smokingMouse 1.2.0
Welcome to the smokingMouse
project.
In this vignette we’ll show you how to access the smokingMouse LIBD datasets .
You can find the analysis code and the data generation in here.
The main motivation to create this bioconductor package was to provide public and free access to all RNA-seq datasets that were generated for the smokingMouse project, containing many variables of interest that make it possible to answer a wide range of biological questions related to smoking and nicotine effects in mice.
This bulk RNA-sequencing project consisted of a differential expression analysis (DEA) involving 4 data types: genes, exons, transcripts and junctions. The main goal of this study was to explore the effects of prenatal exposure to maternal smoking and nicotine exposures on the developing mouse brain. As secondary objectives, this work evaluated: 1) the affected genes by each exposure on the adult female brain in order to compare offspring and adult results and 2) the effects of smoking on adult blood and brain to search for overlapping biomarkers in both tissues. Finally, DEGs identified in mice were compared against previously published results from a human study (Semick, S.A. et al. (2018)).
The next table summarizes the analyses done at each level.
smokingMouse
R
is an open-source statistical environment which can be easily modified to enhance its functionality via packages.
smokingMouse is a R
package available via the Bioconductor repository for packages.
R
can be installed on any operating system from CRAN after which you can install smokingMouse by using the following commands in your R
session:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("smokingMouse")
## Check that you have a valid Bioconductor installation
BiocManager::valid()
smokingMouse is based on many other packages and in particular in those that have implemented the infrastructure needed for dealing with RNA-seq data and differential expression. That is, packages like SummarizedExperiment and limma.
If you are asking yourself the question “Where do I start using Bioconductor?” you might be interested in this blog post.
As package developers, we try to explain clearly how to use our packages and in which order to use the functions. But R
and Bioconductor
have a steep learning curve so it is critical to learn where to ask for help.
The blog post quoted above mentions some but we would like to highlight the Bioconductor support site as the main resource for getting help: remember to use the smokingMouse
tag and check the older posts.
Other alternatives are available such as creating GitHub issues and tweeting. However, please note that if you want to receive help you should adhere to the posting guidelines.
It is particularly critical that you provide a small reproducible example and your session information so package developers can track down the source of the error.
smokingMouse
We hope that smokingMouse will be useful for your research. Please use the following information to cite the package and the overall approach.
## Citation info
citation("smokingMouse")
#> To cite package 'smokingMouse' in publications use:
#>
#> Gonzalez-Padilla D, Collado-Torres L (2024). _Provides access to
#> smokingMouse project data_. doi:10.18129/B9.bioc.smokingMouse
#> <https://doi.org/10.18129/B9.bioc.smokingMouse>,
#> https://github.com/LieberInstitute/smokingMouse/smokingMouse - R
#> package version 1.2.0,
#> <http://www.bioconductor.org/packages/smokingMouse>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {Provides access to smokingMouse project data},
#> author = {Daianna Gonzalez-Padilla and Leonardo Collado-Torres},
#> year = {2024},
#> url = {http://www.bioconductor.org/packages/smokingMouse},
#> note = {https://github.com/LieberInstitute/smokingMouse/smokingMouse - R package version 1.2.0},
#> doi = {10.18129/B9.bioc.smokingMouse},
#> }
smokingMouse
To get started, please load the smokingMouse package.
library("smokingMouse")
The raw data was generated by LIBD researchers and is composed of expression counts of genes, transcripts (txs), exons and exon-exon junctions (jxns) across 208 mice samples (brain/blood; adult/pup; nicotine-exposed/smoking-exposed/controls). The datasets available in smokingMouse were generated by Daianna Gonzalez-Padilla. The human data was generated by Semick, S.A. et al. (2018) in Mol Psychiatry, DOI: https://doi.org/10.1038/s41380-018-0223-1 and it contains the results of a DEA in adult and prenatal human brain samples exposed to cigarette smoke.
rowData(RSE)
and sample info in colData(RSE)
.assays(RSE)$counts
and the lognorm counts (log2(cpm + 0.5) for genes, exons and jxns; log2(tpm + 0.5) for txs) with assays(RSE)$logcounts
.All the above datasets contain sample and feature information and additional data of the results obtained in the filtering steps and the DEA.
