrides assay.type if
specified.

feature.matrix Expression/feature matrix to predict, if not directly attached to sce.ref. Must
have columns corresponding to the spots in sce.ref. Overrides assay.type
and altExp.type if specified.

nrounds Nonnegative integer to set the nrounds parameter (max number of boosting
iterations) for xgboost. nrounds = 100 works reasonably well in most cases.
If nrounds is set to 0, the parameter will be tuned using a train-test split. We
recommend tuning nrounds for improved feature prediction, but note this will
increase runtime.

train.n Number of spots to use in the training dataset for tuning nrounds. By default,
2/3 the total number of spots are used.

exampleSCE 17

Details

Enhanced features are computed by fitting a predictive model to a low-dimensional representation
of the original expression vectors. By default, a linear model is fit for each gene using the top 15
principal components from each spot, i.e. lm(gene ~ PCs), and the fitted model is used to predict
the enhanced expression for each gene from the subspots’ principal components.

Diagnostic measures, such as RMSE for xgboost or R.squared for linear regression, are added to
the ‘rowData‘ of the enhanced experiment if the features are an assay of the original experiment.
Otherwise they are stored as an attribute of the returned matrix/altExp.

Note that feature matrices will be returned and are expected to be input as p × n matrices of p-
dimensional feature vectors over the n spots.

Value

If assay.type or altExp.type are specified, the enhanced features are stored in the corresponding
slot of sce.enhanced and the modified SingleCellExperiment object is returned.

If feature.matrix is specified, or if a subset of features are requested, the enhanced features are
returned directly as a matrix.

Examples

set.seed(149)
sce <- exampleSCE()
sce <- spatialCluster(sce, 7, nrep=100, burn.in=10)
enhanced <- spatialEnhance(sce, 7, init=sce$spatial.cluster, nrep=100, burn.in=10)
enhanced <- enhanceFeatures(enhanced, sce, feature_names=c("gene_1", "gene_2"))

exampleSCE Create minimal SingleCellExperiment for documentation exam-
ples.

Description

Create minimal SingleCellExperiment for documentation examples.

Usage

exampleSCE(nrow = 8, ncol = 12, n_genes = 100, n_PCs = 10)

Arguments

nrow Number of rows of spots

ncol Number of columns of spots

n_genes Number of genes to simulate

n_PCs Number of principal components to include

18 featurePlot

Details

Inspired by scuttle’s mockSCE().

Value

A SingleCellExperiment object with simulated counts, corresponding logcounts and PCs, and posi-
tional data in colData. Spots are distributed over an (nrow x ncol) rectangle.

Examples

set.seed(149)
sce <- exampleSCE()

featurePlot Plot spatial gene expression.

Description

Plot spatial gene expression.

Usage

featurePlot(
sce,
feature,
assay.type = "logcounts",
diverging = FALSE,
low = NULL,
high = NULL,
mid = NULL,
color = NULL,
platform = NULL,
is.enhanced = NULL,
...

)

Arguments

sce SingleCellExperiment. If feature is specified and is a string, it must exist as a
row in the specified assay of sce.

feature Feature vector used to color each spot. May be the name of a gene/row in an
assay of sce, or a vector of continuous values.

assay.type String indicating which assay in sce the expression vector should be taken from.

diverging If true, use a diverging color gradient in featurePlot() (e.g. when plotting a
fold change) instead of a sequential gradient (e.g. when plotting expression).

find_neighbors 19

low, mid, high Optional hex codes for low, mid, and high values of the color gradient used for
continuous spot values.

color Optional hex code to set color of borders around spots. Set to NA to remove
borders.

platform Spatial sequencing platform. If "Visium", the hex spot layout will be used, oth-
erwise square spots will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

is.enhanced True if sce contains subspot-level data instead of spots. Spatial sequencing
platform. If true, the respective subspot lattice for each platform will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

... Additional arguments for geom_polygon(). size, to specify the linewidth of
these borders, is likely the most useful.

Value

Returns a ggplot object.

See Also

Other spatial plotting functions: clusterPlot()

Examples

sce <- exampleSCE()
featurePlot(sce, "gene_2")

find_neighbors Compute pairwise distances between all spots and return list of neigh-
bors for each spot.

Description

Compute pairwise distances between all spots and return list of neighbors for each spot.

Usage

find_neighbors(positions, radius, method = c("manhattan", "euclidean"))

Arguments

positions (n x 2) matrix of spot coordinates.

radius The maximum distance for two spots to be considered neighbors.

method Distance metric to use.

