
SWATH2stats

Peter Blattmann, Moritz Heusel, and Ruedi Aebersold

Institute of Molecular Systems Biology, Department of Biology,
ETH Zurich, Switzerland

December 6, 2015

This vignette describes how the different functions from the SWATH2stats
package can be applied. The functions from the SWATH2stats package are in-
tended to be used on SWATH data that has been generated by the OpenSWATH
pipeline. The SWATH2stats package provides functions to annotate such SWATH
data with experimental meta-data, perform a false-discovery rate (FDR) assess-
ment, perform a filtering to control the FDR, and to convert the SWATH data
into a format readable by other statistical and quantification software tools such
as MSstats, aLFQ, mapDIA or imsbInfer. The SWATH2stats package thus rep-
resents a link between the OpenSWATH pipeline and the downstream analysis
packages MSstats, aLFQ, mapDIA, or imsbInfer. The SWATH2stats package
was programmed and intended for use by researchers in proteomics working with
SWATH data without extensive programming skills, but with basic R knowl-
edge.

Contents

1 Introduction 2
1.1 SWATH-MS data analysis via open source tools 2
1.2 The usage of SWATH2stats in the open-source SWATH-MS data

analysis workflow . 2
1.3 Implementation of a target-decoy strategy to estimate false target

discovery rates (FDR) . 3

2 Loading and annotating the data 4
2.1 Loading the data . 4
2.2 Annotating the data . 5

3 FDR estimation 6
3.1 FDR: Overview and visualization 6
3.2 Identification of useful m-score cutoffs to satisfy desired FDR

criteria . 8

4 Filtering the data 8
4.1 Filter on m-score . 9
4.2 Filter on proteotypic peptides . 10

1

4.3 Filter on sibling peptides . 10

5 Conversion of data for other tools 10
5.1 Results on protein level . 10
5.2 Results on peptide level . 11
5.3 Results on transition level . 11

5.3.1 Conversion using a python script 11
5.4 MSstats . 12
5.5 aLFQ . 12
5.6 mapDIA . 12
5.7 imsbInfer . 13

6 Acknowledgments 13

7 Software and tools 13

8 References 14

1 Introduction

1.1 SWATH-MS data analysis via open source tools

SWATH-MS as an implementation of data-independent acquisition (DIA) mass
spectrometry is an emerging proteomic approach that allows systematic quantifi-
cation of peptides in complex samples (Gillet et al. 2012, Venable et al. 2004).
The acquired mass spectra can be queried for the presence and quantity of pep-
tide analytes using the open-source OpenSWATH pipeline. The OpenSWATH
pipeline consists of the OpenSWATH software (Roest et al. 2014) coupled to
statistical validation using the mProphet algorithm (Reiter et al. 2011), or its
re-implementation pyProphet (Teleman et al. 2015). OpenSWATH extracts
ion chromatograms of both the peptide precursor and the fragment ions and
quantifies peak groups. It then generates scores for how well a given candidate
peak group corresponds to an analyte from a spectral or assay library (Roest et
al. 2014). mProphet uses a machine learning algorithm to identify an optimal
linear combination of these scores (d-score) to discriminate targets from decoys.
In addition, it fits a function to the distribution of the d-scores for the decoy
peptides, that is used as the null distribution. This null distribution is then used
to calculate a q-value/m-score of each peakgroup (Storrey et al. 2003, Reiter et
al. 2011). Hence, filtering the results with an m-score of 0.01 results in an FDR
of 1% of the target assays within this run.

1.2 The usage of SWATH2stats in the open-source SWATH-
MS data analysis workflow

This package creates a link between the OpenSWATH/mProphet .tsv output
table and popular downstream tools for statistical and advanced data analysis.
With very large assay libraries (Rosenberger et al. 2014) the SWATH results
can become too large to analyse and process via tools such as Microsoft Excel.
Therefore this package offers functionality to annotate the data with the study

2

design (such as condition, biological and unique MS run id) and also offers sub-
stantial filtering capabilities. The data can be filtered based on frequency of
observation, number of sibling peptides of a protein entry or directly on the
FDR as estimated by the mProphet model (m-score, equivalent to q-value; for
details see previous section or Reiter et al. 2011). Furthermore the package
features estimation of global false discovery rates according to the target-decoy
rationale (Elias and Gygi 2008, Kaell et al. 2008). The last step is the conver-
sion to formats that can be read directly by the downstream analysis packages
such as MSstats (Choi et al. 2014), mapDIA (Teo et al. unpublished), aLFQ
(Rosenberger et al. 2014), and imsbInfer (Wolski et al. unpublished).

