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Abstract

Gene expression datasets are complicated and have multiple sources of biological and technical
variation. These datasets have recently become more complex as it is now feasible to assay gene
expression from the same individual in multiple tissues or at multiple time points. The variancePar-
tition package implements a statistical method to quantify the contribution of multiple sources
of variation and decouple within/between-individual variation. In addition, variancePartition pro-
duces results at the gene-level to identity genes that follow or deviate from the genome-wide
trend.

variancePartition version: 1.0.0
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http://bioconductor.org/packages/release/bioc/html/variancePartition.html
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1 Overview

The variancePartition provides a general framework for understanding drivers of variation in gene ex-
pression in experiments with complex designs. A typical application would consider a dataset of gene
expression from individuals sampled in multiple tissues or multiple time points where the goal is to
understand variation within versus between individuals and tissues. variancePartition use a linear mixed
model to partition the variance attributable to multiple variables in the data. The analysis is built on
top of the lme4 package [1], and some basic knowledge about linear mixed models will give you some
intution about the behavior of variancePartition [2, 3]

There are two components to an analysis: 1) gene expression data, 2) meta-data about each sample
such as patient ID, tissue, sex, disease state, etc. variancePartition will assess the contribution of each
meta-data variable to variation in gene expression and can report the intra-class correlation for each
variable.
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2 Running an analysis

A typical analysis with variancePartition is only a few lines of R code, assuming the expression data has
already been normalized. Normalization is a separate topic, and I address it briefly in Section 5.

2.1 Standard

# load library

library(variancePartition)

# optional step to run analysis in parallel on multicore machines

# Here use 4 threads

# This is strongly recommended since the analysis

# can be computationally intensive

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# load simulated data:

# geneExpr: matrix of gene expression values

# info: information/metadata about each sample

data(varPartData)

# Specify variables to consider

# Age is continuous so model it as a fixed effect

# Individual and Tissue are both categorical, so model them as random effects

# Note the syntax used to specify random effects

form = ~ Age + (1|Individual) + (1|Tissue)

# Fit model and extract results

# 1) fit linear mixed model on gene expresson

# If categorical variables are specified, a linear mixed model is used

# If all variables are modeled as fixed effects, a linear model is used

# each entry in results is a regression model fit on a single gene

# 2) extract variance fractions from each model fit

# for each gene, returns fraction of variation attributable to each variable

# Interpretation: the variance explained by each variables after correcting

# for all other variables

# Note that geneExpr can either be a matrix,

# or the output of voom() in the limma package

varPart = fitExtractVarPartModel( geneExpr, form, info )

# Figure 1a
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# violin plot of contribution of each variable to total variance

# sort variables by median fraction of variance explained

plotVarPart( sortCols(varPart) )

The core functions of variancePartition work seemlessly with gene expression data stored as a matrix,
data.frame, EList from limma or ExpressionSet from Biobase.

2.2 Advanced

Advanced users may want to perform the model fit and extract results in separate steps so you can
examine the fit of the model for each gene. Note that storing the model fits can use a lot of memory
(∼10Gb with 20K genes and 1000 experiments). I recommend using the one step fitExtractVarPart

unless you have a specific need for the two step approach:

# Fit model

results = fitVarPartModel( geneExpr, form, info )

# Extract results

varPart = extractVarPart( results )
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Figure 1: variancePartition example on simulated data



variancePartition 6

2.3 Plot expression stratified by other variables

Users can also plot a gene expression trait stratified by Tissue or Individual.

# get gene with the highest variation across Tissues

# create data.frame with expression of gene i and Tissue type for each sample

i = which.max( varPart$Tissue )

GE = data.frame( Expression = geneExpr[i,], Tissue = info$Tissue)

# Figure 2a

# plot expression statified by Tissue

plotStratifyBy( GE, "Tissue", "Expression", main=rownames(geneExpr)[i])

#

# get gene with the highest variation across Individuals

# create data.frame with expression of gene i and Tissue type for each sample

i = which.max( varPart$Individual )

GE = data.frame( Expression = geneExpr[i,], Individual = info$Individual)

# Figure 2b

# plot expression statified by Tissue

label = paste("Individual:", format(varPart$Individual[i]*100, digits=3), "%")

main = rownames(geneExpr)[i]

plotStratifyBy( GE, "Individual", "Expression", colorBy=NULL, text=label, main=main)

(a) Tissue
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(b) Individual

Individual: 91.4 %
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Figure 2: Plot gene expression statified by a) Tissue and b) Individual
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For gene141, variation across tissues explains 52.9% of variance in gene expression. For gene43, variation
across Individuals explains 91.4% of variance in gene expression.

