End-to-end analysis of cell-based screens: from raw

intensity readings to the annotated hit list

Michael Boutros, Ligia Bras and Wolfgang Huber

September 26, 2007

Contents

1

2

8

9

Introduction
Reading the intensity data
The cellHTS class and reports

Annotating the plate results

4.1 Format of the plate configuration file . . . . . . . ... ...
4.1.1 Multiple plate configurations . . ... ... ... ..
4.2 Format of the screen log file . . . . . . ... ... ... ...

Normalization and summarization of replicates

5.1 Alternative processing strategies . . . .. .. .. ... ...

Annotation

6.1 Adding additional annotation from public databases . . . .
6.1.1 Installation . .. ... ... ... .. .........
6.1.2 Using biomaRt to annotate the target genes online . .

Report

7.1 Exporting data to a tab-delimited file . . . ... ... ...

Category analysis

Comparison with the results previously reported

10 Appendix: Data transformation

10
10
11
11

14
16

18

21

23



1 Introduction

This is a technical report that demonstrates the use of the cellHTS package.
It accompanies the paper Analysis of cell-based RNAi screens by Michael
Boutros, Ligia Bras and Wolfgang Huber [2]. This report explains all the
steps necessary to run a complete analysis of a cell-based high-throughput
screen (HTS), from raw intensity readings to an annotated hit list.

This text has been produced as a reproducible document [6]. It contains
the actual computer instructions for the method it describes, and these in
turn produce all results, including the figures and tables that are shown
here. The computer instructions are given in the language R, thus, in order
to reproduce the computations shown here, you will need an installation
of R (version 2.3 or greater) together with a recent version of the package
cellHTS and of some other add-on packages.

To reproduce the computations shown here, you do not need to type
them or copy-paste them from the PDF file; rather, you can take the file
cellhtsComplete. Rnw in the scripts directory of the package, open it in a text
editor, run it using the R command Sweave, and modify it to your needs.

First, we load the package.

> library("cellHTS")

2 Reading the intensity data

We consider a cell-based screen that was conducted in microtiter plate for-
mat, where a library of double-stranded RNAs was used to target the cor-
responding genes in cultured Drosophila Kcig7 cells [3]. Each of the wells
in the plates contains either a gene-specific probe, a control, or it can be
empty. The experiments were done in duplicate, and the viability of the
cells after treatment was recorded by a plate reader measuring luciferase ac-
tivity, which is indicative of ATP levels. Although this set of example data
corresponds to a single-channel screening assay, the cellHTS package can also
deal with cases where there are readings from more channels, correspond-
ing to different reporters. Usually, the measurements from each replicate
and each channel come in individual result files. The set of available result
files and the information about them (which plate, which replicate, which
channel) is contained in a spreadsheet, which we call the plate list file. This
file should contain the following columns: Filename,Plate, and Replicate.
The last two columns should be numeric, with values ranging from 1 to the



Filename Plate Replicate
FT01-GO1.txt
FT01-G02.txt
FT02-GO01.txt
FT02-G02.txt
FT03-GO01.txt

W N N = =
— N = N

Table 1: Selected lines from the example plate list file Platelist.txt.

maximum number of plates or replicates, respectively. The first few lines of
an example plate list file are shown in Table 1.

The first step of the analysis is to read the plate list file, to read all
the intensity files, and to assemble the data into a single R object that is
suitable for subsequent analyses. The main component of that object is one
big table with the intensity readings of all plates, channels, and replicates.
We demonstrate the R instructions for this step. First we define the path
where the input files can be found.

> experimentName = "KcViab"
> dataPath = system.file(experimentName, package = "cellHTS")

In this example, the input files are in the KcViab directory of the cellHTS
package. To read your own data, modify dataPath to point to the directory
where they reside. We show the names of 12 files from our example directory:

> dataPath
[1] "/home/LPB/myR/R-2.6.0/1library/cellHTS/KcViab"

> rev(dir(dataPath))[1:12]

[1] "Screenlog.txt" "Platelist.txt" "Plateconf.txt"

[4] "GeneIDs_Dm_HFA_1.1.txt" "FT57-G02.txt" "FT57-GO1.txt"

[7] "FT56-G02.txt" "FT56-GO1.txt" "FT55-GO2.txt"
[10] "FT55-GO1.txt" "FT54-G02.txt" "FT54-GO1.txt"

and read the data into the object x

> x = readPlateData("Platelist.txt", name = experimentName, path = dataPath)

> X



cellHTS object of name 'KcViab'
57 plates with 384 wells, 2 replicates, 1 channel. State:
configured normalized scored annotated

FALSE FALSE FALSE FALSE

The plate format used in the screen (96-well or 384-well plate design) is au-
tomatically determined from the raw intensity files, when calling the read-
PlateData function.

3 The cellHTS class and reports

The basic data structure of the package is the class cellHTS. In the previous
section, we have created the object x, which is an instance of this class. All
subsequent analyses, such as normalization, gene selection and annotation,
will add their results into this object. Thus, the complete analysis project
is contained in this object, and a complete dataset can be shared with oth-
ers and stored for subsequent computational analyses in the form of such
an object. In addition, the package offers export functions for generating
human-readable reports, which consist of linked HTML pages with tables
and plots. The final scored hit list is written as a tab-delimited format
suitable for reading by spreadsheet programs.

To create a report, use the function writeReport. It will create a directory
of the name given by x$name in the working directory. Alternatively, the
argument outdir can be specified to direct the output to another directory.