1.3 Implementation of a target-decoy strategy to estimate
false target discovery rates (FDR)

Mass-spectrometry-based proteomic experiments produce large amounts of data
that require statistical validation. In the SWATH2stats package a target-decoy
strategy was implemented to estimate the FDR (Elias and Gygi, 2007). The
target-decoy strategy relies on the assumption that the decoys have the same
characteristics (distribution of their scores) as the false targets. The FDR among
the targets is estimated as the ratio of decoy peptides passing a certain score
threshold divided by the total number of targets passing the same score thresh-
old (Choi and Nesvizhskii, 2008). The usage of the target-decoy strategy for
SWATH data and to estimate peptide and protein-level FDR has not been ex-
tensively tested yet. The target-decoy strategy has been tested to estimate
protein-level FDR in DDA data and has been shown to resulted in more con-
servative FDR estimates compared to the model-based approach (Reiter et al.
2009). A target-decoy approach was implemented in SWATH2stats because it
allows i.) estimation of an FDR over multiple runs and ii.) allows to directly
assess the selectivity of a given filter for likely true (target) over false (decoy)
data points.
In contrast to the naive target-decoy approach counting the number of decoys,
a correction factor can be supplied to many FDR estimation functions in the
SWATH2stats package. For example, a correction needs to be applied to correct
for the fraction of false targets (FFT), in analogy to what has been shown in
Kaell et al. 2008 for DDA data. Similar correction factors have been used to
adjust FDR estimation in DDA data (PIT: Kaell et al. 2008, p(-): Keller et al.
2002). In the functions, the FFT defaults to 1 to perform a naive target-decoy
counting strategy without FFT correction, which will result in an overestimation
of the FDR. For a less conservative estimation of the FDR, a FFT correction
factor can be provided that corrects for the ratio of false targets to decoys.
The number of decoys counted is multiplied with the FFT correction factor.
The rationale is that for example if 50% of the samples are true targets, the
number of true negative targets that are modeled by the decoy distribution is
around 50% lower than the decoy distribution. Therefore 2 decoy hits pass-
ing a certain m-score threshold suggest only one false positive datapoint. The
ratio of true negative targets compared to all targets (FFT) can for example
be obtained from the mProphet model statistics (Injection name] full stat.csv
(column 1 line 2 corresponding to the maximal q-value).
Alternatively, the FFT can conservatively be approximated by the fraction of
assays in the library that do not pass an m-score threshold of e.g. 0.01 (corre-

3

sponding to 1 % model FDR). For example, acquiring a full cell lysate and
searching the data using the combined assay library (200k assays, Rosenberger
et al. 2014), 50k assays are typically identified with m-score <= 0.01. Hence a
FFT of 0.75 can be estimated. If a full lysate is searched by a sample-specific
assay library (e.g. 70k assays) and 40k assays were identified with m-score
<=0.01, a FFT of 0.57 can be estimated.
Another option is to use a correction factor so that the estimated FDR by de-
coy counting corresponds to the mProphet derived FDR (e.g. m-score threshold
0.01 should correspond to an assay-level FDR of 0.01).

2 Loading and annotating the data

2.1 Loading the data

To install the SWATH2stats package the following commands can be executed
within R (after package has been accepted to Bioconductor).

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("SWATH2stats")

Typically, the workspace is cleared and the SWATH2stats package loaded.