Feature information in rowData(RSE)
contains the following variables:
retained_after_feature_filtering
: Boolean variable that equals TRUE if the feature passed the feature filtering based on expression levels and FALSE if not. Check code in here.DE_in_adult_brain_nicotine
: Boolean variable that equals TRUE if the feature is differentially expressed (DE) in adult brain samples exposed to nicotine and FALSE if not. Check code in here.DE_in_adult_brain_smoking
: Boolean variable that equals TRUE if the feature is differentially expressed (DE) in adult brain samples exposed to cigarette smoke and FALSE if not. Check code in here.DE_in_adult_blood_smoking
: Boolean variable that equals TRUE if the feature is differentially expressed (DE) in adult blood samples exposed to cigarette smoke and FALSE if not. Check code in here.DE_in_pup_brain_nicotine
: Boolean variable that equals TRUE if the feature is differentially expressed (DE) in pup brain samples exposed to nicotine and FALSE if not. Check code in here.DE_in_pup_brain_smoking
: Boolean variable that equals TRUE if the feature is differentially expressed (DE) in pup brain samples exposed to cigarette smoke and FALSE if not. Check code in here.
The rest of the variables are outputs of SPEAQeasy pipeline. See here for a description of them.Sample information in colData(RSE)
contains the following variables:
sum
,detected
,subsets_Mito_sum
, subsets_Mito_detected
, subsets_Mito_percent
, subsets_Ribo_sum
,subsets_Ribo_detected
and subsets_Ribo_percent
are returned by addPerCellQC()
. See here for more info.retained_after_QC_sample_filtering
: Boolean variable that equals TRUE if the sample passed the sample filtering based on QC metrics and FALSE if not. Check code in here.retained_after_manual_sample_filtering
: Boolean variable that equals TRUE if the sample passed the manual sample filtering based on PCA plots and FALSE if not. Check code in here
The rest of the variables are outputs of SPEAQeasy. See here for their description.Check here to see the data generation and variables meaning.
smokingMouse
Using smokingMouse you can download these R objects. They are hosted by Bioconductor’s ExperimentHub (Morgan and Shepherd, 2024) resource. Below you can see how to obtain these objects.
## Load ExperimentHub for downloading the data
library("ExperimentHub")
#> Loading required package: BiocGenerics
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
#> union, unique, unsplit, which.max, which.min
#> Loading required package: AnnotationHub
#> Loading required package: BiocFileCache
#> Loading required package: dbplyr
## Connect to ExperimentHub
ehub <- ExperimentHub::ExperimentHub()
## Load the datasets of the package
myfiles <- query(ehub, "smokingMouse")
## Resulting smokingMouse files from our ExperimentHub query
myfiles
#> ExperimentHub with 6 records
#> # snapshotDate(): 2024-04-29
#> # $dataprovider: Lieber Institute for Brain Development (LIBD)
#> # $species: Mus musculus, Homo sapiens
#> # $rdataclass: RangedSummarizedExperiment, GenomicRanges
#> # additional mcols(): taxonomyid, genome, description,
#> # coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
#> # rdatapath, sourceurl, sourcetype
#> # retrieve records with, e.g., 'object[["EH8313"]]'
#>
#> title
#> EH8313 | rse_gene_mouse_RNAseq_nic-smo
#> EH8314 | rse_tx_mouse_RNAseq_nic-smo
#> EH8315 | rse_jx_mouse_RNAseq_nic-smo
#> EH8316 | rse_exon_mouse_RNAseq_nic-smo
#> EH8317 | de_genes_prenatal_human_brain_smoking
#> EH8318 | de_genes_adult_human_brain_smoking
## Load SummarizedExperiment which defines the class container for the data
library("SummarizedExperiment")
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: S4Vectors
#>
#> Attaching package: 'S4Vectors'
#> The following object is masked from 'package:utils':
#>
#> findMatches
#> The following objects are masked from 'package:base':
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#>
#> rowMedians
#> The following objects are masked from 'package:matrixStats':
#>
#> anyMissing, rowMedians
#> The following object is masked from 'package:ExperimentHub':
#>
#> cache
#> The following object is masked from 'package:AnnotationHub':
#>
#> cache
######################
# Mouse data
######################
myfiles["EH8313"]
#> ExperimentHub with 1 record
#> # snapshotDate(): 2024-04-29
#> # names(): EH8313
#> # package(): smokingMouse
#> # $dataprovider: Lieber Institute for Brain Development (LIBD)
#> # $species: Mus musculus
#> # $rdataclass: RangedSummarizedExperiment
#> # $rdatadateadded: 2023-07-21
#> # $title: rse_gene_mouse_RNAseq_nic-smo
#> # $description: RangedSummarizedExperiment of bulk RNA-seq data from mouse b...
