A C D E F G H I K L M N O P Q R S T U Z misc
addGoAnnotations | Add GO annotations |
addLegend | Adds a legend |
addMarkers | Adds markers to the data |
andy2011params | Class '"AnnotationParams"' |
AnnotationParams | Class '"AnnotationParams"' |
AnnotationParams-class | Class '"AnnotationParams"' |
as.data.frame.MartInstance | Class '"MartInstance"' |
as.data.frame.MartInstanceList | Class '"MartInstance"' |
chains | Instrastructure to store and process MCMC results |
checkFeatureNamesOverlap | Check feature names overlap |
checkFvarOverlap | Compare a feature variable overlap |
chi2 | The PCP 'chi square' method |
chi2-method | The PCP 'chi square' method |
chi2-methods | The PCP 'chi square' method |
class::QSep | Quantify resolution of a spatial proteomics experiment |
class:AnnotationParams | Class '"AnnotationParams"' |
class:ClustDist | Class '"ClustDist"' |
class:ClustDistList | Storing multiple ClustDist instances |
class:GenRegRes | Class '"GenRegRes"' and '"ThetaRegRes"' |
class:MAPParams | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
class:MCMCChain | Instrastructure to store and process MCMC results |
class:MCMCChains | Instrastructure to store and process MCMC results |
class:MCMCParams | Instrastructure to store and process MCMC results |
class:MCMCSummary | Instrastructure to store and process MCMC results |
class:SpatProtVis | Class 'SpatProtVis' |
class:ThetaRegRes | Class '"GenRegRes"' and '"ThetaRegRes"' |
classWeights | Calculate class weights |
ClustDist | Class '"ClustDist"' |
clustDist | Pairwise Distance Computation for Protein Information Sets |
ClustDist-class | Class '"ClustDist"' |
ClustDistList | Storing multiple ClustDist instances |
ClustDistList-class | Storing multiple ClustDist instances |
col1 | Draw 2 data sets on one PCA plot |
col2 | Draw 2 data sets on one PCA plot |
combineThetaRegRes | Class '"GenRegRes"' and '"ThetaRegRes"' |
data1 | Draw 2 data sets on one PCA plot |
data2 | Draw 2 data sets on one PCA plot |
dunkley2006params | Class '"AnnotationParams"' |
empPvalues | Estimate empirical p-values for Chi^2 protein correlations. |
f1Count | Class '"GenRegRes"' and '"ThetaRegRes"' |
f1Count-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
favourPrimary | Class '"GenRegRes"' and '"ThetaRegRes"' |
fDataToUnknown | Update a feature variable |
filterAttrs | Class '"MartInstance"' |
filterBinMSnSet | Filter a binary MSnSet |
filterMaxMarkers | Removes class/annotation information from a matrix of candidate markers that appear in the 'fData'. |
filterMinMarkers | Removes class/annotation information from a matrix of candidate markers that appear in the 'fData'. |
filterZeroCols | Remove 0 columns/rows |
filterZeroRows | Remove 0 columns/rows |
flipGoTermId | Convert GO ids to/from terms |
GenRegRes | Class '"GenRegRes"' and '"ThetaRegRes"' |
GenRegRes-class | Class '"GenRegRes"' and '"ThetaRegRes"' |
getAnnotationParams | Class '"AnnotationParams"' |
getF1Scores | Class '"GenRegRes"' and '"ThetaRegRes"' |
getF1Scores-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
getFilterList | Class '"MartInstance"' |
getGOEvidenceCodes | GO Evidence Codes |
getGOFromFeatures | Retrieve GO terms for feature names |
getLisacol | Manage default colours and point characters |
getMarkerClasses | Returns the organelle classes in an 'MSnSet' |
getMarkers | Get the organelle markers in an 'MSnSet' |
getMartInstanceList | Class '"MartInstance"' |
getMartTab | Class '"MartInstance"' |
getNormDist | Extract Distances from a '"ClustDistList"' object |
getOldcol | Manage default colours and point characters |
getParams | Class '"GenRegRes"' and '"ThetaRegRes"' |
getParams-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
getParams-method | Undocumented/unexported entries |
getPredictions | Returns the predictions in an 'MSnSet' |
getRegularisedParams | Class '"GenRegRes"' and '"ThetaRegRes"' |
getRegularisedParams-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
getRegularizedParams | Class '"GenRegRes"' and '"ThetaRegRes"' |
getRegularizedParams-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
getSeed | Class '"GenRegRes"' and '"ThetaRegRes"' |
getSeed-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
getStockcol | Manage default colours and point characters |
getStockpch | Manage default colours and point characters |
getUnknowncol | Manage default colours and point characters |
getUnknownpch | Manage default colours and point characters |
getWarnings | Class '"GenRegRes"' and '"ThetaRegRes"' |
getWarnings-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
geweke_test | Number of outlier at each iteration of MCMC |