> rm(list=ls())

> library(SWATH2stats)

The example data, that is included in the package, consists of a reduced
OpenSWATH output file generated from Hela cells. To avoid making the file
of the SWATH2stats package too large, only a fraction of a typical SWATH
data table is included as an example data. The example data contains data
for 9 proteins, 5 decoy-proteins and a set of peptides for retention time cal-
ibration (labelled as iRT protein). In total the data contains 284 peptides
for which quantitative data has been extracted from 6 different samples mea-
sured on an ABSciex TripleTOF 5600 mass spectrometer and analyzed with
the OpenSWATH + pyProphet workflow (Roest et al. 2014). These 6 samples
consist of biological triplicates of Hela cells grown under control condition and
Hela cells that have been perturbed by inhibiting cholesterol synthesis.
The experimental design is described in a table called Study design that is in-
cluded in the package. This file that contains the study design information needs
to be a table with the following columns: Filename, Condition, BioReplicate,
Run (see below). For correct assignment of identifiers into the Run, BioRepli-
cate and Condition column for MSstats, please consult their manual. The values
in the column Filename have to be unique for every injection file and will be
matched to the OpenSWATH output in the column align_origfilename (cau-
tion: this matching is case sensitive).
The example SWATH data and the study design table can be loaded from the
package with the function data().

> data('OpenSWATH_data', package='SWATH2stats')

> data <- OpenSWATH_data

> data('Study_design', package='SWATH2stats')

> head(Study_design)

4

Filename Condition BioReplicate Run

1 peterb_J131223_043 Hela_Control 1 1

2 peterb_J131223_054 Hela_Treatment 1 2

3 peterb_L150425_003b_SW Hela_Control 2 3

4 peterb_L150425_011_SW Hela_Treatment 2 4

5 peterb_L150514_001_SW Hela_Control 3 5

6 peterb_L150514_002_SW Hela_Treatment 3 6

The working directory of the analysis is defined and the file name of the
OpenSWATH results file and the study design file are indicated (in this example
they should be present in the same folder). Whereas the rest of the script can
be kept after having optimized the filtering options, this first part of the script
is changed for different data that will be analyzed.

> n# set working directory

> setwd('~/Documents/MyWorkingDirectory/')

> # Input data file (openSWATH output)

> file.name <- 'OpenSWATH_output_file.txt'

> # File name for annotation file

> annotation.file <- 'Study_design_file.txt'

The SWATH data can be loaded from the previously indicated file into R
using the following command.

> # load data

> data <- data.frame(fread(file.name, sep='\t', header=TRUE))

The function reduce_openSWATH_output can be executed to reduce the
number of columns from the OpenSWATH result table. This function reduces
the number of columns to the ones necessary for MSstats, mapDIA, aLFQ. How-
ever for other packages such as imsbInfer all the columns need to be kept and
this function should be omitted. In the next command the iRT peptides (pep-
tides for retention time calibration) can be removed. Similar commands can be
used to exclude other proteins.

> # reduce number of columns

> data <- reduce_OpenSWATH_output(data)

> # remove the iRT peptides (or other proteins)

> data <- data[grep('iRT', data$ProteinName, invert=TRUE),]

2.2 Annotating the data

With the first two commands the number of files in the OpenSWATH data and
the names of these files can be printed. This can be helpful to generate the study
design table (The script can be executed until here and then the annotation file
generated with a text editor). See above for a description of the exact format
and column names required for the study design table.

> # list number and different Files present

> nlevels(factor(data$align_origfilename))

> levels(factor(data$align_origfilename))

> # load the study design table from the indicated file

> Study_design <- read.delim2(file.path(getwd(), annotation.file),

+ dec='.', sep='\t', header=TRUE)

5

With the function sample_annotation the data is annotated with the meta-
data contained in the study design table. The next commands can be used to
shorten the protein names and remove repetitive and non-unique parts of the
Protein name as shown by the example removing some parts of the identifier
keeping only the unique SwissProt accession identifier (e.g. sp Q9GZL7 WDR12 HUMAN
–> Q9GZL7).