20 mcmcChain

Value

List df_j, where df_j[[i]] is a vector of zero-indexed neighbors of i.

getRDS Download a processed sample from our S3 bucket

Description

Datasets are cached locally using BiocFileCache. The first time using this function, you may need
to consent to creating a BiocFileCache directory if one does not already exist.

Usage

getRDS(dataset, sample, cache = TRUE)

Arguments

dataset Dataset identifier

sample Sample identifier

cache If true, cache the dataset locally with BiocFileCache. Otherwise, download
directly from our S3 bucket. Caching saves time on subsequent loads, but con-
sumes disk space.

Value

sce A SingleCellExperiment with positional information in colData and PCs based on the top 2000
HVGs

Examples

sce <- getRDS("2018_thrane_melanoma", "ST_mel1_rep2", cache=FALSE)

mcmcChain Read MCMC chain associated with a BayesSpace clustering or en-
hancement

Description

BayesSpace stores the MCMC chain associated with a clustering or enhancement on disk in an
HDF5 file. The mcmcChain() function reads any parameters specified by the user into a coda::mcmc
object compatible with TidyBayes.

mcmcChain 21

Usage

mcmcChain(sce, params = NULL)

removeChain(sce)

Arguments

sce SingleCellExperiment with a file path stored in its metadata.

params List of model parameters to read

Details

To interact with the HDF5 file directly, obtain the filename from the SingleCellExperiment’s meta-
data: metadata(sce)$chain.h5. Each parameter is stored as a separate dataset in the file, and
is represented as a matrix of size (n_iterations x n_parameter_indices). Parameter choices for the
spot-level clustering include:

• z (cluster assignments)

• weights (wi)

• mu (mean vectors)

• lambda (precision matrix)

• plogLik (pseudo-log-likelihood)

Parameter choices for the subspot-level enhanced clustering include:

• z (cluster assignments)

• weights (wi)

• Y (enhanced PCs)

• mu (mean vectors)

• lambda (precision matrix)

• Ychange (acceptance rate for the jittering of PCs)

Value

Returns an mcmc object containing the values of the requested parameters over the constructed chain.

Examples

set.seed(149)
sce <- exampleSCE()
sce <- spatialCluster(sce, 7, nrep=100, burn.in=10, save.chain=TRUE)
chain <- mcmcChain(sce)
removeChain(sce)

22 qTune

Mode Find the mode

Description

Used for finding the most frequent cluster for each z

Usage

Mode(x)

Arguments

x Numeric vector

Value

mode Numeric scalar, most frequent element in x

qTune Tuning the choice of q (number of clusters) before running spatial-
Cluster

Description

Before running spatialCluster(), we recommend tuning the choice of q by choosing the q that
maximizes the model’s negative log likelihood over early iterations. qTune() computes the average
negative log likelihood for a range of q values over iterations 100:1000, and qPlot() displays the
results.

Usage

qPlot(sce, qs = seq(3, 7), force.retune = FALSE, ...)

qTune(sce, qs = seq(3, 7), burn.in = 100, nrep = 1000, ...)

Arguments

sce A SingleCellExperiment object containing the spatial data.

qs The values of q to evaluate.

force.retune If specified, existing tuning values in sce will be overwritten.

... Other parameters are passed to spatialCluster().

burn.in, nrep Integers specifying the range of repetitions to compute.

readVisium 23

Details

qTune() takes the same parameters as spatialCluster() and will run the MCMC clustering algo-
rithm up to nrep iterations for each value of q. The first burn.in iterations are discarded as burn-in
and the log likelihood is averaged over the remaining iterations.

qPlot() plots the computed negative log likelihoods as a function of q. If qTune() was run pre-
viously, i.e. there exists an attribute of sce named "q.logliks", the pre-computed results are
displayed. Otherwise, or if force.retune is specified, qplot() will automatically run qTune()
before plotting (and can take the same parameters as spatialCluster().

Value

qTune() returns a modified sce with tuning log likelihoods stored as an attribute named "q.logliks".

qPlot() returns a ggplot object.

Examples

set.seed(149)
sce <- exampleSCE()
sce <- qTune(sce, seq(3, 7), burn.in=10, nrep=100)
qPlot(sce)

readVisium Load a Visium spatial dataset as a SingleCellExperiment.

Description

Load a Visium spatial dataset as a SingleCellExperiment.