3 Interpretation

variancePartition fits a linear (mixed) model thats jointly considers the contribution of all specified
variables on the expression of each gene. It is similar to multiple regression in that the effect of each
variable is assessed while correcting for all others. Therefore, fitting the model with each variable
separtely will give very different results from the considering all variables jointly. I have found joint
analysis the best option in most cases.

The results of variancePartition give insight into the expression data at multiple levels. Moreover, a
single statistic often has multiple equivalent interpretations while only one is relevant to the biological
question. Here I give a description of the data from the previous section based on the results in Figure
1a, but these conclusions are applicable to standard analyses with variancePartition.

Averaging across all genes,

1) variation between individuals explains 78% of the variation in expression, after correcting for tissue
and age

2) variation between tissues explains 12% of the variation in expression, after correcting for individual
and age

3) after correcting for individual and tissue, the effect of age is negligible.
4) correcting for individual, tissue and age leaves 10% of the total variance in expression.

These statistics also have a natural interpretation in terms of the intra-class correlation (ICC), the
correlation between observations made from samples in the same group.

On average across all genes and all experiments,

1) the ICC for individual is 78%.
2) the ICC for tissue is 12%.
3) two randomly selected gene measurements from same individual, but regardless of tissue or age,

have a correlation of 78%.
4) two randomly selected gene measurements from same tissue, but regardless of individual or age,

have a correlation of 12%.
5) two randomly selected gene measurements from the same individual and same tissue, but regard-

less of age, have an correlation of 78% + 12% = 90%.

Note that that the ICC here is interpretated as the ICC after correcting for all other variables in the
model.

These conclusions have been averaged across all genes, but the real power of variancePartition is to
identify specific genes that follow or deviate from the genome-wide trend. The gene-level statistics can
be used to identify a subset of genes that are enriched for specific biological functions. For example,
we can ask if the 500 genes with the highest variation in expression across tissues (i.e. the long tail for
tissue in Figure 1a) are enriched for genes known to have high tissue-specificity.
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3.1 Should a variable be modeled as fixed or random effect?

Catagorical variables should (almost) always be modeled as a random effect. The difference between
modeling a catagorical variable as a fixed versus random effect is minimal when the sample size is large
compared to the number of categories (i.e. levels). So variables like disease status, sex or time point will
not be sensitive to modeling as a fixed versus random effect. However, variables with many categories
like Individual must be modeled as a random effect in order to obtain statistically valid results. So to
be on the safe side, categorical variable should be modeled as a random effect.

variancePartition fits two types of models:

1) linear mixed model where all categorical variables are modeled as random effects and all continuous
variables are fixed effects. The function lmer from lme4 is used to fit this model.

2) fixed effected model, where all variables are modeled as fixed effects. The function lm is used to
fit this model.

3.2 Which variables should be included?

In my experience, it is useful to include all variables in the first analysis and then drop variables that
have minimal effect. However, like all multiple regression methods, variancePartition will divide the
contribution over multiple variables that are strongly correlated. So, for example, including both sex
and height in the model will show sex having a smaller contribution to variation gene expression than if
height were omitted, since there variables are strongly correlated. This is a simple example, but should
give some intuition about a common issue that arises in analyses with variancePartition.

variancePartition can naturally assess the contribution of both individual and sex in a dataset. As
expected, genes for which sex explains a large fraction of variation are located on chrX and chrY. If the
goal is to interpret the impact of sex, then there is no issue. But recall the issue with correlated variables
and note that individual is correlated with sex, because each individual is only one sex regardless of
how many samples are taken from a individual. It follows that including sex in the model reduces the
apparent contribution of individual to gene expression. In other words, the ICC for individual will be
different if sex is included in the model.