> # annotate data

> data.annotated <- sample_annotation(data, Study_design)

> head(unique(data$ProteinName))

[1] 1/Protein6 1/Protein1 1/Protein7 1/Protein4 1/Protein8

[6] 10/Protein9

15 Levels: 1/Protein1 1/Protein2 1/Protein3 1/Protein4 ... DECOY_1/Protein6

> # OPTIONAL: for human, shorten Protein Name to remove non-unique information

> #(sp|Q9GZL7|WDR12_HUMAN --> Q9GZL7)

> data$ProteinName <- gsub('sp\\|([[:alnum:]]+)\\|[[:alnum:]]*_HUMAN',

+ '\\1', data$ProteinName)

> head(unique(data$ProteinName))

[1] "1/Protein6" "1/Protein1" "1/Protein7" "1/Protein4"

[5] "1/Protein8" "10/Protein9"

3 FDR estimation

Mass-spectrometry-based proteomic experiments produce large amounts of data,
requiring statistical validation of the obtained results. Large multi-run pro-
teomics studies are prone to the accumulation of false positive identifications
and the statistical significance scores must therefore be normalized accord-
ingly(Benjamini and Hochberg, 1995).
This chapter describes first the functionality of SWATH2stats to estimate and
visualize the global false discovery rate in OpenSWATH/mProphet result ta-
bles and second the functionality to obtain m-score thresholds (peak group level
mProphet-estimated FDR quality) to control FDR on a global level.

Assays are identified by unique identifiers in the column transition_group_id

of the SWATH data table, peptides by unique identifiers in the column FullPep-

tideName and protein(group)s by unique identifiers in the column ProteinName.
Different MS injections (also termed runs) are identified based on a unique entry
in the column run id.

3.1 FDR: Overview and visualization

SWATH2stats supplies three functions to assess and visualize the false discovery
rate in multi-run SWATH data. These functions are useful to get an overview on
the relationship between false discovery rate and m-score thresholds. A suitable
m-score threshold can subsequently be used to filter the data with the filtering
functions described in the next chapter.
The FDR within the results passing a given score cutoff is evaluated as explained
in the introduction:

6

FDR = (number of decoys * FFT)/(number of targets)

Application of the decoy-counting-based FDR assessment functions in inter-
play with the meta-data filters can help the researcher in selecting an efficient
strategy to establish highest possible data quality for downstream analyses. By
counting the decoys before and after application of a filter, the selectivity of a
given filter for likely true (target) over false (decoy) data can be estimated.
With a first basic function assess_decoy_rate the overall number of decoy
peptides can be counted in the data:

> data('OpenSWATH_data_FDR', package='SWATH2stats')

> data.FDR<-sample_annotation(OpenSWATH_data_FDR, Study_design)

> assess_decoy_rate(data.FDR)

The function assess_fdr_overall creates a global assessment of decoy rates
(and estimated FDR) on assay, peptide and protein level. Results are reported
by default as .csv table and visualized in a .pdf report. Setting the output
option to ”Rconsole” reports back the results to R. Included in the pdf report
are plots showing the estimated global FDR in relation to the m-score threshold.
Because false-positive hits accumulate over different runs, the false discovery
rate estimated by this function will be higher than if assessed within each run
individually.

> # count decoys and targets on assay, peptide and protein level

> # and report FDR at a range of m_score cutoffs

> assess_fdr_overall(data.FDR, FFT = 0.7, output = "pdf_csv", plot = TRUE,

+ filename='assess_fdr_overall_testrun')

> # The results can be reported back to R for further calculations

> overall_fdr_table <- assess_fdr_overall(data.FDR, FFT = 0.7,

+ output = "Rconsole")

The function plot.fdr_table allows to create the report plots from this
overall fdr table.

> # create plots from fdr_table

> plot(overall_fdr_table, output = "Rconsole",

+ filename = "FDR_report_overall")

The function assess_fdr_byrun investigates the decoy rate or FDR in indi-
vidual runs and by default reports the results in a .csv table and .pdf file. Setting
the output option to ”Rconsole” reports back the results to R. This function is
used if the FDR for different injections should be estimated separately.

> # count decoys and targets on assay, peptide and protein level per run

> # and report FDR at a range of m_score cutoffs

> assess_fdr_byrun(data.FDR, FFT = 0.7, output = "pdf_csv", plot = TRUE,

+ filename='assess_fdr_byrun_testrun')

> # The results can be reported back to R for further calculations

> byrun_fdr_cube <- assess_fdr_byrun(data.FDR, FFT = 0.7,

+ output = "Rconsole")

The function plot._fdr_cube allows to create the report plots from this
by-run fdr cube.

