Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.
We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).
Here is the code from the main vignette:
library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)
# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]
# compute QC metrics
qc <- perCellQCMetrics(sce)
# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]
# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim
In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:
sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))
Now compute the pseudobulk using standard code:
sce$id <- paste0(sce$StimStatus, sce$ind)
# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
assay = "counts",
cluster_id = "cell",
sample_id = "id",
verbose = FALSE
)
The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment
object:
metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups: cell [8]
## cell id cluster value1 value2
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 B cells ctrl101 3.96 0.0351 -0.0174
## 2 B cells ctrl1015 4.00 0.0214 0.0133
## 3 B cells ctrl1016 4 -0.0665 0.0260
## 4 B cells ctrl1039 4.04 -0.0933 0.195
## 5 B cells ctrl107 4 -0.0147 -0.0703
## 6 B cells ctrl1244 4 -0.0586 0.0222
## 7 B cells ctrl1256 4.01 -0.0172 -0.0591
## 8 B cells ctrl1488 4.02 -0.188 0.0879
## 9 B cells stim101 4.09 -0.0725 -0.0534
## 10 B cells stim1015 4.06 -0.0770 -0.00699
## # ℹ 118 more rows
Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb)
and cell-level variables stored in metadata(pb)$aggr_means
.
Variance partition and hypothesis testing proceeds as ususal:
form <- ~ StimStatus + value1 + value2
# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)
# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)
# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)
# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)
# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
## min: 164
## max: 5262
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2
## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS Ventura 13.6.7
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] muscData_1.19.0 scater_1.34.0
## [3] scuttle_1.16.0 ExperimentHub_2.14.0
## [5] AnnotationHub_3.14.0 BiocFileCache_2.14.0
## [7] dbplyr_2.5.0 muscat_1.20.0
## [9] dreamlet_1.4.1 SingleCellExperiment_1.28.0
## [11] SummarizedExperiment_1.36.0 Biobase_2.66.0
## [13] GenomicRanges_1.58.0 GenomeInfoDb_1.42.0
## [15] IRanges_2.40.0 S4Vectors_0.44.0
## [17] BiocGenerics_0.52.0 MatrixGenerics_1.18.0
## [19] matrixStats_1.4.1 variancePartition_1.36.2
## [21] BiocParallel_1.40.0 limma_3.62.1
## [23] ggplot2_3.5.1 BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-9 httr_1.4.7
## [3] RColorBrewer_1.1-3 doParallel_1.0.17
## [5] Rgraphviz_2.50.0 numDeriv_2016.8-1.1
## [7] sctransform_0.4.1 tools_4.4.1
## [9] backports_1.5.0 utf8_1.2.4
## [11] R6_2.5.1 metafor_4.6-0
## [13] mgcv_1.9-1 GetoptLong_1.0.5
## [15] withr_3.0.2 prettyunits_1.2.0
## [17] gridExtra_2.3 cli_3.6.3
## [19] sandwich_3.1-1 labeling_0.4.3
## [21] sass_0.4.9 KEGGgraph_1.66.0
