Semi-parametric simulation tool for bulk and single-cell RNA sequencing data


[Up] [Top]

Documentation for package ‘SPsimSeq’ version 1.16.0

Help Pages

SPsimSeq-package SPsimSeq package
buildXmat An auxialiary function to quickly construct the polyomial matrix, using Horner's rule
calculateCPM Calculates counts per millions of reads, possibly with log-transform
checkInputValidity Check for data validity
chooseCandGenes Select candidate genes
configExperiment Configure experiment
constructDens Construct the cumulative density
estLibSizeDistr Estimate log-normal distribution for the library sizes
evaluateDensities Evaluate the densities in the estimated SPsimSeq object
expit Evaluate the expit function
extractMat A function with S4 dispatching to extract the count matrix
extractMat-method A function with S4 dispatching to extract the count matrix
fitLLmodel Fit log linear model for each gene
fitPoisGlm Fast fit Poisson regression
fracZeroLogitModel Extract data and iterate over batches to estimate zero probability models
genCopula Generate a copula instance
geneParmEst Gene level param estimates for density estimation
genLibSizes Generate library sizes from log-normal
matchCopula Match copulas to estimated SP distribution
obtCorMatsBatch A function to obtain copulas or uniform random variables
obtCount Calculates height and mid points of a distribution
parmEstDensVec Density estimation on a single vector
prepareSPsimOutputs A function to prepare outputs
samZeroID Return ID for observations to be set to zero
scNGP.data Neuroblastoma NGP cells single-cell RNA-seq.
selectGenes Sample genes from candidate genes
SPsimPerGene A function that generates the simulated data for a single gene
SPsimSeq A function to simulate bulk or single cell RNA sequencing data
zeroProbModel Predict zero probability using logistic rgression
zhang.data.sub Neuroblastoma bulk RNA-seq data retrieved from Zhang et (2015).