7

> # create plots from fdr_table

> plot(byrun_fdr_cube, output = "Rconsole",

+ filename = "FDR_report_overall")

3.2 Identification of useful m-score cutoffs to satisfy de-
sired FDR criteria

SWATH2stats supplies three functions for the identification of useful m-score
cutoffs to satisfy FDR criteria on assay, peptide and protein level over many
different runs. These functions return an m-score value, which can be used to
filter the data of these different runs in order to obtain a desired overall FDR.
The following functions report an m-score cutoff to achieve a strict global FDR
target.
The function mscore4assayfdr reports an m-score cutoff to achieve a desired
overall (global) assay FDR:

> # select and return a useful m_score cutoff in order

> # to achieve the desired FDR quality for the entire table

> mscore4assayfdr(data.FDR, FFT = 0.7, fdr_target=0.02)

[1] 8.912509e-05

The function mscore4pepfdr reports an m-score cutoff to achieve a desired
overall (global) peptide FDR:

> # select and return a useful m_score cutoff

> # in order to achieve the desired FDR quality for the entire table

> mscore4pepfdr(data.FDR, FFT = 0.7, fdr_target=0.02)

[1] 8.912509e-05

The function mscore4protfdr reports an m-score cutoff to achieve a desired
overall (global) protein FDR. Protein FDR control on peak group quality level is
a very strict filter and should be handled with caution. Alternatively, a function
filter_mscore_fdr is described below applying a two-tiered filtering approach.

> # select and return a useful m_score cutoff in order

> # to achieve the desired FDR quality for the entire table

> mscore4protfdr(data.FDR, FFT = 0.7, fdr_target=0.02)

[1] 8.912509e-08

4 Filtering the data

In this chapter the SWATH data is filtered based on the study design or desired
global FDR criteria to be achieved. By setting the option rm.decoy=FALSE,
the decoy peptides can be kept in the data in order to evaluate the selectivity
of a given filter for likely true (target) over false (decoy) data by decoy counting
with the functions described in the previous chapter.

Before converting the data for statistical analysis the rm.decoy option is set
to ’TRUE’ in order to remove any decoy peptides and proteins from the data.

8

4.1 Filter on m-score

The function filter_mscore removes all measured precursor peptides that are
above a certain m-score value. The number of rows removed by the function is
indicated.

> data.filtered.mscore <- filter_mscore(data.annotated, 0.01)

The function filter_mscore_requant takes into account how many times
in the different injection runs a peak group has been confidently (as defined by
the m-score threshold) identified. This is useful in large data of many different
replicates. For example the data for a certain precursor that has been confi-
dently identified in most of the replicates but does not pass the threshold in
one replicate still should be kept for statistical analysis. In order to keep such
data, but discard data of precursors that have not been confidently identified in
the other replicates, the function filter_mscore_requant can be used. Here,
precursors passing a m-score threshold of 0.01 in 80 % of the replicates are se-
lected. The option rm.decoy is set to FALSE to keep the decoys for subsequent
FDR assessment.

> data.filtered.mscore <- filter_mscore_requant(data.annotated, 0.01, 0.8,

+ rm.decoy=FALSE)

The function filter_mscore_condition selects only precursors that have
passed a certain m-score threshold in at least 3 replicates for the same condition
(as defined by the study design table). In contrast to the previous function, this
selects precursors that are confidently identified a certain number of times in
the same condition.