Usage

readVisium(dirname)

Arguments

dirname Path to spaceranger output directory (e.g. "sampleID/outs/"). This directory
must contain the counts matrix and feature/barcode TSVs in filtered_feature_bc_matrix/,
and the spot positions at spatial/tissue_positions_list.csv. (These are
default locations for spaceranger outputs.)

Details

We store two variables associated with downstream BayesSpace functions in a list called BayesSpace.data
in the SingleCellExperiment’s metadata.

• platform is set to "Visium", and is used to determine spot layout and neighborhood structure.

• is.enhanced is set to FALSE to denote the object contains spot-level data.

24 spatialCluster

Value

SingleCellExperiment containing the counts matrix in counts and spatial data in colData. Array
coordinates for each spot are stored in columns row and col, while image coordinates are stored in
columns imagerow and imagecol.

Examples

Not run:
sce <- readVisium("path/to/outs/")

End(Not run)

spatialCluster Spatial clustering

Description

Cluster a spatial expression dataset.

Usage

spatialCluster(
sce,
q,
use.dimred = "PCA",
d = 15,
platform = c("Visium", "ST"),
init = NULL,
init.method = c("mclust", "kmeans"),
model = c("t", "normal"),
precision = c("equal", "variable"),
nrep = 50000,
burn.in = 1000,
gamma = NULL,
mu0 = NULL,
lambda0 = NULL,
alpha = 1,
beta = 0.01,
save.chain = FALSE,
chain.fname = NULL

)

Arguments

sce A SingleCellExperiment object containing the spatial data.

q The number of clusters.

spatialCluster 25

use.dimred Name of a reduced dimensionality result in reducedDims(sce). If provided,
cluster on these features directly.

d Number of top principal components to use when clustering.

platform Spatial transcriptomic platform. Specify ’Visium’ for hex lattice geometry or
’ST’ for square lattice geometry. Specifying this parameter is optional when an-
alyzing SingleCellExperiments processed using readVisium or spatialPreprocess,
as this information is included in their metadata.

init Initial cluster assignments for spots.

init.method If init is not provided, cluster the top d PCs with this method to obtain initial
cluster assignments.

model Error model. (’normal’ or ’t’)

precision Covariance structure. (’equal’ or ’variable’ for EEE and VVV covariance mod-
els, respectively.)

nrep The number of MCMC iterations.

burn.in The number of MCMC iterations to exclude as burn-in period.

gamma Smoothing parameter. Defaults to 2 for platform="ST" and 3 for platform="Visium".
(Values in range of 1-3 seem to work well.)

mu0 Prior mean hyperparameter for mu. If not provided, mu0 is set to the mean of
PCs over all spots.

lambda0 Prior precision hyperparam for mu. If not provided, lambda0 is set to a diagonal
matrix 0.01I .

alpha Hyperparameter for Wishart distributed precision lambda.

beta Hyperparameter for Wishart distributed precision lambda.

save.chain If true, save the MCMC chain to an HDF5 file.

chain.fname File path for saved chain. Tempfile used if not provided.

Details

The input SCE must have row and col columns in its colData, corresponding to the array row and
column coordinates of each spot. These are automatically parsed by readVisium or can be added
manually when creating the SCE.

Cluster labels are stored in the spatial.cluster column of the SCE, and the cluster initialization
is stored in cluster.init.

Value

Returns a modified sce with cluster assignments stored in colData under the name spatial.cluster.

See Also

spatialPreprocess for preparing the SCE for clustering, spatialEnhance for enhancing the
clustering resolution, clusterPlot for visualizing the cluster assignments, featurePlot for vi-
sualizing expression levels in spatial context, and mcmcChain for examining the full MCMC chain
associated with the clustering.

26 spatialEnhance

Examples

set.seed(149)
sce <- exampleSCE()
sce <- spatialCluster(sce, 7, nrep=100, burn.in=10)

spatialEnhance Enhance spot resolution

Description

Enhanced clustering of a spatial expression dataset to subspot resolution.