> out = writeReport (x)

It can take a while to run this function, since it writes a large number of
graphics files. After this function has finished, the index page of the report
will be in the file indicated by the variable out,

> out
[1] "/home/LPB/temp/cellHTS/inst/scripts/KcViab/index.html"

and you can view it by directing a web browser to that file.

> browseURL (out)



Batch Well Content
1 B0l neg
1 B02 pos
1 BO03 sample
1 B04 sample

Table 2: Selected lines from the example plate configuration file Plate-
conf.txt.

Filename Well Flag Comment
FT06-GO1.txt A0l NA Contamination
FT06-G02.txt  A01 NA Contamination
FT06-GO1.txt  A02 NA Contamination

Table 3: Selected lines from the example screen log file Screenlog. txt.

4 Annotating the plate results

The next step of the analysis is to annotate the measured data with infor-
mation on controls and to flag invalid measurements. The software expects
the information on the controls in a so-called plate configuration file (see
Section 4.1). This is a tab-delimited file with one row per well. Selected
lines of this file are shown in Table 2.

Individual measurements can be flagged as invalid in the so-called screen
log file (see Section 4.2). The first 5 lines of this file are shown in Table 3.

The screen description file contains a general description of the screen,
its goal, the conditions under which it was performed, references, and any
other information that is pertinent to the biological interpretation of the
experiments.

We now apply this information to the data object x.

> x = configure(x, confFile = "Plateconf.txt", logFile = "Screenlog.txt",
+ descripFile = "Description.txt", path = dataPath)

Note that the function configure' takes x, the result from Section 2, as an
argument, and we then overwrite x with the result of this function. If no

"More precisely, configure is a method for the S3 class cellHTS.



screen log file is available for the experiment, the argument logFile of the
function configure should be omitted.

4.1 Format of the plate configuration file

The software expects this to be a rectangular table in a tabulator delimited
text file, with mandatory columns Batch, Well, Content. The Batch column
allows to have different plate configurations (see Section 4.1.1). The Well
column contains the name of each well of the plate, in letter-number format
(in this case, A01 to P24). As the name suggests, the Content column pro-
vides the content of each well in the plate (here referred to as the well anno-
tation). Mainly, this annotation falls into four categories: empty wells, wells
containing genes of interest, control wells, and wells containing other things
that do not fit in the previous categories. The first two types of wells should
be indicated in the Content column of the plate configuration file by empty
and sample, respectively, while the last type of wells should be indicated by
other. The designation for the control wells in the Content conlumn is more
flexible. By default, the software expects them to be indicated by pos (for
positive controls), or neg (for negative controls). However, other names are
allowed, given that they are specified by the user whenever necessary (for
example, when calling the writeReport function). This versatility for the
control wells’ annotation is justified by the fact that,sometimes, multiple
positive and/or negative controls can be employed in a given screen, mak-
ing it useful to give different names to the distinct controls in the Content
column. Moreover, this versatility is also required in multi-channel screens
for which we frequently have reporter-specific controls. Note that the well
annotations mentioned above are used by the software in the normalization,
quality control, and gene selection calculations. Data from wells that are
annotated as empty are ignored, i.e. they are set to NA. Here we look at the
frequency of each well annotation in the example data:

> table(x$plateConf$Content)

neg other pos sample
1 2 1 380

Another case is when different types of positive controls are used for the
screening, that is activator and inhibitor compounds. The vignette Analysis
of two-way cell-based assays accompanying this package explains how such
screens can be handled using cellHTS package.



4.1.1 Multiple plate configurations

Although it is good practice to use the same plate configuration for the whole
experiment, sometimes this does not work out, and there are different parts
of the experiment with different plate configurations. It is possible to specify
multiple plate configurations simply by appending them to each other in the
plate configuration file, and marking them with different numbers in the
column Batch.

Note that replicated experiments per plate have to use the same plate
configuration.

4.2 Format of the screen log file

The screen log file is a tabulator delimited file with mandatory columns
Filename, Well, Flag. In addition, it can contain arbitrary optional columns.
Each row corresponds to one flagged measurement, identified by the filename
and the well identifier. The type of flag is specified in the column Flag. Most
commonly, this will have the value “NA”, indicating that the measurement
should be discarded and regarded as missing.

5 Normalization and summarization of replicates

The function normalizePlates can be called to adjust for plate effects. Its
parameter normalizationMethod allows to choose between different types
of normalization. For example, if it is set to "median", the function nor-
malizePlates adjusts for plate effects by dividing each value in each plate by
the median of values in the plate:

T = % vk, i (1)
M; = median z,; (2)

mé samples

where xp; is the raw intensity for the k-th well in the i-th replicate file,
and x}, is the corresponding normalized intensity. The median is calculated
across the wells annotated as sample in the i-th result file. This is achieved
by calling

> x = normalizePlates(x, normalizationMethod = "median")

after which the normalized intensities are stored in the slot x$xnorm. This
is an array of the same size as x$xraw.



We can now summarize the replicates, calculating a single score for each
gene. One option would be to take the root mean square of the values from
the replicates:

~

/ JR—
o = ki (3)

(4)

Zk =

Before summarizing the replicate, we standardize the values for each
replicate experiment using Equation (3). Here fi and ¢ are estimators of
location and scale of the distribution of z}, taken across all plates and wells
of a given replicate experiment. We use robust estimators, namely, median
and median absolute deviation (MAD). Moreover, we only consider the wells
containing “sample” for estimating £ and . As the values z}, were obtained
using plate median normalization (1), it holds that 4 = 1. The symbol +
indicates that we allow for either plus or minus sign in equation (3); the
minus sign can be useful in the application to an inhibitor assay, where
an effect results in a decrease of the signal and we may want to see this
represented by a large z-score. Then, in Equation (4), the summary is taken
over all the nyp, replicates of probe k.

