RTCGA
package to download rna-seq data that are included in RTCGA.rnaseq
packageThe Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care.
RTCGA
package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an benefcial infuence on impact on development of science and improvement of patients’ treatment. RTCGA
is an open-source R package, available to download from Bioconductor
source("http://bioconductor.org/biocLite.R")
biocLite("RTCGA")
or from github
if (!require(devtools)) {
install.packages("devtools")
require(devtools)
}
biocLite("MarcinKosinski/RTCGA")
Furthermore, RTCGA
package transforms TCGA data to form which is convenient to use in R statistical package. Those data transformations can be a part of statistical analysis pipeline which can be more reproducible with RTCGA
.
Use cases and examples are shown in RTCGA
packages vignettes:
browseVignettes("RTCGA")
There are many available date times of TCGA data releases. To see them all just type:
library(RTCGA)
checkTCGA('Dates')
Version 1.0.0 of RTCGA.rnaseq
package contains rna-seq datasets from 2015-08-21
. There were downloaded as follows:
All cohort names can be checked using:
(cohorts <- infoTCGA() %>%
rownames() %>%
sub("-counts", "", x=.))
For all cohorts the following code downloads the rna-seq data.
# dir.create( "data2" )
releaseDate <- "2015-08-21"
sapply( cohorts, function(element){
tryCatch({
downloadTCGA( cancerTypes = element,
dataSet = "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.Level",
destDir = "data2/",
date = releaseDate )},
error = function(cond){
cat("Error: Maybe there weren't rnaseq data for ", element, " cancer.\n")
}
)
})
list.files( "data2") %>%
file.path( "data2", .) %>%
file.rename( to = substr(.,start=1,stop=50))
Below is the code that automatically gives the path to *rnaseqv2*
files for all cohorts types downloaded to data2
folder.
sapply( cohorts, function( element ){
folder <- grep( paste0( "(_",element,"\\.", "|","_",element,"-FFPE)", ".*rnaseqv2"),
list.files("data2"),value = TRUE)
file <- grep( paste0(element, ".*rnaseqv2"), list.files( file.path( "data2",folder ) ),
value = TRUE)
path <- file.path( "data2", folder, file )
assign( value = path, x = paste0(element, ".rnaseq.path"), envir = .GlobalEnv)
})
Code is below
sapply( cohorts, function(element){
tryCatch({
assign( value = readTCGA(get(paste0(element,".rnaseq.path"),
envir = .GlobalEnv),
"rnaseq"),
x = paste0(element, ".rnaseq"),
envir = .GlobalEnv )
},
error=function(cond){
cat("Error: Maybe there weren't rnaseq data for ", element, " cancer.\n")
})
})
RTCGA.rnaseq
packagegrep( "rnaseq", ls(), value = TRUE)[ -c(grep("path", grep( "rnaseq", ls(), value = TRUE)))] %>%
cat( sep="," ) #can one to id better? as from use_data documentation:
# ... Unquoted names of existing objects to save
devtools::use_data(ACC.rnaseq,BLCA.rnaseq,BRCA.rnaseq,CESC.rnaseq,CHOL.rnaseq,COAD.rnaseq,DLBC.rnaseq,ESCA.rnaseq,GBM.rnaseq,HNSC.rnaseq,KICH.rnaseq,KIPAN.rnaseq,KIRC.rnaseq,KIRP.rnaseq,LAML.rnaseq,LGG.rnaseq,LIHC.rnaseq,LUAD.rnaseq,LUSC.rnaseq,MESO.rnaseq,OV.rnaseq,PAAD.rnaseq,PCPG.rnaseq,PRAD.rnaseq,READ.rnaseq,SKCM.rnaseq,STES.rnaseq,TGCT.rnaseq,THCA.rnaseq,THYM.rnaseq,UCEC.rnaseq,UCS.rnaseq,UVM.rnaseq, overwrite = TRUE, compress = "xz")