Usage

spatialEnhance(
sce,
q,
platform = c("Visium", "ST"),
use.dimred = "PCA",
d = 15,
init = NULL,
init.method = c("spatialCluster", "mclust", "kmeans"),
model = c("t", "normal"),
nrep = 2e+05,
gamma = NULL,
mu0 = NULL,
lambda0 = NULL,
alpha = 1,
beta = 0.01,
save.chain = FALSE,
chain.fname = NULL,
burn.in = 10000,
jitter_scale = 5,
jitter_prior = 0.3,
verbose = FALSE

)

Arguments

sce A SingleCellExperiment object containing the spatial data.

q The number of clusters.

platform Spatial transcriptomic platform. Specify ’Visium’ for hex lattice geometry or
’ST’ for square lattice geometry. Specifying this parameter is optional when an-
alyzing SingleCellExperiments processed using readVisium, spatialPreprocess,
or spatialCluster, as this information is included in their metadata.

spatialEnhance 27

use.dimred Name of a reduced dimensionality result in reducedDims(sce). If provided,
cluster on these features directly.

d Number of top principal components to use when clustering.

init Initial cluster assignments for spots.

init.method If init is not provided, cluster the top d PCs with this method to obtain initial
cluster assignments.

model Error model. (’normal’ or ’t’)

nrep The number of MCMC iterations.

gamma Smoothing parameter. (Values in range of 1-3 seem to work well.)

mu0 Prior mean hyperparameter for mu. If not provided, mu0 is set to the mean of
PCs over all spots.

lambda0 Prior precision hyperparam for mu. If not provided, lambda0 is set to a diagonal
matrix 0.01I .

alpha Hyperparameter for Wishart distributed precision lambda.

beta Hyperparameter for Wishart distributed precision lambda.

save.chain If true, save the MCMC chain to an HDF5 file.

chain.fname File path for saved chain. Tempfile used if not provided.

burn.in Number of iterations to exclude as burn-in period. The MCMC iterations are
currently thinned to every 100; accordingly burn.in is rounded down to the
nearest multiple of 100.

jitter_scale Controls the amount of jittering. Small amounts of jittering are more likely to
be accepted but result in exploring the space more slowly. We suggest tuning
jitter_scale so that Ychange is on average around 25%-40%.

jitter_prior Scale factor for the prior variance, parameterized as the proportion (default =
0.3) of the mean variance of the PCs. We suggest making jitter_prior smaller
if the jittered values are not expected to vary much from the overall mean of the
spot.

verbose Log progress to stderr.

Details

The enhanced SingleCellExperiment has most of the properties of the input SCE - rowData,
colData, reducedDims - but does not include expression data in counts or logcounts. To impute
enhanced expression vectors, please use [enhanceFeatures()] after running spatialEnhance.

The colData of the enhanced SingleCellExperiment includes the following columns to permit
referencing the subspots in spatial context and linking back to the original spots:

• spot.idx: Index of the spot this subspot belongs to (with respect to the input SCE).

• subspot.idx: Index of the subspot within its parent spot.

• spot.row: Array row of the subspot’s parent spot.

• spot.col: Array col of the subspot’s parent spot.

• row: Array row of the subspot. This is the parent spot’s row plus an offset based on the
subspot’s position within the spot.

28 spatialPlot

• col: Array col of the subspot. This is the parent spot’s col plus an offset based on the subspot’s
position within the spot.

• imagerow: Pixel row of the subspot. This is the parent spot’s row plus an offset based on the
subspot’s position within the spot.

• imagecol: Pixel col of the subspot. This is the parent spot’s col plus an offset based on the
subspot’s position within the spot.

Value

Returns a new SingleCellExperiment object. By default, the assays of this object are empty,
and the enhanced resolution PCs are stored as a reduced dimensionality result accessible with
reducedDim(sce, 'PCA').

See Also

spatialCluster for clustering at the spot level before enhancing, clusterPlot for visualizing
the cluster assignments, enhanceFeatures for imputing enhanced expression, and mcmcChain for
examining the full MCMC chain associated with the enhanced clustering. .

Examples

set.seed(149)
sce <- exampleSCE()
sce <- spatialCluster(sce, 7, nrep=100, burn.in=10)
enhanced <- spatialEnhance(sce, 7, nrep=100, burn.in=10)

spatialPlot Spatial plotting functions

Description

Spatial plotting functions

Arguments

color Optional hex code to set color of borders around spots. Set to NA to remove
borders.

... Additional arguments for geom_polygon(). size, to specify the linewidth of
these borders, is likely the most useful.

platform Spatial sequencing platform. If "Visium", the hex spot layout will be used, oth-
erwise square spots will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

is.enhanced True if sce contains subspot-level data instead of spots. Spatial sequencing
platform. If true, the respective subspot lattice for each platform will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

spatialPreprocess 29

spatialPreprocess Preprocess a spatial dataset for BayesSpace

Description

Adds metadata required for downstream analyses, and (optionally) performs PCA on log-normalized
expression of top HVGs.