Depending on the intended stringency of the analysis, other plausible
choices of summary function between replicates are the minimum, the max-
imum, and the mean. In the first case, the analysis would be particularly
conservative: all replicate values have to be high in order for z; to be high.
For the cases where both sides of the distribution of z-score values are of in-
terest, alternative summary options for the replicates are to select the value
closest to zero (conservative approach) by setting summary=’"closestToZero’
or the value furthest from zero (summary="furthestFromZero’). In order to
compare our results with those obtained in the paper of Boutros et al. [3],
we choose to consider the mean as a summary:

> x = summarizeReplicates(x, zscore = "-", summary = "mean")

The resulting single z-score value per probe will be stored in the slot x$score.
Boxplots of the z-scores for the different types of probes are shown in Fig-
ure 1.

> ylim = quantile(x$score, c(0.001, 0.999), na.rm = TRUE)
> boxplot (x$score ~ x$wellAnno, col = "lightblue", outline = FALSE,
+ ylim = ylim)



10
|

T T T T
other  sample neg pos

Figure 1: Boxplots of z-scores for the different types of probes.

5.1 Alternative processing strategies

The HTML quality report will consider the values in the slot x$xnorm for
the calculation of its quality metrics. In the example above, x$xnorm con-
tains the data after plate median normalization, but before calculation of
the z-scores and the multiplication by —1. The package cellHTS allows some
flexibility with respect to these steps. We can already calculate the z-scores
and multiply by —1 in the function normalizePlates, and then do the sum-
marization between replicates, by calling the function summarizeReplicates
without the argument zscore.

normalizePlates (x, normalizationMethod = "median'", zscore = "-")

> xalt
> xalt

summarizeReplicates(xalt, summary = "mean")

It is easy to define alternative normalization methods, for example, to adjust
for additional experimental biases besides the plate effect. You might want
to start by taking the source code of normalizePlates as a template.



Plate Well HFAID GenelD
1 A03 HFA00274 CG11371
1 A04 HFA00646 CG31671
1 A0O5 HFA00307 CG11376
1 A06 HFA00324 CG11723

Table 4: Selected lines from the example gene ID file
GenelIDs_Dm_HFA_1.1.txt.

6 Annotation

Up to now, the assayed genes have been identified solely by the identifiers
of the plate and the well that contains the probe for them. The annotation
file contains additional annotation, such as the probe sequence, references
to the probe sequence in public databases, the gene name, gene ontology
annotation, and so forth. Mandatory columns of the annotation file are
Plate, Well, and GenelD, and it has one row for each well. The content of
the GenelD column will be species- or project-specific. The first 5 lines of
the example file are shown in Table 4, where we have associated each probe
with CG-identifiers for the genes of Drosophila melanogaster.

> x = annotate(x, geneIDFile = "GeneIDs_Dm_HFA_1.1.txt", path

An optional column named GeneSymbol can be included in the annotation
file, and its content will be displayed by the tooltips added to the plate plots
and screen-wide plot, in the HTML quality report (see Section 7).

6.1 Adding additional annotation from public databases

For the analysis of the RNAi screening results, we usually want to consider
gene annotation information such as Gene Ontology, chromosomal location,
gene function summaries, homology. The package biomaRt can be used to
obtain such annotation from public databases [4]. However, there are also
numerous alternative methods to annotate a list of gene identifiers with
public annotation — pick your favourite one.

This section demonstrates how to do it with the package biomaRt. It
is optional, you can move on to Section 7 if you do not have the biomaRt
package or do not want to use it. If you do skip this section, then for the
purpose of this vignette, please load a cached version of the gene annotation:

10

dataPath)



> data("bdgpbiomart")
> x$geneAnno = bdgpbiomart

6.1.1 Installation

The installation of the biomaRt package can be a little bit tricky, since
it relies on the two packages RCurl and XML, which in turn rely on the
presence of the system libraries libcurl and libxrml2 on your computer. If you
are installing the precompiled R packages (for example, this is what most
people do on Windows), then you need to make sure that the system libraries
on your computer are version-compatible with those on the computer where
the R packages were compiled, and that they are found. If you are installing
the R packages from source, then you need to make sure that the library
header files are available and that the headers as well as the actual library is
found by the compiler and linker. Please refer to the Writing R Extensions
manual and to the FAQ lists on www.r-project.org.

6.1.2 Using biomaRt to annotate the target genes online

In the remainder of this section, we will demonstrate how to obtain the
dataframe bdgpbiomart by querying the online webservice BioMart and
through it the Ensembl genome annotation database [1].

> library("biomaRt")

By default, the biomaRt package will query the webservice at
http://www.ebi.ac.uk/biomart /martservice. Let us check which BioMart
databases it covers:

> listMarts()

name
1 ensembl
2 compara_mart_homology_46
3 compara_mart_pairwise_ga_46
4 compara_mart_multiple_ga_46
5 snp
6 genomic_features
7 vega
8 uniprot
9 msd
10 ENSEMBL_MART_ENSEMBL

11



11 wormbasel76

12 dicty
13 rgd_mart
14 SSLP_mart
15 pepseekerGOLD_mart
16 pride
17 Pancreatic_Expression

version
1 ENSEMBL 46 GENES (SANGER)
2 ENSEMBL 46 HOMOLOGY (SANGER)
3 ENSEMBL 46 PAIRWISE ALIGNMENTS (SANGER)
4 ENSEMBL 46 MULTIPLE ALIGNMENTS (SANGER)
5 ENSEMBL 46 VARIATION (SANGER)
6 ENSEMBL 46 GENOMIC FEATURES (SANGER)
7 VEGA 21 (SANGER)
8 UNIPROT PROTOTYPE (EBI)
9 MSD PROTOTYPE (EBI)
10 GRAMENE (CSHL)
11 WORMBASE (CSHL)
12 DICTYBASE (NORTHWESTERN)
13 RGD GENES (MCW)
14 RGD MICROSATELLITE MARKERS (MCW)
15 PEPSEEKER (UNIVERSITY OF MANCHESTER)

16 PRIDE (EBI)
17 PANCREATIC EXPRESSION DATABASE (INSTITUTE OF CANCER)

In this example, we use the Ensembl database [1], from which we select the
D. melanogaster dataset.