goIdToTerm | Convert GO ids to/from terms |
goTermToId | Convert GO ids to/from terms |
highlightOnPlot | Highlight features of interest on a spatial proteomics plot |
highlightOnPlot3D | Highlight features of interest on a spatial proteomics plot |
isMrkMat | Create a marker vector or matrix. |
isMrkVec | Create a marker vector or matrix. |
knnClassification | knn classification |
knnOptimisation | knn parameter optimisation |
knnOptimization | knn parameter optimisation |
knnPrediction | knn classification |
knnRegularisation | knn parameter optimisation |
knntlClassification | knn transfer learning classification |
knntlOptimisation | theta parameter optimisation |
ksvmClassification | ksvm classification |
ksvmOptimisation | ksvm parameter optimisation |
ksvmOptimization | ksvm parameter optimisation |
ksvmPrediction | ksvm classification |
ksvmRegularisation | ksvm parameter optimisation |
lapply-method | Storing multiple ClustDist instances |
lapply-method | Class '"MartInstance"' |
length-method | Storing multiple ClustDist instances |
length-method | Instrastructure to store and process MCMC results |
levelPlot | Class '"GenRegRes"' and '"ThetaRegRes"' |
levelPlot-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
levelPlot-method | Quantify resolution of a spatial proteomics experiment |
levelPlot-method | Undocumented/unexported entries |
logPosteriors | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
makeGoSet | Creates a GO feature 'MSnSet' |
MAPParams | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
MAPParams-class | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
markerMSnSet | Extract marker/unknown subsets |
markers | Create a marker vector or matrix. |
MartInstance | Class '"MartInstance"' |
MartInstance-class | Class '"MartInstance"' |
MartInstanceList | Class '"MartInstance"' |
MartInstanceList-class | Class '"MartInstance"' |
MCMCChain | Instrastructure to store and process MCMC results |
MCMCChain-class | Instrastructure to store and process MCMC results |
MCMCChains | Instrastructure to store and process MCMC results |
MCMCChains-class | Instrastructure to store and process MCMC results |
MCMCParams-class | Instrastructure to store and process MCMC results |
MCMCSummary | Instrastructure to store and process MCMC results |
MCMCSummary-class | Instrastructure to store and process MCMC results |
MCMCSummary-class. | Instrastructure to store and process MCMC results |
mcmc_burn_chains | Number of outlier at each iteration of MCMC |
mcmc_get_meanComponent | Number of outlier at each iteration of MCMC |
mcmc_get_meanoutliersProb | Number of outlier at each iteration of MCMC |
mcmc_get_outliers | Number of outlier at each iteration of MCMC |
mcmc_pool_chains | Number of outlier at each iteration of MCMC |
mcmc_thin_chains | Number of outlier at each iteration of MCMC |
minMarkers | Creates a reduced marker variable |
mixing_posterior_check | Model calibration plots |
MLearn-method | The 'MLearn' interface for machine learning |
MLearnMSnSet | The 'MLearn' interface for machine learning |
move2Ds | Displays a spatial proteomics animation |
mrkConsProfiles | Marker consensus profiles |
mrkEncoding | Create a marker vector or matrix. |
mrkHClust | Draw a dendrogram of subcellular clusters |
mrkMatAndVec | Create a marker vector or matrix. |
mrkMatToVec | Create a marker vector or matrix. |
mrkVecToMat | Create a marker vector or matrix. |
MSnSetMLean | The 'MLearn' interface for machine learning |
names-method | Storing multiple ClustDist instances |
names-method | Quantify resolution of a spatial proteomics experiment |
names<--method | Storing multiple ClustDist instances |
names<--method | Quantify resolution of a spatial proteomics experiment |
nbClassification | nb classification |
nbOptimisation | nb paramter optimisation |
nbOptimization | nb paramter optimisation |
nbPrediction | nb classification |
nbRegularisation | nb paramter optimisation |
nDatasets | Class '"MartInstance"' |
nicheMeans2D | Uncertainty plot organelle means |
nndist | Nearest neighbour distances |
nndist-method | Nearest neighbour distances |
nndist-methods | Nearest neighbour distances |
nnetClassification | nnet classification |
nnetOptimisation | nnet parameter optimisation |
nnetOptimization | nnet parameter optimisation |
nnetPrediction | nnet classification |
nnetRegularisation | nnet parameter optimisation |
orderGoAnnotations | Orders annotation information |
orgQuants | Returns organelle-specific quantile scores |
perTurboClassification | perTurbo classification |
perTurboOptimisation | PerTurbo parameter optimisation |
perTurboOptimization | PerTurbo parameter optimisation |