> data.filtered.mscore <- filter_mscore_condition(data.annotated, 0.01, 3)

In order to reach a compromise between a very stringent m-score filter con-
trolling the global protein FDR, and keeping valid peptide quantifications in the
data, we introduce here a two-tiered filtering approach with the function fil-

ter_mscore_fdr. This uses a similar approach as implemented for extracting
quantitative data from multi-run DDA data sets (Fermin et al. 2011). In the
first step, a m-score cutoff is applied to reach a desired protein-level FDR. All
proteins passing this m-score cutoff criterion are collected in a protein master
list. The original data is then filtered i.) for the proteins present in the master
list and ii.) and all peptide quantifications passing an m-score cutoff to achieve
a desired global peptide-level FDR. Note that the m-score cutoff to filter the
protein list will typically be more stringent than the second m-score cutoff to
filter the peptides. The function filter_mscore_fdr also automatically runs
assess_fdr_byrun to estimate the FDR in individual runs after application of
the second m-score cutoff used to control the peptide-level FDR over all runs
(this estimation is performed without filtering for the protein master list). The
rationale of this second FDR estimation is to obtain a feeling for the FDR quality
of the quantitative values when analyzing the runs individually.

> data.filtered.fdr <- filter_mscore_fdr(data.FDR, FFT=0.7,

+ overall_protein_fdr_target = 0.03,

+ upper_overall_peptide_fdr_limit = 0.05)

9

4.2 Filter on proteotypic peptides

With the functions filter_proteotypic_peptides and filter_all_peptides

the number of proteins is assessed. The function filter_proteotypic_peptides

selects only data that is based on proteotypic peptides (peptides only contained
in one protein and marked by ”1/” in the beginning of the protein identifier).
These functions also remove the ’1’ in front of the protein identifier from pro-
teotypic peptides.

> data <- filter_proteotypic_peptides(data.filtered.mscore)

> data.all <- filter_all_peptides(data.filtered.mscore)

4.3 Filter on sibling peptides

With the function filter_on_max_peptides the peptides showing the strongest
signal over the entire table can be selected. Removing the lower intense pep-
tides for a protein can make the statistical analysis faster or result in more
accurate quantification of proteins under the assumption that quantification of
more intense peptides is more robust.

> data.filtered.max <- filter_on_max_peptides(data.filtered.mscore, 5)

Conversely maybe only data for proteins with a minimum number of support-
ing peptides should be selected. With the function filter_on_min_peptides

only the proteins for which at least a certain number of peptides have been
measured are selected. This filter can also be powerful to remove false positive
hits from the data as these are enriched in the fraction of single hits. FDR as-
sessment based on decoy counting may still be valid after such filtering (Reiter
et al. 2009).

> data.filtered.max.min <- filter_on_min_peptides(data.filtered.max, 2)

5 Conversion of data for other tools

In order to use the filtered and annotated data in other programs and packages
the data has to be converted into the required format. This chapter describes
the different functions within SWATH2stats that can be used to convert the
filtered SWATH data into the desired format.

5.1 Results on protein level

SWATH2stats can write a protein-level summary matrix showing the summed
signals of Proteins (unique ProteinName identifiers) over the MS runs (unique
run_id) using the function write_matrix_proteins. It calculates the sum of
all transition intensities per assay, all charge states per peptide, and all pep-
tides for the different protein groups. Note that this function does not select
consistently quantified peptides, or a certain number of highest intense peptides,
and therefore the summed signal should be used with caution as a direct mea-
sure of protein abundance or to compare protein abundance between runs. For
other quantitative protein inference strategies, the R package aLFQ can be used

10

(Rosenberger et al. 2014, see below).
A more detailed overview can be generated using the function write_matrix_peptides.

Writing the overview matrix of summed intensities per protein entry per MS
run:

> write_matrix_proteins(data, filename = "SWATH2stats_overview_matrix_proteinlevel",

+ rm.decoy = FALSE)

5.2 Results on peptide level

With these commands a table is generated that shows the SWATH data on
peptide level.

> data.peptide <- data

> data.peptide$aggr_Fragment_Annotation <- NULL

> data.peptide$aggr_Peak_Area <- NULL

> write.csv(data.peptide, file='peptide_level_output.csv',

+ row.names=FALSE, quote=FALSE)

Alternatively, an overview matrix can be written which lists the peptide
intensity (sum of all transitions per assay and all precursors per peptide) over
the MS runs (unique run_id), using the function write_matrix_peptides:

> write_matrix_peptides(data,

+ filename = "SWATH2stats_overview_matrix_peptidelevel",

+ rm.decoy = FALSE)

5.3 Results on transition level

With the function disaggregate the SWATH data is changed from a table
where one row corresponds to one peptide to a table where one row corresponds
to one measured transition.

