Contents

Here, we demonstrate a grid search of clustering parameters with a mouse hippocampus VeraFISH dataset. BANKSY currently provides four algorithms for clustering the BANKSY matrix with clusterBanksy: Leiden (default), Louvain, k-means, and model-based clustering. In this vignette, we run only Leiden clustering. See ?clusterBanksy for more details on the parameters for different clustering methods.

1 Loading the data

The dataset comprises gene expression for 10,944 cells and 120 genes in 2 spatial dimensions. See ?Banksy::hippocampus for more details.

# Load libs
library(Banksy)

library(SummarizedExperiment)
library(SpatialExperiment)
library(scuttle)

library(scater)
library(cowplot)
library(ggplot2)

# Load data
data(hippocampus)
gcm <- hippocampus$expression
locs <- as.matrix(hippocampus$locations)

Here, gcm is a gene by cell matrix, and locs is a matrix specifying the coordinates of the centroid for each cell.

head(gcm[,1:5])
#>         cell_1276 cell_8890 cell_691 cell_396 cell_9818
#> Sparcl1        45         0       11       22         0
#> Slc1a2         17         0        6        5         0
#> Map            10         0       12       16         0
#> Sqstm1         26         0        0        2         0
#> Atp1a2          0         0        4        3         0
#> Tnc             0         0        0        0         0
head(locs)
#>                 sdimx    sdimy
#> cell_1276  -13372.899 15776.37
#> cell_8890    8941.101 15866.37
#> cell_691   -14882.899 15896.37
#> cell_396   -15492.899 15835.37
#> cell_9818   11308.101 15846.37
#> cell_11310  14894.101 15810.37

Initialize a SpatialExperiment object and perform basic quality control. We keep cells with total transcript count within the 5th and 98th percentile:

se <- SpatialExperiment(assay = list(counts = gcm), spatialCoords = locs)
colData(se) <- cbind(colData(se), spatialCoords(se))

# QC based on total counts
qcstats <- perCellQCMetrics(se)
thres <- quantile(qcstats$total, c(0.05, 0.98))
keep <- (qcstats$total > thres[1]) & (qcstats$total < thres[2])
se <- se[, keep]

Next, perform normalization of the data.

# Normalization to mean library size
se <- computeLibraryFactors(se)
aname <- "normcounts"
assay(se, aname) <- normalizeCounts(se, log = FALSE)

2 Parameters

BANKSY has a few key parameters. We describe these below.

2.1 AGF usage

For characterising neighborhoods, BANKSY computes the weighted neighborhood mean (H_0) and the azimuthal Gabor filter (H_1), which estimates gene expression gradients. Setting compute_agf=TRUE computes both H_0 and H_1.

2.2 k-geometric

k_geom specifies the number of neighbors used to compute each H_m for m=0,1. If a single value is specified, the same k_geom will be used for each feature matrix. Alternatively, multiple values of k_geom can be provided for each feature matrix. Here, we use k_geom[1]=15 and k_geom[2]=30 for H_0 and H_1 respectively. More neighbors are used to compute gradients.

We compute the neighborhood feature matrices using normalized expression (normcounts in the se object).

k_geom <- c(15, 30)
se <- computeBanksy(se, assay_name = aname, compute_agf = TRUE, k_geom = k_geom)
#> Computing neighbors...
#> Spatial mode is kNN_median
#> Parameters: k_geom=15
#> Done
#> Computing neighbors...
#> Spatial mode is kNN_median
#> Parameters: k_geom=30
#> Done
#> Computing harmonic m = 0
#> Using 15 neighbors
#> Done
#> Computing harmonic m = 1
#> Using 30 neighbors
#> Centering
#> Done

computeBanksy populates the assays slot with H_0 and H_1 in this instance:

se
#> class: SpatialExperiment 
#> dim: 120 10205 
#> metadata(1): BANKSY_params
#> assays(4): counts normcounts H0 H1
#> rownames(120): Sparcl1 Slc1a2 ... Notch3 Egfr
#> rowData names(0):
#> colnames(10205): cell_1276 cell_691 ... cell_11635 cell_10849
#> colData names(4): sample_id sdimx sdimy sizeFactor
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : sdimx sdimy
#> imgData names(1): sample_id

