
SamSPECTRAL: A Modified Spectral
Clustering Method for Clustering Flow

Cytometry Data

Habil Zare and Parisa Shooshtari

October 13, 2015

Contents

1 Introduction 2

2 How to run SamSPECTRAL? 2
2.1 An example . 3

3 Adjusting parameters 5
3.1 Example . 5

3.1.1 Technical note on the number of spectral clusters . . . 9
3.1.2 Adjusting separation factor 11
3.1.3 Running SamSPECTRAL on large data sets 13

4 Reference 14

1

1 Introduction

Data analysis is a crucial step in most of recent biological research areas
such as microarray techniques, gene expression and protein classification. A
classical approach for analysing biological data is to first group individual
data points based on some similarity criterion, a process known as cluster-
ing, and then compare the outcome of clustering with the desired biological
hypotheses. Spectral clustering is a non-parametric clustering method which
has proved useful in many pattern recognition areas. Not only it does not re-
quire a priori assumptions on the size, shape and distributions of clusters, but
it has several features that make it an appropriate candidate for clustering
biological data:

� It is not sensitive to outliers, noise or shape of clusters.

� It is adjustable so we can make use of biological knowledge to adapt it
for a specific problem or dataset.

� There is mathematical evidence to guarantee its proper performance.

However, because of the machine limitations, one faces serious empirical
barriers in applying this method for large data sets. SamSPECTRAL is a
modification to spectral clustering such that it will be applicable on large
size datasets. See the reference for more details and cite it if you use this
approach.

2 How to run SamSPECTRAL?

SamSPECTRAL is an R package source that can be downloaded from Bio-
Cunductor. In Linux, it can be installed by the following command:

R CMD INSTALL SamSPECTRAL_x.y.z.tar.gz

where x.y.z. determines the version.
The main function of this package is SamSPECTRAL() which is loaded

by using the command library(SamSPECTRAL) in R. Before running this
function on a data set, some parameters are required to be set including:
normal.sigma and separation.factor. This can be best done by running

2

the algorithm on some number of samples (Normally, 2 or 3 samples are
sufficient). Then the function SamSPECTRAL() can be applied to all samples
in that data set to identify cell populations in each sample data.

2.1 An example

This example shows how SamSPECTRAL can be run on flow cytometry
data. If f is a flow frame (which is normally read from an FCS file using
flowCore), then the object“small”in the following example should be replaced
by expr(f).

> library(SamSPECTRAL)

> set.seed(4)

> data(small_data)

> full <- small

> L <- SamSPECTRAL(full,dimension=c(1,2,3),normal.sigma = 200,

+ separation.factor = 0.39)

> plot(full, pch='.', col= L)

SamSPECTRAL is done. The results are in L, a vector that provides a
numeric label for each event. All events with equal label are in one component
and isolated outliers are labelled by NA. The following piece of code is not
a part of the analysis and it is included only for more clear presentation of
the results. The code computes the frequency of events in each component
and adds a legend to the figure.

> ## Computing the frequency:

> plot(full, pch='.', col= L)

> frequency <- c()

> minimum.frequency <- 0.01

> ## components smaller than this threshould

> ## will not be aprear in the legend statistics.

> freq.large <- c()

> labels <- as.character(unique(L))

> for(label in labels){

+ if(!is.na(label)){

+ frequency[label] <- length(which(L==label))/length(L)

+ if(frequency[label] > minimum.frequency)

3

+ freq.large[label] <- frequency[label]

+ }

+ }

> print(frequency)

1 2 3 4 6 5

0.788333333 0.119555556 0.057666667 0.027000000 0.001333333 0.004555556

7

0.001222222

> ## Adding legend

> legend(x="topleft",as.character(round(freq.large,3)),

+ col=names(freq.large),pch=19)

0 1 2 3 4

0
1

2
3

4

FL1−H

F
L2

−
H

●

●

●

●

0.788
0.12
0.058
0.027

4

3 Adjusting parameters

For efficiency, one can set m = 3000 to keep the running time bellow 1
minute by a 2 GHz processor and normally the results remained satisfactory
for flow cytometry data. The separation factor and scaling parameter (σ) are
two main parameters that needed to be adjusted. The general way is to run
SamSPECTRAL on one or two random data samples of a flow cytometry data
set and try different values for σ and separation factor. Then, the selected
parameters were fixed and used to apply SamSPECTRAL on the rest of data
samples. An efficient strategy is explained by the following example.

