MWASTools
This is the released version of MWASTools; for the devel version, see MWASTools.
MWASTools: an integrated pipeline to perform metabolome-wide association studies
Bioconductor version: Release (3.20)
MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results.
Author: Andrea Rodriguez-Martinez, Joram M. Posma, Rafael Ayala, Ana L. Neves, Maryam Anwar, Jeremy K. Nicholson, Marc-Emmanuel Dumas
Maintainer: Andrea Rodriguez-Martinez <andrea.rodriguez-martinez13 at imperial.ac.uk>, Rafael Ayala <rafael.ayala at oist.jp>
citation("MWASTools")
):
Installation
To install this package, start R (version "4.4") and enter:
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("MWASTools")
For older versions of R, please refer to the appropriate Bioconductor release.
Documentation
To view documentation for the version of this package installed in your system, start R and enter:
browseVignettes("MWASTools")
MWASTools | HTML | R Script |
Reference Manual | ||
NEWS | Text |
Details
biocViews | Cheminformatics, Lipidomics, Metabolomics, QualityControl, Software, SystemsBiology |
Version | 1.30.0 |
In Bioconductor since | BioC 3.5 (R-3.4) (7.5 years) |
License | CC BY-NC-ND 4.0 |
Depends | R (>= 3.5.0) |
Imports | glm2, ppcor, qvalue, car, boot, grid, ggplot2, gridExtra, igraph, SummarizedExperiment, KEGGgraph, RCurl, KEGGREST, ComplexHeatmap, stats, utils |
System Requirements | |
URL |
See More
Suggests | RUnit, BiocGenerics, knitr, BiocStyle, rmarkdown |
Linking To | |
Enhances | |
Depends On Me | |
Imports Me | MetaboSignal |
Suggests Me | |
Links To Me | |
Build Report | Build Report |
Package Archives
Follow Installation instructions to use this package in your R session.
Source Package | MWASTools_1.30.0.tar.gz |
Windows Binary (x86_64) | MWASTools_1.30.0.zip (64-bit only) |
macOS Binary (x86_64) | MWASTools_1.30.0.tgz |
macOS Binary (arm64) | MWASTools_1.30.0.tgz |
Source Repository | git clone https://git.bioconductor.org/packages/MWASTools |
Source Repository (Developer Access) | git clone git@git.bioconductor.org:packages/MWASTools |
Bioc Package Browser | https://code.bioconductor.org/browse/MWASTools/ |
Package Short Url | https://bioconductor.org/packages/MWASTools/ |
Package Downloads Report | Download Stats |