> mart <- useMart("ensembl", dataset = "dmelanogaster_gene_ensembl")

We can query the available gene attributes and filters for the selected dataset
using the following functions.

> attrs <- listAttributes(mart)
> filts <- listFilters(mart)

In the BioMart system [9], a filter is a property that can be used to select
a gene or a set of genes (like the “where” clause in an SQL query), and an
attribute is a property that can be queried (like the “select” clause in an SQL
query). We use the getBM function of the package biomaRt to obtain the
gene annotation from Ensembl.

12



> myGetBM <- function(att) getBM(attributes = c("ensembl_gene_id",
+ att), filter = "ensembl_gene_id", values = unique(x$geneAnno$GeneID),
+ mart = mart)

For performance reasons, we split up our query in three subqueries, which
corresponds to different areas in the BioMart schema, and then assemble the
results together in R. Alternatively, it would also be possible to submit a sin-
gle query for all of the attributes, but then the result table will be enormous
due to the 1:many mapping especially from gene ID to GO categories [7].

> bml <- myGetBM(c("chromosome_name", "start_position", "end_position",
+ "description"))

> bm2 <- myGetBM(c("flybasename_gene"))

> bm3 = myGetBM(c("go", "go_description"))

There are only a few CG-identifiers for which we were not able to obtain
chromosomal locations:

> unique (setdiff (x$geneAnno$GeneID, bml$ensembl_gene_id))

[1] NA "CG7245" "CG32253" "CG6735" "CG31314" "CG31085" "CG15509"
[8] "CG15388" "CG15389" "CG5061" "CG5074" "CG31722" "CG31756" "CG4110"
[15] "CG15280" "CG31766" "CG11169" "CG13596" "CG18510" "CG12557" "CG14493"
[22] "CG5719" "CG14499" "CG14501" "CG4383" "CG13904" "CG1211" "CG13289"
[29] "CG13290" "CG7973" "CG7867" "CG6112" "CG13444" "CG18648" "CG13459"
[36] "CGb571" "CG31350" "CG6989" "CG18553" "CG32469" "CG11676" "CG12600"
[43] "CG7552" "CG12537" "CG14559" "CG15507" "CG15781" "CG15348" "CG15349"

[60] "CG5652" "CR33460" "CR33465" "CG30322" "CR33258"
Below, we add the results to the dataframe x$geneAnno. Since the tables

bm1, bm2, and bm3 contain zero, one or several rows for each gene ID, but in
x$geneAnno we want exactly one row per gene ID, the function oneRowPerld
does the somewhat tedious task of reformatting the tables: multiple entries
are collapsed into a single comma-separated string, and empty rows are
inserted where necessary.

id <- x$geneAnno$GeneID

bmAll <- cbind(oneRowPerId(bml, id), oneRowPerId(bm2, id), oneRowPerId(bm3,
id))

bdgpbiomart <- cbind(x$geneAnno, bmAll)

x$geneAnno <- bdgpbiomart

vV V. + Vv Vv

13



7 Report

We have now completed the analysis tasks: the dataset has been read, con-
figured, normalized, scored, and annotated:

> X

cellHTS object of name 'KcViab'
57 plates with 384 wells, 2 replicates, 1 channel. State:
configured normalized scored annotated

TRUE TRUE TRUE TRUE

We can now save the data set to a file.
> save(x, file = paste(experimentName, ".rda", sep = ""), compress = TRUE)

The dataset can be loaded again for subsequent analysis, or passed on to oth-
ers. To produce a comprehensive report, we can call the function writeReport
again,

> out = writeReport(x, force = TRUE, plotPlateArgs = list(xrange = c(0.5,
+ 1.5)), imageScreenArgs = list(zrange = c(-2, 6.5), ar = 1))

and use a web browser to view the resulting report
> browseURL (out)

The report contains a quality report for each plate, and also for the whole
screening assays. The per-plate HIT'ML reports display the scatterplot be-
tween duplicated plate measurements, the histogram of the normalized signal
intensities for each replicate, and plate plots representing, in a false color
scale, the normalized values of each replicate, and the standard deviation
between replicate measurements at each plate position. It also reportes the
Spearman rank correlation coefficient between duplicates, and the dynamic
range, calculated as the ratio between the geometric means of the positive
and negative controls. If different positive controls were specified at the
configuration step and when calling writeReport, the dynamic range is cal-
culated separately for the distinct positive controls, since different positive
controls might have different potencies.