3.1 Example

First we load data and store the transformed coordinates in a matrix called
full:

> data(small_data)

> full <- small

The objects needed for creating this vignette can be directly computed
or loaded from previously saved workspace to save time. The later increases
the speed of building this vignette.

> run.live <- FALSE

The following parameters are rarely needed to be changed for flow cytom-
etry data:

> ## Parameters:

> m <- 3000;

> community.weakness.threshold <-1; precision <- 6;

> maximum.number.of.clusters <- 30

The following piece of code, scales the coordinates in range [0,1]:

> for (i.column in 1:dim(full)[2]){#For all columns

+ ith.col <- full[,i.column]

+ full[,i.column] <- (ith.col-min(ith.col)) /(max(ith.col) - min(ith.col))

+ ##^ This is the scaled column.

+ }#End for (i.column.

> ## Therefore,

> space.length <- 1

5

To perform faithful sampling, we run:

> ## Sample the data and build the communities

> society <-

+ Building_Communities(full,m, space.length, community.weakness.threshold)

> plot(full[society$representatives,], pch=20)

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FL1−H

F
L2

−
H

We intend to first find an appropriate value for σ and then set separation
factor. Note that normal.sigma= 1

σ2 , therefore, decreasing normal.sigma is
equivalent to increasing σ and visa versa. We start with normal.sigma=10:

> normal.sigma <- 10

> ## Compute conductance between communities

> conductance <- Conductance_Calculation(full, normal.sigma, space.length,

+ society, precision)

> ## Compute the eigenspace:

> if (run.live){

6

+ clust_result.10 <-

+ Civilized_Spectral_Clustering(full, maximum.number.of.clusters,

+ society, conductance,stabilizer=1)

+ eigen.values.10 <- clust_result.10@eigen.space$values

+ } else

+ data("eigen.values.10")

> plot(eigen.values.10[1:50])

●
●

●

●

●

●
●

●
●●●●●

●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

ei
ge

n.
va

lu
es

.1
0[

1:
50

]

We observe that the eigen values curve does not have a “knee” shape. So
we increase sigma:

> normal.sigma <- 1000

> ## Compute conductance between communities

> conductance <- Conductance_Calculation(full, normal.sigma, space.length, society, precision)

> ## Compute the eigenspace:

> if (run.live){

+ clust_result.1000 <-

7

+ Civilized_Spectral_Clustering(full, maximum.number.of.clusters,

+ society, conductance,stabilizer=1)

+ eigen.values.1000 <- clust_result.1000@eigen.space$values

+ } else

+ data("eigen.values.1000")

> plot(eigen.values.1000[1:50])

●●●●●●●●●●●●●●●●●●
●●●

●●

●●●

●

●

●
●

●●●●●

●
●●

●
●

●

●
●

●
●

●
●

●●

●

0 10 20 30 40 50

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Index

ei
ge

n.
va

lu
es

.1
00

0[
1:

50
]

We observe that in the eigen values plot, “too many” values are close to 1
but for this example we do not expect 20 populations. So we decrease sigma:

> normal.sigma <- 250

> ## Compute conductance between communities

> conductance <- Conductance_Calculation(full, normal.sigma, space.length,

+ society, precision)

> ## Compute the eigenspace:

> clust_result.250 <-

+ Civilized_Spectral_Clustering(full, maximum.number.of.clusters,

8

+ society, conductance,stabilizer=1)

> eigen.values.250 <- clust_result.250@eigen.space$values

> plot(eigen.values.250[1:50])

●●●●●●●●●
●

●●
●

●●

●
●

●

●
●

●
●●

●●●●●

●●
●

●

●
●

●

●●●

●

●●
●●

●●●
●

●
●

●

0 10 20 30 40 50

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Index

ei
ge

n.
va

lu
es

.2
50

[1
:5

0]

This is “a right” value for normal.sigma because the curve has now a
knee shape. Even some variation to this parameter does not change the
shape significantly (200 or 300 can be tried).