## [23] SQUAREM_2021.1 mvtnorm_1.3-2
## [25] blme_1.0-6 mixsqp_0.3-54
## [27] zenith_1.8.0 parallelly_1.39.0
## [29] invgamma_1.1 RSQLite_2.3.7
## [31] generics_0.1.3 shape_1.4.6.1
## [33] gtools_3.9.5 dplyr_1.1.4
## [35] Matrix_1.7-1 metadat_1.2-0
## [37] ggbeeswarm_0.7.2 fansi_1.0.6
## [39] abind_1.4-8 lifecycle_1.0.4
## [41] multcomp_1.4-26 yaml_2.3.10
## [43] edgeR_4.4.0 mathjaxr_1.6-0
## [45] gplots_3.2.0 SparseArray_1.6.0
## [47] grid_4.4.1 blob_1.2.4
## [49] crayon_1.5.3 lattice_0.22-6
## [51] beachmat_2.22.0 msigdbr_7.5.1
## [53] annotate_1.84.0 KEGGREST_1.46.0
## [55] magick_2.8.5 pillar_1.9.0
## [57] knitr_1.49 ComplexHeatmap_2.22.0
## [59] rjson_0.2.23 boot_1.3-31
## [61] estimability_1.5.1 corpcor_1.6.10
## [63] future.apply_1.11.3 codetools_0.2-20
## [65] glue_1.8.0 data.table_1.16.2
## [67] vctrs_0.6.5 png_0.1-8
## [69] Rdpack_2.6.1 gtable_0.3.6
## [71] assertthat_0.2.1 cachem_1.1.0
## [73] xfun_0.49 mime_0.12
## [75] rbibutils_2.3 S4Arrays_1.6.0
## [77] Rfast_2.1.0 coda_0.19-4.1
## [79] reformulas_0.4.0 survival_3.7-0
## [81] iterators_1.0.14 tinytex_0.54
## [83] statmod_1.5.0 TH.data_1.1-2
## [85] nlme_3.1-166 pbkrtest_0.5.3
## [87] bit64_4.5.2 filelock_1.0.3
## [89] progress_1.2.3 EnvStats_3.0.0
## [91] bslib_0.8.0 TMB_1.9.15
## [93] irlba_2.3.5.1 vipor_0.4.7
## [95] KernSmooth_2.23-24 colorspace_2.1-1
## [97] rmeta_3.0 DBI_1.2.3
## [99] DESeq2_1.46.0 tidyselect_1.2.1
## [101] emmeans_1.10.5 curl_6.0.0
## [103] bit_4.5.0 compiler_4.4.1
## [105] graph_1.84.0 BiocNeighbors_2.0.0
## [107] DelayedArray_0.32.0 bookdown_0.41
## [109] scales_1.3.0 caTools_1.18.3
## [111] remaCor_0.0.18 rappdirs_0.3.3
## [113] stringr_1.5.1 digest_0.6.37
## [115] minqa_1.2.8 rmarkdown_2.29
## [117] aod_1.3.3 XVector_0.46.0
## [119] RhpcBLASctl_0.23-42 htmltools_0.5.8.1
## [121] pkgconfig_2.0.3 lme4_1.1-35.5
## [123] sparseMatrixStats_1.18.0 mashr_0.2.79
## [125] fastmap_1.2.0 rlang_1.1.4
## [127] GlobalOptions_0.1.2 UCSC.utils_1.2.0
## [129] DelayedMatrixStats_1.28.0 farver_2.1.2
## [131] jquerylib_0.1.4 zoo_1.8-12
## [133] jsonlite_1.8.9 BiocSingular_1.22.0
## [135] RCurl_1.98-1.16 magrittr_2.0.3
## [137] GenomeInfoDbData_1.2.13 munsell_0.5.1
## [139] Rcpp_1.0.13-1 babelgene_22.9
## [141] viridis_0.6.5 EnrichmentBrowser_2.36.0
## [143] RcppZiggurat_0.1.6 stringi_1.8.4
## [145] zlibbioc_1.52.0 MASS_7.3-61
## [147] plyr_1.8.9 listenv_0.9.1
## [149] parallel_4.4.1 ggrepel_0.9.6
## [151] Biostrings_2.74.0 splines_4.4.1
## [153] hms_1.1.3 circlize_0.4.16
## [155] locfit_1.5-9.10 reshape2_1.4.4
## [157] ScaledMatrix_1.14.0 BiocVersion_3.20.0
## [159] XML_3.99-0.17 evaluate_1.0.1
## [161] RcppParallel_5.1.9 BiocManager_1.30.25
## [163] nloptr_2.1.1 foreach_1.5.2
## [165] tidyr_1.3.1 purrr_1.0.2
## [167] future_1.34.0 clue_0.3-65
## [169] scattermore_1.2 ashr_2.2-63
## [171] rsvd_1.0.5 broom_1.0.7
## [173] xtable_1.8-4 fANCOVA_0.6-1
## [175] viridisLite_0.4.2 truncnorm_1.0-9
## [177] tibble_3.2.1 lmerTest_3.1-3
## [179] glmmTMB_1.1.10 memoise_2.0.1
## [181] beeswarm_0.4.0 AnnotationDbi_1.68.0
## [183] cluster_2.1.6 globals_0.16.3
## [185] GSEABase_1.68.0