The experiment-wide HTML report presents, for each replicate, the the
boxplots with raw and normalized intensities for the different plates, and
two plots for the controls: one showing the signal from positive and nega-
tive controls at each plate, and another plot displaying the distribution of

14



the signal from positive and negative controls, obtained from kernel den-
sity estimates. The latter plot further gives the Z’-factor determined for
each experiment (replicate) using the negative controls and each different
type of positive controls [10], as a measure to quantify the distance between
their distributions. The experiment-wide report also shows a screen-wide
plot with the z-scores in every well position of each plate. This plot, as
well as the plate plots of the per-plate reports contain tooltips (information
popup boxes) dispaying the annotation information at each position within
the plates. If the cel1lHTS object has not been annotated yet, the annota-
tion information shown by the tooltips is simply the well identifiers. For
an annotated cellHTS object, if an optional column called GeneSymbol was
included in the annotation file (see Section 6), and therefore is present in
x$geneAnno), its content is used for the tooltips. Otherwise, the content of
x$geneAnno$GenelID is considered.

The screen-wide image plot can also be produced separately using the
function imageScreen given in the cellHTS package. This might be useful
if we want to select the best display for our data, namely, the aspect ratio
for the plot and/or the range of z-score values to be mapped into the color
scale. These can be passed to the function’s arguments ar and zrange,
respectively. For example,

> imageScreen(x, ar = 1, zrange = c(-3, 4))

It should be noted that the per-plate and per-experiment quality reports
are constructed based on the content of x$xnorm, if it is present in the x
object. Otherwise, it uses the content given in the slot x$xraw. In the case
of dual-channel experiments, the x$xnorm slot could also contain the ratio
between the intensities in two different channels, etc. The main point that
we want to highlight is that x$xnorm should contain the data that we want
to visualize in the HTML quality reports. On the other hand, x$score
should always contain the final list of scored probes (one value per probe).

The quality report produced by writeReport function has also a link to
a file called topTable.tzt that contains the list of scored probes ordered by
decreasing z-score values. This file has one row for each well and plate, and
for the present example data set, it has the following columns:

e plate;

e position gives the position of the well in the plate (runs from 1 to
the total number of wells in the plate);

15



score corresponds to the score calculated for the probe (content of
x$score);

wellAnno corresponds to the well annotation (as given by the plate
configuration file;

normalized_r1_chl and normalized_r2_chl give the normalized in-
tensities for replicate 1 and replicate 2, respectively (’ch’ refers to
channel). This corresponds to the content of x$xnorm;

xrawAnno_r1_chl and xrawAnno_r2_chl give the final well annotation
for replicate 1 and 2, respectively. It combines the information given
in the plate configuration file with the values in x$xraw, in order to
have into account the wells that have been flagged either by the screen
log file, or manually by the user during the analysis. These flagged
wells appear with the annotation flagged.

raw_rl_chl and raw_r2_chl contain the raw intensities for replicate
1 and replicate 2, respectively (content of x$xraw);

median_chl corresponds to the median of raw measurements across
replicates;

diff_chl gives the difference between replicated raw measurements
(only given if the number of replicates is equal to two);

average_chl corresponds to the average between replicated raw in-
tensities (only given if the number of replicates is higher than two);

raw/PlateMedian_r1_chl and raw/PlateMedian_r2_ch1l give the ra-
tio between each raw measurement and the median intensity in each
plate for replicate 1 and replicate 2, respectively. The plate median
is determined for the raw intensities, using exclusively the wells anno-
tated as “sample”.

Additionally, if x has been annotated (as in the present case), it also

contains the data given in the original gene anotation file that was stored in
x$genehnno.

7.1 Exporting data to a tab-delimited file

The cellHTS package contains a function called writeTab to save x$xraw
and, if available, x$xnorm data from a cellHTS object to a tab-delimited

16



file to a file. The rows of the file are sorted by plate and well, and there is
one row for each plate and well. Its columns correspond to the content of
x$geneAnno (that is, the gene annotation information), together with the
raw measurements, and if available, the normalized intensities for each repli-
cate and channel. The name for the columns containing the raw intensities
starts with “R” and is followed by the replicate identifier “r”, and by the
channel identifier “c”. For example, Rr2c1 refers to the raw data for repli-
cate 2 in channel 1. For the normalized data, the column names start with
“N” instead of “R”.

> writeTab(x, file = "Data.txt")

Since you might be interestered in saving other values to a tab delimited file,
below we demonstrate how you can create a matrix with the ratio between
each raw measurement and the plate median, together with the gene and
well annotation, and export it to a tab-delimited file using the function
write.tabdel ? also provided in the cellHTS package.

y = array(as.numeric(NA), dim = dim(x$xraw))

nriell = dim(x$xraw) [1]

for (p in 1:(dim(x$xraw)[2])) {

samples = (x$wellAnno[(1:nrWell) + nrWell * (p - 1)] == "sample")

yl[, p, , 1 = apply(x$xraw[, p, , , drop = FALSE], 3:4, function(w) w/median(w[s
na.rm = TRUE))

>

>

>

+

+

+

+ }
>y = signif(y, 4)

> out = matrix(y, nrow = prod(dim(y)[1:2]), ncol = dim(y)[3:4])

> out = cbind(x$genednno, x$wellAnno, out)

> colnames(out) = c(names(x$geneAnno), "wellAnno", sprintf("Well/Median_rjd_ch7d",
+ rep(1:dim(y) [3], dim(y)[4]), rep(1:dim(y)[4], each = dim(y)[3])))

> write.tabdel (out, file = "WellMedianRatio.txt")

At this point we are finished with the basic analysis of the screen. As

one example for how one could continue to further mine the screen results

for biologically relevant patterns, we demonstrate an application of category

analysis.

2This function is a wrapper of the function write.table, whereby you just need to specify
the name of the data object and the file

17



8 Category analysis

We would like to see whether there are Gene Ontology categories [7] overrep-
resented among the probes with a high score. For this we use the category
analysis from Robert Gentleman’s Category package [5]. Similar analyses
could be done for other categorizations, for example chromosome location,
pathway membership, or categorical phenotypes from other studies.