2.3 lambda

The lambda parameter is a mixing parameter in [0,1] which determines how much spatial information is incorporated for downstream analysis. With smaller values of lambda, BANKY operates in cell-typing mode, while at higher levels of lambda, BANKSY operates in domain-finding mode. As a starting point, we recommend lambda=0.2 for cell-typing and lambda=0.8 for zone-finding. Here, we run lambda=0 which corresponds to non-spatial clustering, and lambda=0.2 for spatially-informed cell-typing. We compute PCs with and without the AGF (H_1).

lambda <- c(0, 0.2)
se <- runBanksyPCA(se, use_agf = c(FALSE, TRUE), lambda = lambda, seed = 1000)
#> Using seed=1000
#> Using seed=1000
#> Using seed=1000
#> Using seed=1000

runBanksyPCA populates the reducedDims slot, with each combination of use_agf and lambda provided.

reducedDimNames(se)
#> [1] "PCA_M0_lam0"   "PCA_M0_lam0.2" "PCA_M1_lam0"   "PCA_M1_lam0.2"

2.4 Clustering parameters

Next, we cluster the BANKSY embedding with Leiden graph-based clustering. This admits two parameters: k_neighbors and resolution. k_neighbors determines the number of k nearest neighbors used to construct the shared nearest neighbors graph. Leiden clustering is then performed on the resultant graph with resolution resolution. For reproducibiltiy we set a seed for each parameter combination.

k <- 50
res <- 1
se <- clusterBanksy(se, use_agf = c(FALSE, TRUE), lambda = lambda, k_neighbors = k, resolution = res, seed = 1000)
#> Using seed=1000
#> Using seed=1000
#> Using seed=1000
#> Using seed=1000

clusterBanksy populates colData(se) with cluster labels:

colnames(colData(se))
#> [1] "sample_id"                "sdimx"                   
#> [3] "sdimy"                    "sizeFactor"              
#> [5] "clust_M0_lam0_k50_res1"   "clust_M0_lam0.2_k50_res1"
#> [7] "clust_M1_lam0_k50_res1"   "clust_M1_lam0.2_k50_res1"

3 Comparing cluster results

To compare clustering runs visually, different runs can be relabeled to minimise their differences with connectClusters:

se <- connectClusters(se)
#> clust_M1_lam0_k50_res1 --> clust_M0_lam0_k50_res1
#> clust_M0_lam0.2_k50_res1 --> clust_M1_lam0_k50_res1
#> clust_M1_lam0.2_k50_res1 --> clust_M0_lam0.2_k50_res1

Visualise spatial coordinates with cluster labels.

cnames <- colnames(colData(se))
cnames <- cnames[grep("^clust", cnames)]
cplots <- lapply(cnames, function(cnm) {
    plotColData(se, x = "sdimx", y = "sdimy", point_size = 0.1, colour_by = cnm) +
        coord_equal() +
        labs(title = cnm) +
        theme(legend.title = element_blank()) +
        guides(colour = guide_legend(override.aes = list(size = 2)))
})

plot_grid(plotlist = cplots, ncol = 2)

Compare all cluster outputs with compareClusters. This function computes pairwise cluster comparison metrics between the clusters in colData(se) based on adjusted Rand index (ARI):

compareClusters(se, func = "ARI")
#>                          clust_M0_lam0_k50_res1 clust_M0_lam0.2_k50_res1
#> clust_M0_lam0_k50_res1                    1.000                     0.67
#> clust_M0_lam0.2_k50_res1                  0.670                     1.00
#> clust_M1_lam0_k50_res1                    1.000                     0.67
#> clust_M1_lam0.2_k50_res1                  0.747                     0.87
#>                          clust_M1_lam0_k50_res1 clust_M1_lam0.2_k50_res1
#> clust_M0_lam0_k50_res1                    1.000                    0.747
#> clust_M0_lam0.2_k50_res1                  0.670                    0.870
#> clust_M1_lam0_k50_res1                    1.000                    0.747
#> clust_M1_lam0.2_k50_res1                  0.747                    1.000

or normalized mutual information (NMI):