phenoDisco | Runs the 'phenoDisco' algorithm. |
plot-method | Class '"ClustDist"' |
plot-method | Storing multiple ClustDist instances |
plot-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
plot-method | Quantify resolution of a spatial proteomics experiment |
plot-method | Class 'SpatProtVis' |
plot-method | Number of outlier at each iteration of MCMC |
plot-method | Undocumented/unexported entries |
plot2D | Plot organelle assignment data and results. |
plot2Dmethods | Plot organelle assignment data and results. |
plot2Ds | Draw 2 data sets on one PCA plot |
plot3D-method | Plot organelle assignment data and results. |
plotConsProfiles | Plot marker consenses profiles. |
plotDist | Plots the distribution of features across fractions |
plotEllipse | A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models. |
plsdaClassification | plsda classification |
plsdaOptimisation | plsda parameter optimisation |
plsdaOptimization | plsda parameter optimisation |
plsdaPrediction | plsda classification |
plsdaRegularisation | plsda parameter optimisation |
prettyGoTermId | Convert GO ids to/from terms |
pRolocmarkers | Organelle markers |
QSep | Quantify resolution of a spatial proteomics experiment |
qsep | Quantify resolution of a spatial proteomics experiment |
QSep-class | Quantify resolution of a spatial proteomics experiment |
rfClassification | rf classification |
rfOptimisation | svm parameter optimisation |
rfOptimization | svm parameter optimisation |
rfPrediction | rf classification |
rfRegularisation | svm parameter optimisation |
sampleMSnSet | Extract a stratified sample of an 'MSnSet' |
sapply-method | Storing multiple ClustDist instances |
sapply-method | Class '"MartInstance"' |
setAnnotationParams | Class '"AnnotationParams"' |
setLisacol | Manage default colours and point characters |
setOldcol | Manage default colours and point characters |
setStockcol | Manage default colours and point characters |
setStockpch | Manage default colours and point characters |
setUnknowncol | Manage default colours and point characters |
setUnknownpch | Manage default colours and point characters |
show-method | Class '"AnnotationParams"' |
show-method | Class '"ClustDist"' |
show-method | Storing multiple ClustDist instances |
show-method | Class '"GenRegRes"' and '"ThetaRegRes"' |
show-method | Instrastructure to store and process MCMC results |
show-method | Class '"MartInstance"' |
show-method | Quantify resolution of a spatial proteomics experiment |
show-method | Class 'SpatProtVis' |
show-method | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
show-method | Undocumented/unexported entries |
showGOEvidenceCodes | GO Evidence Codes |
showMrkMat | Create a marker vector or matrix. |
spatial2D | Uncertainty plot in localisation probabilities |
SpatProtVis | Class 'SpatProtVis' |
SpatProtVis-class | Class 'SpatProtVis' |
subsetMarkers | Subsets markers |
summary-method | Quantify resolution of a spatial proteomics experiment |
svmClassification | svm classification |
svmOptimisation | svm parameter optimisation |
svmOptimization | svm parameter optimisation |
svmPrediction | svm classification |
svmRegularisation | svm parameter optimisation |
tagmMapPredict | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
tagmMapTrain | The 'logPosteriors' function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. |
tagmMcmcPredict | Localisation of proteins using the TAGM MCMC method |
tagmMcmcProcess | Localisation of proteins using the TAGM MCMC method |
tagmMcmcTrain | Localisation of proteins using the TAGM MCMC method |
tagmPredict | Localisation of proteins using the TAGM MCMC method |
testMarkers | Tests marker class sizes |
testMSnSet | Create a stratified 'test' 'MSnSet' |
ThetaRegRes | Class '"GenRegRes"' and '"ThetaRegRes"' |
ThetaRegRes-class | Class '"GenRegRes"' and '"ThetaRegRes"' |
thetas | Draw matrix of thetas to test |
undocumented | Undocumented/unexported entries |
unknownMSnSet | Extract marker/unknown subsets |
zerosInBinMSnSet | Compute the number of non-zero values in each marker classes |
.MCMCChain | Instrastructure to store and process MCMC results |
.MCMCChains | Instrastructure to store and process MCMC results |
.MCMCParams | Instrastructure to store and process MCMC results |
.MCMCSummary | Instrastructure to store and process MCMC results |
[-method | Storing multiple ClustDist instances |
[-method | Instrastructure to store and process MCMC results |
[-method | Class '"MartInstance"' |
[[-method | Storing multiple ClustDist instances |
[[-method | Instrastructure to store and process MCMC results |
[[-method | Class '"MartInstance"' |