> data.transition <- disaggregate(data)

> write.csv(data.transition, file='transition_level_output.csv',

+ row.names=FALSE, quote=FALSE)

5.3.1 Conversion using a python script

For very large SWATH data it is faster to use a custom-made python script
to transform the data from a peptide-level format to a transition-level format.
With the function convert4pythonscript the necessary columns are selected
and the nomenclature for modified peptides is changed. Subsequently the data
is written to disk.

> data <- convert4pythonscript(data)

> write.table(data, file="input.tsv", sep="\t", row.names=FALSE, quote=FALSE)

> head(data)

The .tsv table can be transformed into a transition level table using a python
script (as example featurealigner2msstats withRT.py from msproteomicstools
which is available in the scripts folder of the package).

python ./featurealigner2msstats.py input.csv output.csv

Afterwards the generated .csv table is loaded again into R.

11

> data.transition <- data.frame(fread('output.csv',

+ sep=',', header=TRUE))

5.4 MSstats

In order to use the data in the R Bioconductor package MSstats, the transition-
level data needs to be converted using the function convert4MSstats. After-
wards the data can directly be processed using the MSstats package as shown
here by application of the function dataProcess from the MSstats package.

> MSstats.input <- convert4MSstats(data.transition)

> library(MSstats)

> quantData <- dataProcess(MSstats.input)

Summary of Features :

count

of Protein 8

of Peptides/Protein 1-103

of Transitions/Peptide 6-6

Summary of Samples :

Hela_Control Hela_Treatment

of MS runs 3 3

of Biological Replicates 3 3

of Technical Replicates 1 1

5.5 aLFQ

The package aLFQ can read the original OpenSWATH output. Alternatively
the aLFQ package can also be applied to the filtered and annotated data from
the SWATH2stats package. To convert the data after filtering to the format for
aLFQ, the function convert4aLFQ is applied to the transition-level data.

> aLFQ.input <- convert4aLFQ(data.transition)

> library(aLFQ)

> prots <- ProteinInference(aLFQ.input, peptide_method = 'top',

+ peptide_topx = 3,

+ peptide_strictness = 'loose',

+ peptide_summary = 'mean',

+ transition_topx = 3,

+ transition_strictness = 'loose',

+ transition_summary = 'sum',

+ fasta = NA, model = NA,

+ combine_precursors = FALSE)

5.6 mapDIA

In order to convert the data into the format for the mapDIA program, the
function convert4mapDIA is used. Technical replicates included in the data are
not taken into account by mapDIA. Therefore the function convert4mapDIA

averages the SWATH data from technical replicates if contained.

> mapDIA.input <- convert4mapDIA(data.transition, RT =TRUE)

> head(mapDIA.input)

12

ProteinName PeptideSequence FragmentIon Hela_Control_1

1 Protein2 TVVVAFLGR 1000686_TVVVAFLGR_2 1930

2 Protein2 TVVVAFLGR 1000688_TVVVAFLGR_2 924

3 Protein2 TVVVAFLGR 1000689_TVVVAFLGR_2 3264

4 Protein2 TVVVAFLGR 1000693_TVVVAFLGR_2 5681

5 Protein2 TVVVAFLGR 1000695_TVVVAFLGR_2 1386

6 Protein2 TVVVAFLGR 1000697_TVVVAFLGR_2 924

Hela_Control_2 Hela_Control_3 Hela_Treatment_1 Hela_Treatment_2

1 5973 2792 378 14198

2 3192 1785 84 6535

3 10092 4130 483 28929

4 16316 6745 1025 45055

5 4573 1995 294 12174

6 3856 1512 147 11405

Hela_Treatment_3 RT

1 6494 68.68395

2 3401 68.68395

3 12443 68.68395

4 20683 68.68395

5 4945 68.68395

6 5165 68.68395

> write.table(mapDIA.input, file='mapDIA.txt', quote=FALSE,

+ row.names=FALSE, sep='\t')

5.7 imsbInfer

The package imsbInfer needs all the columns from the OpenSWATH output,
therefore the function reduce_OpenSWATH_output needs to be omitted in the
workflow (see above). If the package imsbInfer should be used after SWATH2stats,
a decoy column needs to be added as exemplified below if it has been removed
by the filtering functions.

