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1 Introduction

RNA sequencing (RNA-seq) has been utilized as the standard technology for measuring the expression abundance of genes,
transcripts, exons or splicing junctions. Numerous quantification methods were proposed to quantify such abundances
with combination of some RNA-seq read aligner. Unfortunately, it is currently difficult to evaluate the performance of the
best method, due in part to the high costs of running assessment experiments as well as the computational requirements
of running these algorithms. We have developed a series of statistical summaries and data visualization techniques to
evaluate the performance of transcript quantification, particularly specificity and sensitivity.

The rnaseqcomp R-package performs comparisons and provides direct plots on these statistical summaries. It requires the
inputs as an quantification table (or two, depending on which statistical comparisons is performed) by compared pipelines
on a pair of RNA-seq samples. With necessary meta information on these pipelines (e.g. names), a two step analysis will
generate the desired evaluations.

1. Data filtering and data preparation. In this step, options are provided for any filtering and calibration operations on
the raw data. A S4 class rnaseqcomp object will be generated form next step.

2. Statistical summary evaluation and visualization. Functions are provided for specificity and sensitivity evaluations.

2 Getting Started

Load the package in R
library(rnaseqcomp)
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3 Preparing Data

As the benchmark evaluation is performed on a pair of RNA-seq replicates, a quantification table should contain 2n
columns (n corresponding to the number of pipeline compared), with each column representing a sample and each row
representing a feature (i.e. genes, transcripts, exons, splicing junctions, etc.). The function matrixFilter takes this
table as one of the inputs, with extra options such as meta information of pipelines, features for evaluation and features
for calibration, and returns a S4 rnaseqcomp object that contains everything for downstream evaluation.

There are several reasons why we need extra options in this step:

1. Meta information of pipelines basically is a factor to check the sanity of table columns, and to provide unique names
of pipelines for downstream analysis.

2. Since there might be dramatic quantification difference between different features, e.g. between protein coding
genes and lincRNA genes, evaluations based on a subset of features can provide stronger robustness than using all
involved features. Thus, an option is offered for selecting subset of features.

3. Due to different pipelines reports different units of quantification, such as FPKM (fragments per kilobases per
million), RPKM (reads per kilobases per million), TPM (transcripts per million) etc. Calibrations across different
units are necessary. Options are provided in the way that on which features the calibrations are based and to what
pipeline the signals are mapped.

We show here an example of selecting house-keeping genes(Eisenberg and Levanon 2013) for calibration and filtering
protein coding genes for evaluation. In this vignette, we will use enbedded dataset encodeCells as examples to illustrate
this package. This dataset contains two cell-line quantifications, GM12878 and K562, each with two PolyA dUTP technical
replicates by ENCODE project (https://www.encodeproject.org). In total, quantifications from 9 pipelines are included.
Here, 9 pipelines are made up with 6 quantification methods (RESM(Li and Dewey 2011), Cufflinks(Trapnell et al. 2010),
FluxCapacitor(Montgomery et al. 2010), Sailfish(Patro, Mount, and Kingsford 2014), eXpress(Roberts and Pachter 2013)
and Naive) in conjunction to 2 mapping algorithms (STAR(Dobin et al. 2013) and TopHat2(D. Kim et al. 2013)) and
different tuning parameters.
# load the dataset in this package
data(encodeCells)
class(encodeCells)
## [1] "list"
names(encodeCells)
## [1] "gm12878" "k562" "repInfo" "genemeta" "arrayFC"

Here, gm12878 and k562 are both quantification tables; repInfo is the meta information of pipelines; genemeta is the
meta information for features: gene type and if house-keeping gene; arrayFC is fold change information between GM12878
and K562 cell lines from microarray platform(Ernst et al. 2011).

In order to fit into function ‘matrixFilter’, necessary transformation to logical vectors are needed for extra options.
evaluationFeature <- encodeCells$genemeta$type == "protein_coding"
calibrationFeature <- encodeCells$genemeta$housekeeping
unitReference <- grepl("Cufflinks",encodeCells$repInfo)