compareClusters(se, func = "NMI")
#>                          clust_M0_lam0_k50_res1 clust_M0_lam0.2_k50_res1
#> clust_M0_lam0_k50_res1                    1.000                    0.741
#> clust_M0_lam0.2_k50_res1                  0.741                    1.000
#> clust_M1_lam0_k50_res1                    1.000                    0.741
#> clust_M1_lam0.2_k50_res1                  0.782                    0.915
#>                          clust_M1_lam0_k50_res1 clust_M1_lam0.2_k50_res1
#> clust_M0_lam0_k50_res1                    1.000                    0.782
#> clust_M0_lam0.2_k50_res1                  0.741                    0.915
#> clust_M1_lam0_k50_res1                    1.000                    0.782
#> clust_M1_lam0.2_k50_res1                  0.782                    1.000

See ?compareClusters for the full list of comparison measures.

4 Session information

Vignette runtime:

#> Time difference of 1.702055 mins
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-apple-darwin20
#> Running under: macOS Monterey 12.7.6
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
#> 
#> locale:
#> [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> time zone: America/New_York
#> tzcode source: internal
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] ExperimentHub_2.14.0        AnnotationHub_3.14.0       
#>  [3] BiocFileCache_2.14.0        dbplyr_2.5.0               
#>  [5] spatialLIBD_1.18.0          cowplot_1.1.3              
#>  [7] scater_1.34.0               ggplot2_3.5.1              
#>  [9] harmony_1.2.3               Rcpp_1.0.14                
#> [11] data.table_1.16.4           scran_1.34.0               
#> [13] scuttle_1.16.0              Seurat_5.2.0               
#> [15] SeuratObject_5.0.2          sp_2.1-4                   
#> [17] SpatialExperiment_1.16.0    SingleCellExperiment_1.28.1
#> [19] SummarizedExperiment_1.36.0 Biobase_2.66.0             
#> [21] GenomicRanges_1.58.0        GenomeInfoDb_1.42.2        
#> [23] IRanges_2.40.1              S4Vectors_0.44.0           
#> [25] BiocGenerics_0.52.0         MatrixGenerics_1.18.1      
#> [27] matrixStats_1.5.0           Banksy_1.2.0               
#> [29] BiocStyle_2.34.0           
#> 
#> loaded via a namespace (and not attached):
#>   [1] bitops_1.0-9             spatstat.sparse_3.1-0    doParallel_1.0.17       
#>   [4] httr_1.4.7               RColorBrewer_1.1-3       tools_4.4.2             
#>   [7] sctransform_0.4.1        DT_0.33                  R6_2.5.1                
#>  [10] lazyeval_0.2.2           uwot_0.2.2               withr_3.0.2             
#>  [13] gridExtra_2.3            progressr_0.15.1         cli_3.6.3               
#>  [16] spatstat.explore_3.3-4   fastDummies_1.7.5        labeling_0.4.3          
#>  [19] sass_0.4.9               spatstat.data_3.1-4      ggridges_0.5.6          
#>  [22] pbapply_1.7-2            Rsamtools_2.22.0         dbscan_1.2-0            
#>  [25] aricode_1.0.3            dichromat_2.0-0.1        sessioninfo_1.2.2       
#>  [28] parallelly_1.41.0        attempt_0.3.1            maps_3.4.2.1            
#>  [31] limma_3.62.2             pals_1.9                 RSQLite_2.3.9           
#>  [34] BiocIO_1.16.0            generics_0.1.3           ica_1.0-3               
#>  [37] spatstat.random_3.3-2    dplyr_1.1.4              Matrix_1.7-2            
#>  [40] ggbeeswarm_0.7.2         abind_1.4-8              lifecycle_1.0.4         
#>  [43] yaml_2.3.10              edgeR_4.4.1              SparseArray_1.6.1       
#>  [46] Rtsne_0.17               paletteer_1.6.0          grid_4.4.2              
#>  [49] blob_1.2.4               promises_1.3.2           dqrng_0.4.1             