> data.annotated.full <- sample_annotation(OpenSWATH_data, Study_design)

> data.annotated.full <- filter_mscore(data.annotated.full,

+ mscore4assayfdr(data.annotated.full, 0.01))

> data.annotated.full$decoy <- 0 ### imsbInfer needs the decoy column

> library(imsbInfer)

> specLib <- loadTransitonsMSExperiment(data.annotated.full)

6 Acknowledgments

We want to acknowledge Koh Ching Chiek, and Dr. Olga Schubert for help in
testing the usability of this package and helpful comments to implementation
and description. We want to acknowledge George Rosenberger for discussion and
advice to bioinformatic questions and the OpenSWATH + pyProphet workflow.

7 Software and tools

OpenSWATH: http://www.openswath.org
MSstats: MSstats is available on Bioconductor (www.bioconductor.org) or on

13

www.mssstats.org
aLFQ: aLFQ is available on CRAN (https://cran.r-project.org)
mapDIA: mapDIA is available on Sourceforge (http://sourceforge.net/projects/mapdia/)
imsbInfer: imsbInfer is available on Github (https://github.com/wolski/imsbInfer)
msproteomicstools: https://github.com/msproteomicstools

8 References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate:
a Practical and Powerful Approach to Multiple Testing. J. R. Statist. Soc. B,
57(1), 289-300.

Choi, H., and Nesvizhskii, A. I. (2008). False discovery rates and related sta-
tistical concepts in mass spectrometry-based proteomics. Journal of Proteome
Research, 7(1), 47-50.

Choi, M., et al. (2014). MSstats: an R package for statistical analysis of
quantitative mass spectrometry-based proteomic experiments. Bioinformatics
30(17): 2524-2526.

Elias, J. E., and Gygi, S. P. (2007). Target-decoy search strategy for increased
confidence in large-scale protein identifications by mass spectrometry. Nature
Methods, 4(3), 207-214.

Fermin, D. et al. (2011). Abacus: A computational tool for extracting and
pre-processing spectral count data for label-free quantitative proteomic analy-
sis. Proteomics, 11(7), 1340-1345.

Gillet, L., et al. (2012). Targeted data extraction of the MS/MS spectra gener-
ated by data-independent acquisition: a new concept for consistent and accurate
proteome analysis. Mol Cell Proteomics 11(6).

Kaell, L. et al. (2008). Assigning significance to peptides identified by tan-
dem mass spectrometry using decoy databases. Journal of Proteome Research,
7(1), 29-34.

Nesvizhskii, A. I. (2010). A survey of computational methods and error rate esti-
mation procedures for peptide and protein identification in shotgun proteomics.
Journal of Proteomics, 73(11), 2092-123.

Reiter, L.et al. (2009). Protein identification false discovery rates for very
large proteomics data sets generated by tandem mass spectrometry. Molecular
and Cellular Proteomics : MCP, 8(11), 2405-17.

Reiter, L.et al. (2011). mProphet: automated data processing and statisti-
cal validation for large-scale SRM experiments. Nature Methods, 8(5), 430-5.

Rosenberger, G., et al. (2014). A repository of assays to quantify 10,000 human

14

proteins by SWATH-MS.’ Sci Data 1: 140031.

Rosenberger, G., et al. (2014). aLFQ: an R-package for estimating absolute
protein quantities from label-free LC-MS/MS proteomics data. Bioinformatics
30(17): 2511-2513.

Rost, H. L., et al. (2014). OpenSWATH enables automated, targeted anal-
ysis of data-independent acquisition MS data. Nat Biotechnol 32(3): 219-223.

Teleman, J., et al. (2015). DIANA–algorithmic improvements for analysis of
data-independent acquisition MS data. Bioinformatics 31(4): 555-562.

Venable, J. D., et al. (2004). Automated approach for quantitative analysis
of complex peptide mixtures from tandem mass spectra. Nat Methods 1(1):
39-45.

15