In general, including variables in the model that do not vary within individual will reduce the apparent
contribution of individual as estimated by variancePartition. For example, sex and ethnicity never vary
between multiple samples from the same individual and will always reduce the apparent contribution of
individual. However, disease state and age may or may not vary depending on the study design.

3.3 Detecting problems caused by colinearity of variables

Including variables that are highly correlated can produce misleading results and overestimate the contri-
bition of variables modeled as fixed effects. This is usually not an issue, but can arise when statistically
redundant variables are included in the model. In this case, the model is “degenerate” or “computa-
tionally singular” and parameter estimates from this model are not meaningful. Dropping one or more
of the covariates will fix this problem.
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A check of colinearity is built into fitVarPartModel and fitExtractVarPartModel, so the user
will be warned if this is an issue.

Alternatively, the user can use the colinearityScore function to evaluate whether this a an issue for
a single model fit:

form = ~ (1|Individual) + (1|Tissue) + Age + Height

# fit model

res = fitVarPartModel( geneExpr[1:4,], form, info )

# evaluate the colinearity score on the first model fit

# this reports the correlation matrix between coefficients estimates

# for fixed effects

# the colinearity score is the maximum absolute correlation value

# If the colinearity score > .99 then the variance parition

# estimates may be problematic

# In that case, a least one variable should be omitted

colinearityScore(res[[1]])

## [1] 0.777

## attr(,"vcor")

## 3 x 3 Matrix of class "dpoMatrix"

## (Intercept) Age Height

## (Intercept) 1.000 -0.4191 -0.7774

## Age -0.419 1.0000 -0.0575

## Height -0.777 -0.0575 1.0000

4 Advanced analysis

4.1 Removing batch effects before fitting model

Gene expression studies often have substantial batch effects, and variancePartition can be used to
understand the magnitude of the effects. However, we often want to focus on biological variables (i.e.
individual, tissue, disease, sex) after removing the effect of technical variables. Depending on the size
of the batch effect, I have found it useful to correct for the batch effect first and then perform a
variancePartition analysis afterward. Subtracting this batch effect can reduce the total variation in the
data, so that the contribution of other variables become clearer.

Standard analysis:

form = ~ (1|Tissue) + (1|Individual) + (1|Batch) + Age

varPart = fitExtractVarPartModel( geneExpr, form, info )
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Analysis on residuals:

library(limma)

# subtract out effect of Batch

fit = lmFit( geneExpr, model.matrix(~ Batch, info))

res = residuals( fit, geneExpr)

# fit model on residuals

form = ~ (1|Tissue) + (1|Individual) + Age

varPartResid = fitExtractVarPartModel( res, form, info )

Remove batch effect with linear mixed model

# subtract out effect of Batch with linear mixed model

modelFit = fitVarPartModel( geneExpr, ~ (1|Batch), info )

res = residuals( modelFit )

# fit model on residuals

form = ~ (1|Tissue) + (1|Individual) + Age

varPartResid = fitExtractVarPartModel( res, form, info )
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4.2 Variation within multiple subsets of the data

So far, we have focused on interpreting one variable at a time. But the linear mixed model behind
variancePartition is a very powerful framework for analyzing variation at multiple levels. We can easily
extend the previous analysis of the contribution of individual and tissue on variation in gene expression
to examine the contribution of individual within each tissue. This analysis is as easy as specifying a
new formula and rerunning variancePartition. Note that is analysis will only work when each individual
is observed in each tissue and when there are multiple replicates within each tissue.

# specify formula to model within/between individual variance

# separately for each tissue

# Note that including +0 ensures each tissue is modeled explicitly

# Otherwise, the first tissue would be used as baseline

form = ~ (Tissue+0|Individual) + Age + (1|Tissue)

# fit model and extract variance percents

varPart = fitExtractVarPartModel( geneExpr, form, info )

# violin plot

plotVarPart( varPart, label.angle=50 )

Figure 3: Variation across individuals within each tissue

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●●●●●●●●●●●●●●

●●●●●●●●●

0

25

50

75

100

Ti
ss

ue
A/In

di
vid

ua
l

Ti
ss

ue
B/In

di
vid

ua
l

Ti
ss

ue
C/In

di
vid

ua
l

Ti
ss

ue Age
Res

id
ua

ls

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

This analysis correspnds to a varying coefficient model, where the correlation between individuals varies
for each tissue [2]. Since the variation across individuals is modeled within each tissue, the total
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variation explained does not sum to 1 as it does for standard analysis with variancePartition. However,
the interpretation in terms of the intra-class correlation still applies.