#> # $taxonomyid: 10090
#> # $genome: GRCm38
#> # $sourcetype: GTF
#> # $sourceurl: https://bioconductor.org/packages/smokingMouse
#> # $sourcesize: NA
#> # $tags: c("ExpressionData", "LIBD", "mouse", "Mus_musculus_Data",
#> # "nicotine", "RNASeqData", "smoking")
#> # retrieve record with 'object[["EH8313"]]'
## Download the mouse gene data
# EH8313 | rse_gene_mouse_RNAseq_nic-smo
rse_gene <- myfiles[["EH8313"]]
#> see ?smokingMouse and browseVignettes('smokingMouse') for documentation
#> loading from cache
## This is a RangedSummarizedExperiment object
rse_gene
#> class: RangedSummarizedExperiment
#> dim: 55401 208
#> metadata(1): Obtained_from
#> assays(2): counts logcounts
#> rownames(55401): ENSMUSG00000102693.1 ENSMUSG00000064842.1 ...
#> ENSMUSG00000064371.1 ENSMUSG00000064372.1
#> rowData names(13): Length gencodeID ... DE_in_pup_brain_nicotine
#> DE_in_pup_brain_smoking
#> colnames: NULL
#> colData names(71): SAMPLE_ID FQCbasicStats ...
#> retained_after_QC_sample_filtering
#> retained_after_manual_sample_filtering
## Optionally check the memory size
# lobstr::obj_size(rse_gene)
# 159.68 MB
## Check sample info
head(colData(rse_gene), 3)
#> DataFrame with 3 rows and 71 columns
#> SAMPLE_ID FQCbasicStats perBaseQual perTileQual perSeqQual perBaseContent
#> <character> <character> <character> <character> <character> <character>
#> 1 Sample_2914 PASS PASS PASS PASS FAIL/WARN
#> 2 Sample_4042 PASS PASS PASS PASS FAIL/WARN
#> 3 Sample_4043 PASS PASS PASS PASS FAIL/WARN
#> GCcontent Ncontent SeqLengthDist SeqDuplication OverrepSeqs
#> <character> <character> <character> <character> <character>
#> 1 WARN PASS WARN FAIL PASS
#> 2 WARN PASS WARN FAIL PASS
#> 3 WARN PASS WARN FAIL PASS
#> AdapterContent KmerContent SeqLength_R1 percentGC_R1 phred15-19_R1
#> <character> <character> <character> <character> <character>
#> 1 PASS NA 75-151 49 37.0
#> 2 PASS NA 75-151 48 37.0
#> 3 PASS NA 75-151 49 37.0
#> phred65-69_R1 phred115-119_R1 phred150-151_R1 phredGT30_R1 phredGT35_R1
#> <character> <character> <character> <numeric> <numeric>
#> 1 37.0 37.0 37.0 NA NA
#> 2 37.0 37.0 37.0 NA NA
#> 3 37.0 37.0 37.0 NA NA
#> Adapter65-69_R1 Adapter100-104_R1 Adapter140_R1 SeqLength_R2 percentGC_R2
#> <numeric> <numeric> <numeric> <character> <character>
#> 1 0.000108294 0.000260890 0.00174971 75-151 49
#> 2 0.000210067 0.000352780 0.00154716 75-151 48
#> 3 0.000134434 0.000284284 0.00191475 75-151 49
#> phred15-19_R2 phred65-69_R2 phred115-119_R2 phred150-151_R2 phredGT30_R2
#> <character> <character> <character> <character> <numeric>
#> 1 37.0 37.0 37.0 37.0 NA
#> 2 37.0 37.0 37.0 37.0 NA
#> 3 37.0 37.0 37.0 37.0 NA
#> phredGT35_R2 Adapter65-69_R2 Adapter100-104_R2 Adapter140_R2 ERCCsumLogErr
#> <numeric> <numeric> <numeric> <numeric> <numeric>
#> 1 NA 0.000276104 0.000486875 0.00132235 -58.2056
#> 2 NA 0.000326771 0.000574851 0.00137044 -81.6359
#> 3 NA 0.000330534 0.000521084 0.00153550 -99.5348
#> bamFile trimmed numReads numMapped numUnmapped