#>  [52] crayon_1.5.3             miniUI_0.1.1.1           lattice_0.22-6          
#>  [55] beachmat_2.22.0          mapproj_1.2.11           KEGGREST_1.46.0         
#>  [58] magick_2.8.5             pillar_1.10.1            knitr_1.49              
#>  [61] metapod_1.14.0           rjson_0.2.23             future.apply_1.11.3     
#>  [64] codetools_0.2-20         glue_1.8.0               spatstat.univar_3.1-1   
#>  [67] vctrs_0.6.5              png_0.1-8                spam_2.11-1             
#>  [70] gtable_0.3.6             rematch2_2.1.2           cachem_1.1.0            
#>  [73] xfun_0.50                S4Arrays_1.6.0           mime_0.12               
#>  [76] survival_3.8-3           RcppHungarian_0.3        iterators_1.0.14        
#>  [79] tinytex_0.54             fields_16.3              statmod_1.5.0           
#>  [82] bluster_1.16.0           fitdistrplus_1.2-2       ROCR_1.0-11             
#>  [85] nlme_3.1-166             bit64_4.6.0-1            filelock_1.0.3          
#>  [88] RcppAnnoy_0.0.22         bslib_0.8.0              irlba_2.3.5.1           
#>  [91] vipor_0.4.7              KernSmooth_2.23-26       colorspace_2.1-1        
#>  [94] DBI_1.2.3                tidyselect_1.2.1         bit_4.5.0.1             
#>  [97] compiler_4.4.2           curl_6.2.0               BiocNeighbors_2.0.1     
#> [100] DelayedArray_0.32.0      plotly_4.10.4            rtracklayer_1.66.0      
#> [103] bookdown_0.42            scales_1.3.0             lmtest_0.9-40           
#> [106] rappdirs_0.3.3           stringr_1.5.1            digest_0.6.37           
#> [109] goftest_1.2-3            spatstat.utils_3.1-2     rmarkdown_2.29          
#> [112] benchmarkmeData_1.0.4    RhpcBLASctl_0.23-42      XVector_0.46.0          
#> [115] htmltools_0.5.8.1        pkgconfig_2.0.3          fastmap_1.2.0           
#> [118] rlang_1.1.5              htmlwidgets_1.6.4        UCSC.utils_1.2.0        
#> [121] shiny_1.10.0             farver_2.1.2             jquerylib_0.1.4         
#> [124] zoo_1.8-12               jsonlite_1.8.9           BiocParallel_1.40.0     
#> [127] mclust_6.1.1             config_0.3.2             RCurl_1.98-1.16         
#> [130] BiocSingular_1.22.0      magrittr_2.0.3           GenomeInfoDbData_1.2.13 
#> [133] dotCall64_1.2            patchwork_1.3.0          munsell_0.5.1           
#> [136] viridis_0.6.5            reticulate_1.40.0        leidenAlg_1.1.4         
#> [139] stringi_1.8.4            zlibbioc_1.52.0          MASS_7.3-64             
#> [142] plyr_1.8.9               parallel_4.4.2           listenv_0.9.1           
#> [145] ggrepel_0.9.6            deldir_2.0-4             Biostrings_2.74.1       
#> [148] sccore_1.0.5             splines_4.4.2            tensor_1.5              
#> [151] locfit_1.5-9.10          igraph_2.1.4             spatstat.geom_3.3-5     
#> [154] RcppHNSW_0.6.0           reshape2_1.4.4           ScaledMatrix_1.14.0     
#> [157] XML_3.99-0.18            BiocVersion_3.20.0       evaluate_1.0.3          
#> [160] golem_0.5.1              BiocManager_1.30.25      foreach_1.5.2           
#> [163] httpuv_1.6.15            RANN_2.6.2               tidyr_1.3.1             
#> [166] purrr_1.0.2              polyclip_1.10-7          benchmarkme_1.0.8       
#> [169] future_1.34.0            scattermore_1.2          rsvd_1.0.5              
#> [172] xtable_1.8-4             restfulr_0.0.15          RSpectra_0.16-2         
#> [175] later_1.4.1              viridisLite_0.4.2        tibble_3.2.1            
#> [178] GenomicAlignments_1.42.0 memoise_2.0.1            beeswarm_0.4.0          
#> [181] AnnotationDbi_1.68.0     cluster_2.1.8            shinyWidgets_0.8.7      
#> [184] globals_0.16.3