See Section 7.3 for statistical details.



variancePartition 13

5 Normalizing RNA-Seq data

variancePartition works with gene expression data that has already been normalized. Expression should
be normalized in exactly the same way as for differential expression analysis. Here I discuss normalization
specifically for RNA-Seq data, while the process for microarray data may depend on the platform and
manufacturer

Read RNA-Seq counts into R , normalize for library size within and between experiments with TMM [4],
estimates precision weights with limma/voom [5]

## not run

library(limma)

library(edgeR)

# identify genes that pass expression cutoff

isexpr = rowSums(cpm(geneCounts)>.1) >= 0.5 * ncol(geneCounts)

# create data structure with only expressed genes

geneExpr = DGEList(counts=geneCounts[isexpr,])

# Perform TMM normalization

geneExpr = calcNormFactors(geneExpr)

# Specify variables to be included in the voom() estimates of uncertainty

# recommand including variables with a small number of categories

# that explain a substantial amount of variation

design = model.matrix( ~ Batch, info)

# Estimate precision weights for each gene and sample

# This models uncertainty in expression measurements

vobjGenes = voom(geneExpr, design )

# fit variancePartition

form = ~ (1|Individual) + (1|Tissue) + Age

# variancePartition seamlessly deals with the result of voom()

# by default, it seamlessly models the precision weights

# This can be turned off with useWeights=FALSE

varPart = fitExtractVarPartModel( vobjGenes, form, info )
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6 Comparison with other methods on simulated data

Characterizing drivers of variation in gene expression data has typically relied on principal components
analysis (PCA) and hierarchical clustering. Here I apply these methods to two simulated datasets to
demonstrate the additional insight from an analysis with variancePartition. Each simulated dataset
comprises 60 experiments from 10 individuals and 3 tissues wih 2 biological replicates. In the first
dataset, tissue is the major driver of variation in gene expression(Figure 4). In the second dataset,
individual is the major driver of variation in gene expression (Figures 5).

Analysis of simulated data illustrates that PCA identifies the major driver of variation when tissue is
dominant and there are only 3 catagories. But the results are less clear when individual is dominant
because there are now 10 categories. Meanwhile, hierarchical clustering identifies the major driver of
variation in both cases, but does not give insight into the second leading contributor.

Analysis with variancePartition has a number of advantages over these standard methods:

• variancePartition provides a natural interpretation of multiple variables
– figures from PCA/hierarchical clustering allow easy interpretation of only one variable

• variancePartition quantifies the contribution of each variable
– PCA/hierarchical clustering give only a visual representation

• variancePartition interprets contribution of each variable to each gene individually for downstream
analysis

– PCA/hierarchical clustering produces genome-wide summary and does not allow gene-level
interpretation

• variancePartition can assess contribution of one variable (i.e. Individual) separately in subset of
the data defined by another variable (i.e. Tissue)
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Figure 4: Similarity within Tissue is dominant

(a) PCA - colored by Tissue
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(b) PCA - colored by Individual
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(c) hclust - colored by Tissue
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(f) variancePartition - within Tissue

●●

0

25

50

75

100

Ti
ss

ue
A/

In
di

vi
du

al
Ti

ss
ue

B/
In

di
vi

du
al

Ti
ss

ue
C

/In
di

vi
du

al

Ti
ss

ue
R

es
id

ua
ls

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)



variancePartition 16

Figure 5: Similarity within Individual is dominant

(a) PCA - colored by Tissue
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(b) PCA - colored by Individual
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(c) hclust - colored by Tissue
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(e) variancePartition
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7 Statistical details

A variancePartition analysis evaluates the linear (mixed) model

y =
∑
j

Xjβj +
∑
k

Zkαk + ε (1)

αk ∼ N (0, σ2
αk
) (2)

ε ∼ N (0, σ2
ε) (3)

where y is the expression of a single gene across all samples, Xj is the matrix of jth fixed effect with
coefficients βj, Zk is the matrix corresponding to the kth random effect with coefficients αk drawn
from a normal distribution with variance σ2

αk
. The noise term, ε, is drawn from a normal distribution

with variance σ2
ε . Parameters are estimated with maximum likelihood, rather than REML, so that fixed

effect coefficients, βj, are explicitly estimated.