#> <character> <logical> <numeric> <numeric> <numeric>
#> 1 Sample_2914_sorted.bam FALSE 89386472 87621022 1765450
#> 2 Sample_4042_sorted.bam FALSE 59980794 58967812 1012982
#> 3 Sample_4043_sorted.bam FALSE 64864732 63961359 903373
#> overallMapRate concordMapRate totalMapped mitoMapped mitoRate
#> <numeric> <numeric> <numeric> <numeric> <numeric>
#> 1 0.9802 0.9748 87143087 10039739 0.103308
#> 2 0.9831 0.9709 58215746 7453208 0.113497
#> 3 0.9861 0.9811 62983384 8307331 0.116528
#> totalAssignedGene rRNA_rate Tissue Age Sex Expt
#> <numeric> <numeric> <character> <character> <character> <character>
#> 1 0.761378 0.00396315 Brain Adult F Nicotine
#> 2 0.754444 0.00301119 Brain Adult F Nicotine
#> 3 0.757560 0.00288706 Brain Adult F Nicotine
#> Group Pregnant plate location concentration medium
#> <character> <character> <character> <character> <character> <character>
#> 1 Experimental 0 Plate2 C12 165.9 Water
#> 2 Control 0 Plate1 B4 122.6 Water
#> 3 Control 0 Plate2 C9 128.5 Water
#> date Pregnancy flowcell sum detected subsets_Mito_sum
#> <character> <character> <character> <numeric> <numeric> <numeric>
#> 1 NA No HKCMHDSXX 37119948 24435 2649559
#> 2 NA No HKCG7DSXX 24904754 23656 1913803
#> 3 NA No HKCMHDSXX 27083602 23903 2180712
#> subsets_Mito_detected subsets_Mito_percent subsets_Ribo_sum
#> <numeric> <numeric> <numeric>
#> 1 26 7.13783 486678
#> 2 31 7.68449 319445
#> 3 31 8.05178 338277
#> subsets_Ribo_detected subsets_Ribo_percent retained_after_QC_sample_filtering
#> <numeric> <numeric> <logical>
#> 1 11 1.31110 TRUE
#> 2 13 1.28267 TRUE
#> 3 14 1.24901 TRUE
#> retained_after_manual_sample_filtering
#> <logical>
#> 1 TRUE
#> 2 TRUE
#> 3 TRUE
## Check gene info
head(rowData(rse_gene), 3)
#> DataFrame with 3 rows and 13 columns
#> Length gencodeID ensemblID
#> <integer> <character> <character>
#> ENSMUSG00000102693.1 1070 ENSMUSG00000102693.1 ENSMUSG00000102693
#> ENSMUSG00000064842.1 110 ENSMUSG00000064842.1 ENSMUSG00000064842
#> ENSMUSG00000051951.5 6094 ENSMUSG00000051951.5 ENSMUSG00000051951
#> gene_type EntrezID Symbol meanExprs
#> <character> <character> <character> <numeric>
#> ENSMUSG00000102693.1 TEC 71042 MGI:MGI:1918292 0.00000
#> ENSMUSG00000064842.1 snRNA NA NA 0.00000
#> ENSMUSG00000051951.5 protein_coding 497097 MGI:MGI:3528744 7.94438
#> retained_after_feature_filtering DE_in_adult_blood_smoking
#> <logical> <logical>
#> ENSMUSG00000102693.1 FALSE FALSE
#> ENSMUSG00000064842.1 FALSE FALSE
#> ENSMUSG00000051951.5 TRUE FALSE
#> DE_in_adult_brain_nicotine DE_in_adult_brain_smoking
#> <logical> <logical>
#> ENSMUSG00000102693.1 FALSE FALSE
#> ENSMUSG00000064842.1 FALSE FALSE
#> ENSMUSG00000051951.5 FALSE FALSE
#> DE_in_pup_brain_nicotine DE_in_pup_brain_smoking
#> <logical> <logical>
#> ENSMUSG00000102693.1 FALSE FALSE
#> ENSMUSG00000064842.1 FALSE FALSE
#> ENSMUSG00000051951.5 FALSE FALSE
## Access the original counts
class(assays(rse_gene)$counts)
#> [1] "matrix" "array"