Generic function show is provided for bird-eye view of S4 rnaseqcomp object.
dat1 <- matrixFilter(encodeCells$gm12878,encodeCells$repInfo,

evaluationFeature,calibrationFeature,unitReference)
class(dat1)
## [1] "rnaseqcomp"
## attr(,"package")
## [1] "rnaseqcomp"
show(dat1)
## rnaseqcomp: Benchmark for RNA-seq quantification pipelines
##
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## Reps:
## RSEM_Bowtie_TPM RSEM_Bowtie_TPM RSEM_Bowtie_pmeTPM RSEM_Bowtie_pmeTPM RSEM_STAR_TPM RSEM_STAR_TPM Cufflinks_STAR_FPKM Cufflinks_STAR_FPKM Cufflinks_TopHat_FPKM Cufflinks_TopHat_FPKM FluxCapacitor_TopHat_RPKM FluxCapacitor_TopHat_RPKM Sailfish_RPKM Sailfish_RPKM eXpress_Bowtie_RPKM eXpress_Bowtie_RPKM Naive_TopHat_RPKM Naive_TopHat_RPKM
##
## Calibration subset log2Median:
## 5.155628 5.168121 5.164102 5.170526 5.012122 5.030115 4.472787 4.540077 4.631066 4.668635 5.196811 5.155786 5.181636 5.097898 8.839204 8.917372 5.718594 5.76399
##
## Detrened signal scaler:
## 4.585572
##
## Quantification data has 20387 rows and 18 columns:
## RSEM_Bowtie_TPM RSEM_Bowtie_TPM RSEM_Bowtie_pmeTPM
## ENSG00000237613 0 0 0
## ENSG00000268020 0 0 0
## ENSG00000186092 0 0 0
## ENSG00000237683 17.34 14.8 17.19
## . ... ... ...
## ENSG00000198886 2451.59 1965.01 2430.38
## ENSG00000198786 883.51 694.03 875.88
## ENSG00000198695 1951.02 1635.47 1934.18
## ENSG00000198727 1469.88 1227.92 1457.18
## RSEM_Bowtie_pmeTPM . eXpress_Bowtie_RPKM
## ENSG00000237613 0 ... 0
## ENSG00000268020 0 ... 0
## ENSG00000186092 0 ... 0
## ENSG00000237683 14.67 ... 0
## . ... ... ...
## ENSG00000198886 1947.32 ... 68511
## ENSG00000198786 687.78 ... 54031
## ENSG00000198695 1620.78 ... 38362
## ENSG00000198727 1216.88 ... 72576
## eXpress_Bowtie_RPKM Naive_TopHat_RPKM Naive_TopHat_RPKM
## ENSG00000237613 0 0 0
## ENSG00000268020 0 0 0
## ENSG00000186092 0 0 0
## ENSG00000237683 0 21.2337960741333 18.3457639904057
## . ... ... ...
## ENSG00000198886 54086 1060.9847035949 797.308796591367
## ENSG00000198786 40731 1756.10324190415 1518.92584044264
## ENSG00000198695 30442 472.123283170283 393.854930860321
## ENSG00000198727 60818 1302.55493980322 1105.88032279601

4 Visualizing Benchmarks

Three type of QC metrics can be evaluated by this package. More details please refer to our paper(Teng).

4.1 Specificity on expressed features.

This metric is evaluated by the quantification deviations between RNA-seq technical replicates. Basically lower deviations
indicate higher specificity. Both one number statistics and deviation stratified by express signals are provided.
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plotMAD(dat1)
## $mad
## Cufflinks_STAR_FPKM Cufflinks_TopHat_FPKM
## 0.274 0.269
## eXpress_Bowtie_RPKM FluxCapacitor_TopHat_RPKM
## 0.369 0.388
## Naive_TopHat_RPKM RSEM_Bowtie_pmeTPM
## 0.238 0.244
## RSEM_Bowtie_TPM RSEM_STAR_TPM
## 0.250 0.268
## Sailfish_RPKM
## 0.234
##
## $sd
## Cufflinks_STAR_FPKM Cufflinks_TopHat_FPKM
## 0.312 0.317
## eXpress_Bowtie_RPKM FluxCapacitor_TopHat_RPKM
## 0.434 0.527
## Naive_TopHat_RPKM RSEM_Bowtie_pmeTPM
## 0.230 0.268
## RSEM_Bowtie_TPM RSEM_STAR_TPM
## 0.268 0.301
## Sailfish_RPKM
## 0.264

Detrended signals shown in the plot are actually the signals with the same scales as Cufflinks pipelines, as we selected
unitReference as signals from Cufflinks. In this case, FPKM by Cufflinks.
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4.2 Specificity on non-expressed features

The proportions of non-expressed features is another important statistics. However, two types of non-expressed features
should be analyzed separately:

4.2.1 Features expressed in one technical replicate but not the other.

The reverse accumulated proportions of such either-or expressed features are plotted stratified by the detrended signals as
described previously. Basically, a lower curve indicates higher specificity on these features.
nonexpress <- plotNE(dat1)