> library("Category")

Now we can create the category matrix. Conceptually, this a matrix with one
column for each probe and one row for each category. The matrix element
[i,j] is 1 if probe j belongs to the j-th category, and 0 if not.

> obsolete <- c("GO:0005489", "GO:0005660")

Some distractions are the GO terms G0O:0005489, GO:0005660, which
are annotated to some of the genes, but are obsolete.

> names (x$score) = x$geneAnno$GeneID

> sel = l!is.na(x$score) & (!is.na(x$geneAnno$go))

> goids = strsplit(x$genedAnno$go[sell, ", ")

> goids = lapply(goids, function(x) x[!(x }in}, obsolete)])

> genes = rep(x$geneAnno$GenelD[sel], listLen(goids))

> cache(categs <- cateGOry(genes, unlist(goids, use.names = FALSE)))

We will select only those categories that contain at least 3 and no more than
1000 genes.

> nrMem <- rowSums (categs)

> remGO <- which(nrMem < 3 | nrMem > 1000)

> categs <- categs[-remGO, , drop = FALSE]

> nrMem <- rowSums (t(categs))

> rem <- which(nrMem == 0)

> if (length(rem) != 0) categs <- categs[, -rem, drop = FALSE]

As the statistic for the category analysis we use the z-score. After selecting
the subset of genes that actually have GO annotation,

> stats <- x$score[sel & (names(x$score) Jinj, colnames(categs))]

There are some replicated probes in stats. We will handle this by taking
the maximum value between replicate probes (non-conservative approach):

18



> isDup <- duplicated(names(stats))
> table(isDup)

isDup
FALSE TRUE
6955 939

> dupNames <- names (stats) [isDup]

> sp <- stats[names(stats) Jinj, dupNames]
> sp <- split(sp, names(sp))

> table(sapply(sp, length))

2 3 4 5 6 8 9 12
532 116 33 10 2 1 1 1

> aux <- stats[!isDup]

> aux[names(sp)] <- sapply(sp, max)
> stats <- aux

> rm(aux)

Before calling the category summary functions, we need to order our statistic
vector according to the names of the columns of the category matrix.

> m <- match(colnames(categs), names(stats))
> stats <- stats[m]
> stopifnot(colnames (categs) == names(stats))

Finally, we are ready to call the category summary functions:

> acMean <- applyByCategory(stats, categs)

> acTtest <- applyByCategory(stats, categs, FUN = function(v) t.test(v,
+ stats)$p.value)

> acNum <- applyByCategory(stats, categs, FUN = length)

> isEnriched <- (acTtest <= 0.001) & (acMean > 0.5)

A volcano plot of the —log; of the p-value acTtest versus the per category
mean z-score acMean is shown in Figure 2. For a given category, the p-value
is calculated from the ¢-test against the null hypothesis that there is no
difference between the mean z-score of all probes and the mean z-score of
the probes in that category. To select the enriched categories (isEnriched),
we considered a significance level of 0.1% for the t-test, and a per category
mean z-score greater than 0.5. This led to the 34 categories marked in red
in Figure 2 are listed in Table 5.

19



n
113
180
739
505
505

804
45
80
19

24

238
322
580
644
546

71

71

71
102
106

5
316
234
312

184
47

47
114
280
212
377
230

24

Zmean

2.5
1.8
0.78
0.8
0.8

0.58
2.8
1.8

2.2

1.5
1.1
0.74
0.63
0.5

1
0.86
0.83
0.96
0.56

0.6
0.52

1

0.55
1.1

1.1
2.5
1.1
0.67
0.63
0.73
2.2

p
3.9e-18

1.6e-16

2e-16
4.3e-12
4.3e-12

4.3e-10
2.5e-08
2.7e-08

4e-06

4e-04

7.6e-18
5.9e-15
1.1e-12
4.4e-10
1.5e-05
0.00011

0.00011

0.00011
0.00014
0.00015
0.00016
0.00019
0.00019
0.00027
0.00086
0.00087
0.00099

0.00099
3.7e-18
9.8e-12
2.5e-05
4.6e-05

0.00025

4e-04

GOID
GO:0005840
G0:0030529
GO:0043234
G0:0043228
GO0:0043232

GO:0044444
GO:0000502
G0:0005829
GO:0005838

GO:0005839

G0:0006412
G0:0009059
G0:0044249
GO:0009058
GO:0048513
GO:0000375

GO:0000377

GO:0000398
G0:0006397
G0:0016071
GO:0008380
GO:0009790
G0:0022402
GO:0007399
G0:0008335
G0O:0006396
GO:0048024

GO:0050684
G0:0003735
GO:0005198
GO:0003723
GO:0030528
GO:0003700
G0:0004298

Ontology
CC
CC
CC
CC
CC

CC
CC
cC
CC

CC

BP
BP
BP
BP
BP
BP

BP

BP
BP
BP
BP
BP
BP
BP
BP
BP
BP

BP
MF
MF
MF
MF
MF
MF

description

ribosome

ribonucleoprotein complex

protein complex

non-membrane-bound organelle
intracellular non-membrane-bound or-
ganelle

cytoplasmic part

proteasome complex (sensu Eukaryota)
cytosol

proteasome regulatory particle (sensu Eu-
karyota)

proteasome core complex (sensu Eukary-
ota)

translation

macromolecule biosynthetic process
cellular biosynthetic process

biosynthetic process

organ development

RNA splicing, via transesterification reac-
tions

RNA splicing, via transesterification re-
actions with bulged adenosine as nucle-
ophile

nuclear mRNA splicing, via spliceosome
mRNA processing

mRNA metabolic process

RNA splicing

embryonic development

cell cycle process

nervous system development

ovarian ring canal stabilization

RNA processing

regulation of nuclear mRNA splicing, via
spliceosome

regulation of mRNA processing
structural constituent of ribosome
structural molecule activity

RNA binding

transcription regulator activity
transcription factor activity

threonine endopeptidase activity

Table 5: Top 34 Gene Ontology categories with respect to z-score.