3.1.1 Technical note on the number of spectral clusters

This section is very technical and the first-time user may skip it. You can
see the fitted lines that estimated the number of spectral clusters by setting
eigenvalues.num to a natural number. Note that the final number of pop-
ulations can be less than the number of spectral clusters because some may
be combined in the postprocessing step.

> ## Fitting two lines:

> clust_result.250 <-

9

+ Civilized_Spectral_Clustering(full, maximum.number.of.clusters,

+ society, conductance,stabilizer=1,

+ eigenvalues.num=50)

●●●●●●●●●
●

●●
●

●●

●
●

●

●
●

●
●●

●●●●●

●●
●

●

●
●

●

●●●

●

●●
●●

●●●
●

●
●

●

0 10 20 30 40 50

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

normal.sigma= 250, knee point: 10, number of large values:15

Index

ei
ge

n.
sp

ac
e$

va
lu

es
[1

:e
ig

en
va

lu
es

.n
um

]

By default two
regression lines are fitted to a number of top eigen values, one line to those val-
ues that are very close to 1 (blue), and another line to the smaller values that
decrease almost linearly (red). The number of top eigen values considered
for this purpose are controlled by the parameter maximum.number.of.clusters
and the best fit is computed by kneepointDetection() function.

Alternatively, by setting the flag one.line to true, another approach is
to estimate the number of spectral clusters by fitting only one line to the
linearly decreasing values. While this approach was the default in the older
versions of SamSPECTRAL, some users found it to be more appropriate
in some application. Most likely, because it leads to over estimating the
number of spectral clusters, the results can be better in practice; after all,
those populations that are split will be combined at the postprocessing stage.

10

> ## Fitting one line:

> clust_result.250 <-

+ Civilized_Spectral_Clustering(full, maximum.number.of.clusters,

+ society, conductance,stabilizer=1,

+ eigenvalues.num=50, one.line=TRUE)

●●●●●●●●●
●

●●
●

●●

●
●

●

●
●

●
●●

●●●●●

●●
●

●

●
●

●

●●●

●

●●
●●

●●●
●

●
●

●

0 10 20 30 40 50

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

normal.sigma= 250, knee point: 27, number of large values:27

Index

ei
ge

n.
sp

ac
e$

va
lu

es
[1

:e
ig

en
va

lu
es

.n
um

]

3.1.2 Adjusting separation factor

Now having sigma been adjusted, separation factor can be tuned:

> ## Extracting labels:

> labels.for_num.of.clusters <- clust_result.250@labels.for_num.of.clusters

> number.of.clusters <- clust_result.250@number.of.clusters

> L33 <- labels.for_num.of.clusters[[number.of.clusters]]

> ## Setting septation factor:

> separation.factor <- 0.1

11

> ## post-processing:

> component.of <-

+ Connecting(full, society, conductance, number.of.clusters,

+ labels.for_num.of.clusters, separation.factor)$label

> ## ploting:

> plot(full, pch='.', col= component.of)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FL1−H

F
L2

−
H

This value is too small for the separation factor and a population is com-
bined by mistake. Therefore, we increase septation factor to separate the
components more:

> ## Setting septation factor:

> separation.factor <- 0.5

> ## post-possesing:

> component.of <-

+ Connecting(full, society, conductance, number.of.clusters,

+ labels.for_num.of.clusters, separation.factor)$label

12

> ## ploting:

> plot(full, pch='.', col= component.of)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FL1−H

F
L2

−
H

This is the right value for separator factor as all population are now
separated.

3.1.3 Running SamSPECTRAL on large data sets

Now, we can fix these values for the parameters; normal.sigma=250 and
separation.factor=0.5. One can run the SamSPECTRAL algorithm on
the rest of the data set without changing them, hopefully, obtaining as ap-
propriate results. Normally, adjusting parameters for every sample again is
not necessary as long as the experiment conditions such as number of events
and the dimension stays roughly the same.

13

4 Reference

Zare, H. and Shooshtari, P. and Gupta, A. and Brinkman R.B: Data Re-
duction for Spectral Clustering to Analyse High Throughput Flow
Cytometry Data. BMC Bioinformatics, 2010, 11:403.

14

	Introduction
	How to run SamSPECTRAL?
	An example

	Adjusting parameters
	Example
	Technical note on the number of spectral clusters
	Adjusting separation factor
	Running SamSPECTRAL on large data sets

	Reference