4.2.2 Features expressed in neither replicates, and others.

Here, proportions of both expressed, both non-expressed and either-or expressed features are list as a table.
nonexpress
## $pEE
## Cufflinks_STAR_FPKM Cufflinks_TopHat_FPKM
## 0.524 0.523
## eXpress_Bowtie_RPKM FluxCapacitor_TopHat_RPKM
## 0.516 0.516
## Naive_TopHat_RPKM RSEM_Bowtie_pmeTPM
## 0.552 0.538
## RSEM_Bowtie_TPM RSEM_STAR_TPM
## 0.530 0.522
## Sailfish_RPKM
## 0.564
##
## $pNE
## Cufflinks_STAR_FPKM Cufflinks_TopHat_FPKM
## 0.018 0.017
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## eXpress_Bowtie_RPKM FluxCapacitor_TopHat_RPKM
## 0.035 0.022
## Naive_TopHat_RPKM RSEM_Bowtie_pmeTPM
## 0.012 0.017
## RSEM_Bowtie_TPM RSEM_STAR_TPM
## 0.015 0.017
## Sailfish_RPKM
## 0.021
##
## $pNN
## Cufflinks_STAR_FPKM Cufflinks_TopHat_FPKM
## 0.458 0.460
## eXpress_Bowtie_RPKM FluxCapacitor_TopHat_RPKM
## 0.449 0.462
## Naive_TopHat_RPKM RSEM_Bowtie_pmeTPM
## 0.436 0.445
## RSEM_Bowtie_TPM RSEM_STAR_TPM
## 0.455 0.461
## Sailfish_RPKM
## 0.415

4.3 Specificity in differential analysis

We calculate the fold change of features between two different cell-lines and compare the fold change concordance between
two technical replicates. A strategy that summarizes the overlapped proportions among top differential expressed features
is used, as we described before(Irizarry et al. 2005).
dat2 <- matrixFilter(encodeCells$k562,encodeCells$repInfo,

evaluationFeature,calibrationFeature,unitReference)
plotCAT(dat1,dat2)
## $Cufflinks_STAR_FPKM
## [1] 0.720 0.650 0.708
##
## $Cufflinks_TopHat_FPKM
## [1] 0.720 0.640 0.692
##
## $eXpress_Bowtie_RPKM
## [1] 0.46 0.54 0.60
##
## $FluxCapacitor_TopHat_RPKM
## [1] 0.500 0.530 0.596
##
## $Naive_TopHat_RPKM
## [1] 0.680 0.670 0.752
##
## $RSEM_Bowtie_pmeTPM
## [1] 0.640 0.660 0.744
##
## $RSEM_Bowtie_TPM
## [1] 0.660 0.600 0.736
##
## $RSEM_STAR_TPM
## [1] 0.620 0.600 0.696
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##
## $Sailfish_RPKM
## [1] 0.72 0.70 0.72

Basically higher curve indicates better specificity. plotCAT also provides a one number summary of such specificity, which
is the median of all overlap proportions plotted. In addition, constant is allowed for a more robust estimation of fold
change.
plotCAT(dat1,dat2,constant=1)

Or, y/0 = inf with y > 0 can be considered into fold changes by comparing y only.
plotCAT(dat1,dat2,infinity=TRUE)

4.4 Sensitivity in differential analysis

There are other platforms provide the same quantifications such as microarray. We thus compare differential analysis
of RNA-seq and other technology to evaluate sensitivity of pipelines. We have documented an object arrayFC which
has been estimated from microarray technology(Ernst et al. 2011). We don’t document the steps how we calculated
microarray fold change here, since it is beyond the scope of this vignette.
genes <- encodeCells$genemeta[encodeCells$genemeta$type == "protein_coding",1]
otherFC <- encodeCells$arrayFC[match(genes,names(encodeCells$arrayFC))]
plotCAT(dat2,dat1,constant=1,otherFC=otherFC)
## $Cufflinks_STAR_FPKM
## [1] 0.460 0.480 0.552
##
## $Cufflinks_TopHat_FPKM
## [1] 0.440 0.490 0.552
##
## $eXpress_Bowtie_RPKM
## [1] 0.32 0.33 0.40
##
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## $FluxCapacitor_TopHat_RPKM
## [1] 0.48 0.45 0.52
##
## $Naive_TopHat_RPKM
## [1] 0.480 0.430 0.516
##
## $RSEM_Bowtie_pmeTPM
## [1] 0.500 0.470 0.544
##
## $RSEM_Bowtie_TPM
## [1] 0.480 0.480 0.532
##
## $RSEM_STAR_TPM
## [1] 0.480 0.490 0.548
##
## $Sailfish_RPKM
## [1] 0.460 0.440 0.536

By comparing with microarray differential analysis, CAT plots will be plotted as higher curve indicates better sensitivity.
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