20



15

—logio p
10

Zmean

Figure 2: Volcano plot of the t-test p-values and the mean z-values of the cat-
egory analysis for Gene Ontology categories. The top categories are shown
in red.

9 Comparison with the results previously reported

In this section we compare the current results obtained using cellHTS pack-
age, with the ones previously reported in Boutros et al. [3]. The file “Anal-
ysis2003.txt” in the same directory as the input data files, i.e. in KcViab
directory of the cellHTS package. First, We will load this file:

> data2003 = read.table(file.path(dataPath, "Analysis2003.txt"),
+ header = TRUE, as.is = TRUE, sep = "\t'")

The file contains the columns Plate, Position, Score, Well, HFAID,
GeneID. The scored values in the Scores column will be compared with the
ones obtained in our analysis. For that, I will start by adding to data2003,
a column with the corresponding z-score values calculated using the cellHTS
package.

> i = data2003$Position + 384 * (data2003$Plate - 1)
> data2003%ourScore = x$score[i]

Figure 3 shows the scatterplot between Boutros et al.’s scores and our scores
in each of the 384-well plates. The results between the two analyses are very
similar, except for two minor details: use of robust estimators of location

21



T, Feo N - C o = B
- IV -ow ot R s B -
/.l ¢ ./l ° W 1 /H Q / 10

T [ [ Tl I I _.4-_ [ [ _”R_v L _H.-eo_ I [ JES !

v g 0 2¢foSne P Yg efFoMme e vz 0 2 .
~ L / L o CN . C « / L
/u h Ly v ONF . = -

T L B A S o T T TR T T T ImB T T TR C o

9 tz TSR - v g 0 -9z e[ ve. - ¢ =
‘e ° — N - o ° - N e H - o

- o - ~ B - C
N\ o NXEv N\F = o
-_- T 1 -.L_\ [ T1°T [ [ FrEraorrr1ripprT 1T T T T I~
. JA L. F | ] C
9N TR ANG 0 TP B0 TG d 0 ZE LT T =
o /.u 9 £ /.| ° L -
4______P_nmq__ _I._.Do_ [ T el T [ [ - & T [ = -
v ‘B 0 -7 ¢ v 0z-FRw 2z T vz -lea -
F N | <~ - . F N N
/H % /H : ~ T ,/H o /u -
o] [ [ T T 1 T T T T T T 1* T T T AT [ [ _“_-6 —
“, -, o< . . L
Vg 0 TT 9RGZ  Z1E T, T- SR g 0 TR MG 0 9 -
- o L
= C /| ° / N - -
o [Te) < 1 A
T T T TR T BIIT T T I T T TTTE I =
W:/W ;a0 219 JN/ v *a. 0 -Fv ez 0 L o
L / - o - e Eoo~ L C
N i) L~ =3 SOy /| _
a.l_ T T T T [ ..I_..on_v_o_ T T T1F, 7 1 [ | I N [ T 1* -
P W0 -7 &m0 £ R _T- S & 0 Z-| g 0 [ e
- | | ., B -
g F . /..-,_A e /- -
-_-_ T T _H_B_ T Hrm.u_ [ I M._.Mo_ [ [ _W-_n,lu_ [ [ '
24 0 2T Ba.T T4¥<z 0 z-P .2 Ev- X 0 ¢
Se - - - °« - -
N Lo /H N /H N =
1 | 1 o | -

against

Figure 3: Scored values obtained in the paper of Boutros et al.
the scored values calculated herein. Each panel corresponds to one 384-well

plate. Axis labels are not pretty - they overlap with neighboring panels due

to space constraints.

22



and spread (median and MAD instead of mean and standard deviation), and
estimation of MAD over the whole experiment instead of plate-by-plate. In
fact, Figure 3 evidenciates how the scored values exactly agree up to an
offset (mean versus median) and scale (standard deviation versus MAD).

10 Appendix: Data transformation

An obvious question is whether to do the statistical analyses on the orig-
inal intensity scale or on a transformed scale such as the logarithmic one.
Many statistical analysis methods, as well as visualizations work better if
(to sufficient approximation)

e replicate values are normally distributed,
e the data are evenly distributed along their dynamic range,

e the variance is homogeneous along the dynamic range [8].

Figure 4 compares these properties for untransformed and log-transformed
normalized data, showing that the difference is small. Intuitively, this can
be explained by the fact that for small x,

log(l4+ )~

and that indeed the range of the untransformed data is mostly not far from
1. Hence, for the data examined here, the choice between original scale and
logarithmic scale is one of taste, rather than necessity.

library("vsn")
par(mfcol = c(3, 2))
myPlots = function(z, ...) {

hist(z[, 1], 100, col = "lightblue", xlab = "", ...)

meanSdPlot (z, ylim = c(0, quantile(abs(z[, 2] - z[, 1]),

0.95, na.rm = TRUE)), ...)

qqnorm(z[, 1], pch = ".", ...)