I use the term “linear (mixed) model” here since variancePartition works seamlessly when a fixed
effects model (i.e. linear model) is specified.

Variance terms for the fixed effects are computed using the post hoc calculation

σ̂2
βj

= var(Xjβ̂j). (4)

For a fixed effects model, this corresponds to the sum of squares for each component of the model.

For a standard application of the linear mixed model, where the effect of each variable is additive,
the fraction of variance explained by the jth fixed effect is

σ̂2
βj∑

j σ̂
2
βj
+

∑
k σ̂2

αk
+ σ̂2

ε

, (5)

by the kth random effect is

σ̂2
αk∑

j σ̂
2
βj
+

∑
k σ̂2

αk
+ σ̂2

ε

, (6)

and the residual variance is

σ̂2
ε∑

j σ̂
2
βj
+

∑
k σ̂2

αk
+ σ̂2

ε

. (7)

7.1 Implementation in R

An R formula is used to define the terms in the fixed and random effects, and fitVarPartModel fits the
specified model for each gene separately. If random effects are specified, lmer from lme4 is used behind
the scenes to fit the model, while lm is used if there are only fixed effects. fitVarPartModel returns
a list of the model fits, and extractVarPart returns the variance partition statistics for each model in
the list. fitExtractVarPartModel combines the actions of fitVarPartModel and extractVarPart

into one function call. calcVarPart behind the scenes to compuate variance fractions for both fixed
and mixed effects models.
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7.2 Interpretation of percent variance explained

The percent variance explained can be interpreted as the intra-class correlation (ICC) when a special
case of Equation 1 is used. Consider the simplest example of the ith sample from the kth individual

yi,k = µ+ Zαi,k + ei (8)

with only an intercept term, one random effect corresponding to individual, and an error term. In this
case ICC corresponds to the correlation between two samples from the same individual. This value is
equal to the fraction of variance explained by individual. For example, consider the correlation between
samples from the same individual:

ICC = cor(y1,k, y2,k) (9)

= cor(µ+ Zα1,k + e1,k, µ+ Zα2,k + e2,k) (10)

=
cov(µ+ Zα1,k + e1,k, µ+ Zα2,k + e2,k)√
var(µ+ Zα1,k + e1,k)var(µ+ Zα2,k + e2,k)

(11)

=
cov(Zα1,k, Zα2,k)

σ2
α + σ2

ε

(12)

=
σ2
α

σ2
α + σ2

ε

(13)

The correlation between samples from different individuals is:

= cor(y1,1, y1,2) (14)

= cor(µ+ Zα1,1 + e1,1, µ+ Zα1,2 + e1,2) (15)

=
cov(Zα1,1, Zα1,2)

σ2
α + σ2

ε

(16)

=
0

σ2
α + σ2

ε

(17)

= 0 (18)

This interpretation in terms of fraction of variation explained (FVE) naturally generalizes to multiple
variance components. Consider two sources of variation, individual and cell type with variances σ2

id and
σ2
cell, respectively. Applying a generalization of the the previous derivation, two samples are correlated

according to:

Individual cell type variance Interpretation Correlation value

same different
σ2
id

σ2
id
+σ2

cell
+σ2

ε
FVE by individual ICCindividual

different same
σ2
cell

σ2
id
+σ2

cell
+σ2

ε
FVE by cell type ICCcell

same same
σ2
id+σ

2
cell

σ2
id
+σ2

cell
+σ2

ε
sum of FVE by individual & cell type ICCindividual,cell

different different 0
σ2
id
+σ2

cell
+σ2

ε
sample are independent
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Notice that the correlation between samples from the same individual and same cell type corresponds
to the sum of the fraction explained by individual + fraction explained by cell type. This defines ICC
for individual and tissue, as well as the combined ICC and relates these values to FVE.

