if (!require("BiocManager")) {
install.packages("BiocManager")
}
BiocManager::install("glmSparseNet")
library(futile.logger)
library(ggplot2)
library(glmSparseNet)
library(survival)
# Some general options for futile.logger the debugging package
flog.layout(layout.format("[~l] ~m"))
options("glmSparseNet.show_message" = FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
data("cancer", package = "survival")
xdata <- survival::ovarian[, c("age", "resid.ds")]
ydata <- data.frame(
time = survival::ovarian$futime,
status = survival::ovarian$fustat
)
(group cutoff is median calculated relative risk)
resAge <- separate2GroupsCox(c(age = 1, 0), xdata, ydata)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 13 4 NA 638 NA
## High risk - 1 13 8 464 268 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below or equal the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
resAge4060 <-
separate2GroupsCox(c(age = 1, 0),
xdata,
ydata,
probs = c(.4, .6)
)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 11 3 NA 563 NA
## High risk - 1 10 7 359 156 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
This is a special case where you want to use a cutoff that includes some sample on both high and low risks groups.
resAge6040 <- separate2GroupsCox(
chosenBetas = c(age = 1, 0),
xdata,
ydata,
probs = c(.6, .4),
stopWhenOverlap = FALSE
)
## Warning in buildPrognosticIndexDataFrame(ydata, probs, stopWhenOverlap, : The cutoff values given to the function allow for some over samples in both groups, with:
## high risk size (15) + low risk size (16) not equal to xdata/ydata rows (31 != 26)
##
## We are continuing with execution as parameter `stopWhenOverlap` is FALSE.
## note: This adds duplicate samples to ydata and xdata xdata
## Kaplan-Meier results
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 16 5 NA 638 NA
## High risk - 1 15 9 475 353 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS Ventura 13.6.7
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] glmnet_4.1-8 VennDiagram_1.7.3
## [3] reshape2_1.4.4 forcats_1.0.0
## [5] Matrix_1.7-1 glmSparseNet_1.24.0
## [7] TCGAutils_1.26.0 curatedTCGAData_1.27.1
## [9] MultiAssayExperiment_1.32.0 SummarizedExperiment_1.36.0
## [11] Biobase_2.66.0 GenomicRanges_1.58.0
## [13] GenomeInfoDb_1.42.0 IRanges_2.40.0
## [15] S4Vectors_0.44.0 BiocGenerics_0.52.0
## [17] MatrixGenerics_1.18.0 matrixStats_1.4.1
## [19] futile.logger_1.4.3 survival_3.7-0
## [21] ggplot2_3.5.1 dplyr_1.1.4
## [23] BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_1.8.9 shape_1.4.6.1
## [3] magrittr_2.0.3 magick_2.8.5
## [5] GenomicFeatures_1.58.0 farver_2.1.2
## [7] rmarkdown_2.29 BiocIO_1.16.0
## [9] zlibbioc_1.52.0 vctrs_0.6.5
## [11] memoise_2.0.1 Rsamtools_2.22.0
## [13] RCurl_1.98-1.16 rstatix_0.7.2
## [15] tinytex_0.54 progress_1.2.3
## [17] htmltools_0.5.8.1 S4Arrays_1.6.0
## [19] BiocBaseUtils_1.8.0 AnnotationHub_3.14.0
## [21] lambda.r_1.2.4 curl_6.0.0
## [23] broom_1.0.7 Formula_1.2-5
## [25] pROC_1.18.5 SparseArray_1.6.0
## [27] sass_0.4.9 bslib_0.8.0
## [29] plyr_1.8.9 httr2_1.0.6
## [31] zoo_1.8-12 futile.options_1.0.1
## [33] cachem_1.1.0 GenomicAlignments_1.42.0
## [35] mime_0.12 lifecycle_1.0.4
## [37] iterators_1.0.14 pkgconfig_2.0.3
## [39] R6_2.5.1 fastmap_1.2.0
## [41] GenomeInfoDbData_1.2.13 digest_0.6.37
## [43] colorspace_2.1-1 AnnotationDbi_1.68.0
## [45] ps_1.8.1 ExperimentHub_2.14.0
## [47] RSQLite_2.3.7 ggpubr_0.6.0
## [49] labeling_0.4.3 filelock_1.0.3
## [51] km.ci_0.5-6 fansi_1.0.6
## [53] httr_1.4.7 abind_1.4-8
## [55] compiler_4.4.1 bit64_4.5.2
## [57] withr_3.0.2 backports_1.5.0
## [59] BiocParallel_1.40.0 carData_3.0-5
## [61] DBI_1.2.3 ggsignif_0.6.4
## [63] biomaRt_2.62.0 rappdirs_0.3.3
## [65] DelayedArray_0.32.0 rjson_0.2.23
## [67] tools_4.4.1 chromote_0.3.1
## [69] glue_1.8.0 restfulr_0.0.15
## [71] promises_1.3.0 checkmate_2.3.2
## [73] generics_0.1.3 gtable_0.3.6
## [75] KMsurv_0.1-5 tzdb_0.4.0
## [77] tidyr_1.3.1 survminer_0.5.0
## [79] websocket_1.4.2 data.table_1.16.2
## [81] hms_1.1.3 car_3.1-3
## [83] xml2_1.3.6 utf8_1.2.4
## [85] XVector_0.46.0 BiocVersion_3.20.0
## [87] foreach_1.5.2 pillar_1.9.0
## [89] stringr_1.5.1 later_1.3.2
## [91] splines_4.4.1 BiocFileCache_2.14.0
## [93] lattice_0.22-6 rtracklayer_1.66.0
## [95] bit_4.5.0 tidyselect_1.2.1
## [97] Biostrings_2.74.0 knitr_1.49
## [99] gridExtra_2.3 bookdown_0.41
## [101] xfun_0.49 stringi_1.8.4
## [103] UCSC.utils_1.2.0 yaml_2.3.10
## [105] evaluate_1.0.1 codetools_0.2-20
## [107] tibble_3.2.1 BiocManager_1.30.25
## [109] cli_3.6.3 xtable_1.8-4
## [111] munsell_0.5.1 processx_3.8.4
## [113] jquerylib_0.1.4 survMisc_0.5.6
## [115] Rcpp_1.0.13-1 GenomicDataCommons_1.30.0
## [117] dbplyr_2.5.0 png_0.1-8
## [119] XML_3.99-0.17 readr_2.1.5
## [121] blob_1.2.4 prettyunits_1.2.0
## [123] bitops_1.0-9 scales_1.3.0
## [125] purrr_1.0.2 crayon_1.5.3
## [127] rlang_1.1.4 KEGGREST_1.46.0
## [129] rvest_1.0.4 formatR_1.14