Usage

spatialPreprocess(
sce,
platform = c("Visium", "ST"),
n.PCs = 15,
n.HVGs = 2000,
skip.PCA = FALSE,
log.normalize = TRUE,
assay.type = "logcounts",
BSPARAM = ExactParam()

)

Arguments

sce SingleCellExperiment to preprocess

platform Spatial sequencing platform. Used to determine spot layout and neighborhood
structure (Visium = hex, ST = square).

n.PCs Number of principal components to compute. We suggest using the top 15 PCs
in most cases.

n.HVGs Number of highly variable genes to run PCA upon.

skip.PCA Skip PCA (if dimensionality reduction was previously computed.)

log.normalize Whether to log-normalize the input data with scater. May be omitted if log-
normalization previously computed.

assay.type Name of assay in sce containing normalized counts. Leave as "logcounts" un-
less you explicitly pre-computed a different normalization and added it to sce
under another assay. Note that we do not recommend running BayesSpace on
PCs computed from raw counts.

BSPARAM A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA. By default, an exact PCA is performed, as current spatial datasets
are generally small (<10,000 spots). To perform a faster approximate PCA,
please specify FastAutoParam() and set a random seed to ensure reproducibil-
ity.

Value

SingleCellExperiment with PCA and BayesSpace metadata

30 spatialPreprocess

Examples

sce <- exampleSCE()
sce <- spatialPreprocess(sce)

Index

∗ internal
.adjust_hex_centers, 3
.bsData, 3
.clean_chain, 4
.compute_interspot_distances, 4
.find_neighbors, 5
.flatten_matrix_list, 5
.infer_param_dims, 6
.init_cluster, 6
.make_hex_spots, 7
.make_index_names, 7
.make_spot_vertices, 8
.make_square_spots, 8
.make_subspot_coldata, 9
.make_subspot_offsets, 9
.make_triangle_subspots, 10
.make_vertices, 10
.prepare_inputs, 11
.read_chain, 11
.select_spot_positions, 12
.select_subspot_positions, 12
BayesSpace, 13
cluster, 13
deconvolve, 15
find_neighbors, 19
Mode, 22
spatialPlot, 28

∗ spatial plotting functions
clusterPlot, 14
featurePlot, 18

.adjust_hex_centers, 3

.bsData, 3

.clean_chain, 4

.compute_interspot_distances, 4

.find_neighbors, 5

.flatten_matrix_list, 5

.infer_param_dims, 6

.init_cluster, 6

.make_hex_spots, 7

.make_index_names, 7

.make_spot_vertices, 8

.make_square_spots, 8

.make_subspot_coldata, 9

.make_subspot_offsets, 9

.make_triangle_subspots, 10

.make_vertices, 10

.prepare_inputs, 11

.read_chain, 11

.select_spot_positions, 12

.select_subspot_positions, 12

BayesSpace, 13
BiocSingularParam, 29

cluster, 13
clusterPlot, 14, 19, 25, 28

deconvolve, 15

enhanceFeatures, 16, 28
exampleSCE, 17

featurePlot, 14, 18, 25
find_neighbors, 19

getRDS, 20

mcmcChain, 20, 25, 28
Mode, 22

qPlot (qTune), 22
qTune, 22

readVisium, 23, 25, 26
removeChain (mcmcChain), 20

spatialCluster, 24, 26, 28
spatialEnhance, 25, 26
spatialPlot, 28
spatialPreprocess, 25, 26, 29

31

	.adjust_hex_centers
	.bsData
	.clean_chain
	.compute_interspot_distances
	.find_neighbors
	.flatten_matrix_list
	.infer_param_dims
	.init_cluster
	.make_hex_spots
	.make_index_names
	.make_spot_vertices
	.make_square_spots
	.make_subspot_coldata
	.make_subspot_offsets
	.make_triangle_subspots
	.make_vertices
	.prepare_inputs
	.read_chain
	.select_spot_positions
	.select_subspot_positions
	BayesSpace
	cluster
	clusterPlot
	deconvolve
	enhanceFeatures
	exampleSCE
	featurePlot
	find_neighbors
	getRDS
	mcmcChain
	Mode
	qTune
	readVisium
	spatialCluster
	spatialEnhance
	spatialPlot
	spatialPreprocess
	Index