In order to illustrate how this FVE and ICC relate to the correlation between samples in multilevel
datasets, consider a simple example of 5 samples from 2 individuals and 2 tissues:

Sample Individual Cell type

a 1 T-Cell

b 1 T-Cell

c 1 monocyte

d 2 T-Cell

e 2 monocyte

Modeling the separate effects of individual and tissue gives the following covariace structure between
samples when a linear mixed model is used:

a b c d e



a σ2
id + σ2

cell + σ2
ε

b σ2
id + σ2

cell σ2
id + σ2

cell + σ2
ε

cov(y) = c σ2
id σ2

id σ2
id + σ2

cell + σ2
ε

d σ2
cell σ2

cell 0 σ2
id + σ2

cell + σ2
ε

e 0 0 0 σ2
id σ2

id + σ2
cell + σ2

ε

The covariance matrix is symmetric so that blank entries take the value on the opposite side of the
diagonal. The covariance can be converted to correlation by dividing by σ2

id + σ2
cell + σ2

ε , and this gives
the results from above. This example generalizes to any number of variance components [2].

7.3 Variation with multiple subsets of the data

The linear mixed model underlying variancePartition allows the effect of one variable to depend on the
value of another variable. Statistically, this is called a varying coefficient model [2, 3]. This model arises
in variancePartition analysis when the variation explained by individual depends on tissue or cell type.

A given sample is only from one cell type, so this analysis asks a question about a subset of the
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data. The the data is implicitly divided into subsets base on cell type and variation explained by indi-
vidual is evaluated within each subset. The data isn’t actually divided onto subset, but the statistical
model essentially examples samples with each cell type. This subsetting means that the variance frac-
tions don’t sum to 1.

Consider a concrete example with variation from across individual and cell types (T-cells and mono-
cytes). Modeling the variation across individuals within cell type corresponds to

yi,s,c = µ+ Z(sex)αi,s + Z(T−cell|id)αi,c + Z(monocyte|id)αi,c + ei,s,c (19)

with corresponding variance components

Variance component Interpretation

σ2
sex variance across sex

σ2
(T−cell|id) variance across individuals within T-cells

σ2
(monocyte|id) variance across individuals within monocytes

σ2
ε residual variance

7.4 Relationship between variancePartition and differential expression

Differential expression (DE) is widely used to identify gene which show difference is expression between
two subsets of the data (i.e. case versus controls). For a single gene, DE analysis measures the differ-
ence in mean expression between the two subsets. (Since expression is usually analyzed on a log scale,
DE results are show in terms of log fold changes between the two subsets ). In Figure 6, consider two
simulated examples of a gene whose expression differs between males and females. The mean expression
in males is 0 and the mean expression in females is 2 in both cases. Therefore, the fold change is 2 in
both cases.

However, the fraction of expression variation explained by sex is very different in these two exam-
ples. In example A, there is very little variation within each sex, so that variation between sexes is very
high at 91.1%. Conversely, Example B show high variation within sexes, so that variation between sexes
is only 19.4%.

Fact that the fold change or the fraction of variation is significantly different from 0 indicates dif-
ferential expression between the two sexes. Yet these two statistics have different interpretations. The
fold change from DE analysis tests a difference in means between two sexes. The fraction of variation
explained compares the variation explained by sex to the total variation.