qqline(z[, 1], col = "blue")
}
dv = matrix(x$xnorm, nrow = prod(dim(x$xnorm)[1:2]), ncol = dim(x$xnorm) [3])
myPlots(dv, main = "untransformed")
xlog = normalizePlates(x, normalizationMethod = "median", transform = log2)
dvlog = matrix(xlog$xnorm, nrow = prod(dim(xlog$xnorm)[1:2]),

ncol = dim(xlog$xnorm) [3])
myPlots(dvlog, main = "log2")

vV +VvVVvVVV+ + + + + + V VYV

23



untransformed log2

—_ (=3
S _
o
<
o
o
o o
« S |
o
™
> >
g g
g o z S
g g g =
r g L
8
8 - S
o -~ o -~
r T 1 r T T T 1
0.5 1.0 15 -4 -3 -2 -1 0
untransformed log2
N
-
=}
@
Q =
o
o
@ =
<
Q =
o
o (=]
o - ¥ ¥ S i 3
© T T T T T © T T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000
rank(mean) rank(mean)
untransformed log2
n
a2
e o 4
1% [%]
Q< Qo
= < = -
S 4 E /
=3 =3 H
[e4 o i
] o Q4
= .
wn i
I o I H
[ ;/ (7] o /
/ .
]
/ -
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
Theoretical Quantiles Theoretical Quantiles

Figure 4: Comparison between untransformed (left) and logarithmically
(base 2) transformed (right), normalized data. Upper: histogram of inten-
sity values of replicate 1. Middle: scatterplots of standard deviation versus
mean of the two replicates. Bottom: Normal quantile-quantile plots.

24



References

1]

E Birney, D Andrews, M Caccamo, Y Chen, L Clarke, G Coates,
T Cox, F Cunningham, V Curwen, T Cutts, T Down, R Durbin, X M
Fernandez-Suarez, P Flicek, S Graf, M Hammond, J Herrero, K Howe,
V Iyer, K Jekosch, A Kahari, A Kasprzyk, D Keefe, F Kokocinski,
E Kulesha, D London, I Longden, C Melsopp, P Meidl, B Overduin,
A Parker, G Proctor, A Prlic, M Rae, D Rios, S Redmond, M Schuster,
I Sealy, S Searle, J Severin, G Slater, D Smedley, J Smith, A Stabenau,
J Stalker, S Trevanion, A Ureta-Vidal, J Vogel, S White, C Woodwark,
and T J P Hubbard. Ensembl 2006. Nucleic Acids Res, 34(Database
issue):556-561, Jan 2006. 11, 12

M Boutros, LP Brés, and W Huber. Analysis of cell-based RNAi
screens. Genome Biology, 7:R66, 2006. 2

Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc
Hild, Britta Koch, Stefan A Haas, Heidelberg Fly Array Consortium,
Renato Paro, and Norbert Perrimon. Genome-wide RNAi analysis of
growth and viability in Drosophila cells. Science, 303(5659):832-835,
Feb 2004. 2, 8, 21

Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart
De Moor, Alvis Brazma, and Wolfgang Huber. BioMart and Biocon-
ductor: a powerful link between biological databases and microarray
data analysis. Bioinformatics, 21(16):3439-3440, Aug 2005. 10

R. Gentleman. Category: Category Analysis, 2006. R package version
1.3.3. 18

Robert Gentleman. Reproducible research: A bioinformatics case study.
Statistical Applications in Genetics and Molecular Biology, 3, 2004. 2

M A Harris, J Clark, A Ireland, J Lomax, M Ashburner, R Foulger,
K Eilbeck, S Lewis, B Marshall, C Mungall, J Richter, G M Rubin,
J A Blake, C Bult, M Dolan, H Drabkin, J T Eppig, D P Hill, L. Ni,
M Ringwald, R Balakrishnan, J M Cherry, K R Christie, M C Costanzo,
S S Dwight, S Engel, D G Fisk, J E Hirschman, E L. Hong, R S Nash,
A Sethuraman, C L Theesfeld, D Botstein, K Dolinski, B Feierbach,
T Berardini, S Mundodi, S Y Rhee, R Apweiler, D Barrell, E Camon,
E Dimmer, V Lee, R Chisholm, P Gaudet, W Kibbe, R Kishore, E M

25



[10]

Schwarz, P Sternberg, M Gwinn, L Hannick, J Wortman, M Berri-
man, V Wood, N de la Cruz, P Tonellato, P Jaiswal, T Seigfried, and
R White. The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res, 32(Database issue):258-261, Jan 2004. 13, 18

Wolfgang Huber, Anja von Heydebreck, Holger Siiltmann, Annemarie
Poustka, and Martin Vingron. Variance stabilization applied to mi-
croarray data calibration and to the quantification of differential ex-
pression. Bioinformatics, 18 Suppl. 1:596-S104, 2002. 23

Arek Kasprzyk, Damian Keefe, Damian Smedley, Darin London,
William Spooner, Craig Melsopp, Martin Hammond, Philippe Rocca-
Serra, Tony Cox, and Ewan Birney. EnsMart: a generic system for fast
and flexible access to biological data. Genome Res, 14(1):160-169, Jan
2004. 12

JH Zhang, TD Chung, and KR Oldenburg. A Simple Statistical Param-
eter for Use in Evaluation and Validation of High Throughput Screening
Assays. J Biomol Screen, 4(2):67-73, 1999. 15

26



	Introduction
	Reading the intensity data
	The cellHTS class and reports
	Annotating the plate results
	Format of the plate configuration file
	Multiple plate configurations

	Format of the screen log file

	Normalization and summarization of replicates
	Alternative processing strategies

	Annotation
	Adding additional annotation from public databases
	Installation
	Using biomaRt to annotate the target genes online


	Report
	Exporting data to a tab-delimited file

	Category analysis
	Comparison with the results previously reported
	Appendix: Data transformation