Thus the fraction of variation explained reported by variancePartition reflects as different aspect of
the data not captured by DE analysis.
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Figure 6: Compare variancePartition and differential expression

(a) Example A
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7.5 Modelling error in gene expression measurements

Uncertainty in the measurement of gene expression can be modeled with precision weights and tests of
differentially expression using voom in limma model this uncertainty directly with a heteroskadastic linear
regression [5]. variancePartition can use these precision weights in a heteroskadastic linear mixed model
implemented in lme4 [1]. These precision weights are used seamlessly by calling fitVarPartModel or
fitExtractVarPartModel on the output of voom. Otherwise the user can specify the weights with
the weightsMatrix parameter.
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8 Frequently asked questions

8.1 Warnings and errors

Interpreting warnings and errors from fitVarPartModel and fitExtractVarPartModel:

• Colinear score > .99: Covariates in the formula are so strongly

correlated that the parameter estimates from this model are not

meaningful. Dropping one or more of the covariates will fix this problem

• Error in asMethod(object) : not a positive definite matrix

• In vcov.merMod(fit) : Computed variance-covariance matrix problem: not a positive

definite matrix; returning NA matrix

• fixed-effect model matrix is rank deficient so dropping 26 columns / coefficients

Including variables that are highly correlated can produce misleading results (see Section 3.3). In this
case, parameter estimates from this model are not meaningful. Dropping one or more of the covariates
will fix this problem.

• No Intercept term was specified in the formula:

The results will not behave as expected and may be very wrong!!

An intercept (i.e. mean term) must be specified order for the results to be statistically valid. Otherwise,
the variance percentages will be very overestimated.

• Categorical variables modeled as fixed effect:

The results will not behave as expected and may be very wrong!!

If a linear mixed model is used, all categorical variables must be modeled as a random effect. Alterna-
tively, a fixed effect model can be used by modeled all variables as fixed.

• executing %dopar% sequentially: no parallel backend registered

These functions are optmized to run in parallel using doParallel/doMC. This warning indicates that a
parallelization was not enabled. This is not a problem, but analysis will take more time.

• fatal error in wrapper code

• Error in mcfork() : unable to fork, possible reason: Cannot allocate memory

• Error: cannot allocate buffer

This error occurs when fitVarPartModel uses too many threads and takes up too much memory.
The easiest solution is to use fitExtractVarPartModel instead. Occasionally there is an issue in the
parallel backend that is out of my control. Using fewer threads or restarting R will solve the problem.
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8.2 Problems removing samples with NA/NaN/Inf values

variancePartition fits a regression model for each gene and drops samples that have NA/NaN/Inf values
in each model fit. This is generally seamless but can cause an issue when a variable specified in the
formula no longer varies within the subset of samples that are retained. Consider an example with
variables for sex and age where age is NA for all males samples. Dropping samples with invalid values
for variables included in the formula will retain only female samples. This will cause variancePartition
to throw an error because there is now no variation in sex in the retained subset of the data. This can
be resolved by removing either age or sex from the formula.

This situtation is indicated by the following errors

• Error: grouping factors must have > 1 sampled level

• Error: Invalid grouping factor specification, Individual

• Error in ‘contrasts<-‘(‘*tmp*‘, value = contr.funs[1 + isOF[nn]]):

contrasts can be applied only to factors with 2 or more levels

• Error in checkNlevels(reTrms$flist, n = n, control):

grouping factors must have > 1 sampled level

Session Info

• R version 3.2.2 Patched (2015-10-08 r69496), x86_64-apple-darwin10.8.0
• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils
• Other packages: Biobase 2.30.0, BiocGenerics 0.16.0, dendextend 1.1.0, doParallel 1.0.10,

edgeR 3.12.0, foreach 1.4.3, ggplot2 1.0.1, iterators 1.0.8, knitr 1.11, limma 3.26.0,
lme4 1.1-10, Matrix 1.2-2, variancePartition 1.0.0
• Loaded via a namespace (and not attached): BiocStyle 1.8.0, codetools 0.2-14,

colorspace 1.2-6, compiler 3.2.2, digest 0.6.8, evaluate 0.8, formatR 1.2.1, grid 3.2.2,
gtable 0.1.2, highr 0.5.1, labeling 0.3, lattice 0.20-33, magrittr 1.5, MASS 7.3-44, minqa 1.2.4,
munsell 0.4.2, nlme 3.1-122, nloptr 1.0.4, plyr 1.8.3, proto 0.3-10, Rcpp 0.12.1, reshape 0.8.5,
reshape2 1.4.1, scales 0.3.0, splines 3.2.2, stringi 0.5-5, stringr 1.0.0, tools 3.2.2, whisker 0.3-2
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