## Access the log normalized counts
class(assays(rse_gene)$logcounts)
#> [1] "matrix" "array"
dim(assays(rse_gene)$logcounts)
#> [1] 55401 208
assays(rse_gene)$logcounts[1:3, 1:3]
#> [,1] [,2] [,3]
#> ENSMUSG00000102693.1 -5.985331 -5.985331 -5.985331
#> ENSMUSG00000064842.1 -5.985331 -5.985331 -5.985331
#> ENSMUSG00000051951.5 4.509114 4.865612 4.944597
######################
# Human data
######################
myfiles["EH8318"]
#> ExperimentHub with 1 record
#> # snapshotDate(): 2024-04-29
#> # names(): EH8318
#> # package(): smokingMouse
#> # $dataprovider: Lieber Institute for Brain Development (LIBD)
#> # $species: Homo sapiens
#> # $rdataclass: GenomicRanges
#> # $rdatadateadded: 2023-07-21
#> # $title: de_genes_adult_human_brain_smoking
#> # $description: GRanges with the information of the differentialy expressed ...
#> # $taxonomyid: 9606
#> # $genome: GRCh37
#> # $sourcetype: GTF
#> # $sourceurl: https://bioconductor.org/packages/smokingMouse
#> # $sourcesize: NA
#> # $tags: c("ExpressionData", "LIBD", "mouse", "Mus_musculus_Data",
#> # "nicotine", "RNASeqData", "smoking")
#> # retrieve record with 'object[["EH8318"]]'
## Download the human gene data
# EH8318 | de_genes_adult_human_brain_smoking
de_genes_prenatal_human_brain_smoking <- myfiles[["EH8318"]]
#> see ?smokingMouse and browseVignettes('smokingMouse') for documentation
#> loading from cache
## This is a GRanges object
class(de_genes_prenatal_human_brain_smoking)
#> [1] "GRanges"
#> attr(,"package")
#> [1] "GenomicRanges"
de_genes_prenatal_human_brain_smoking
#> GRanges object with 18067 ranges and 9 metadata columns:
#> seqnames ranges strand | Length Symbol
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> ENSG00000019169 chr2 119699742-119752236 + | 2079 MARCO
#> ENSG00000260400 chr10 70458257-70460551 + | 2295
#> ENSG00000011201 chrX 8496915-8700227 - | 7131 KAL1
#> ENSG00000068438 chrX 48334541-48344752 + | 2740 FTSJ1
#> ENSG00000151229 chr12 40148823-40499891 - | 10027 SLC2A13
#> ... ... ... ... . ... ...
#> ENSG00000141556 chr17 80709940-80900724 + | 10472 TBCD
#> ENSG00000125804 chr20 26035291-26073683 + | 6332 FAM182A
#> ENSG00000228998 chr15 90818266-90820841 + | 2576
#> ENSG00000149636 chr20 35380194-35402221 - | 2739 DSN1
#> ENSG00000122644 chr7 12726481-12730559 + | 3561 ARL4A
#> EntrezID logFC AveExpr t P.Value
#> <integer> <numeric> <numeric> <numeric> <numeric>
#> ENSG00000019169 8685 -1.6032766 -1.80183 -6.14514 4.66989e-09
#> ENSG00000260400 <NA> 0.1515813 1.17142 4.09836 6.18298e-05
#> ENSG00000011201 3730 0.1423143 4.24576 4.09392 6.29277e-05
#> ENSG00000068438 24140 -0.0495086 4.30660 -4.05975 7.20166e-05
#> ENSG00000151229 114134 0.0842742 7.02625 4.00115 9.05839e-05
#> ... ... ... ... ... ...
#> ENSG00000141556 101929597 -9.07984e-06 6.16583 -4.49543e-04 0.999642
#> ENSG00000125804 728882 -2.02864e-05 2.75543 -2.93079e-04 0.999766
#> ENSG00000228998 <NA> 1.05697e-05 4.14580 2.50417e-04 0.999800
#> ENSG00000149636 79980 2.46976e-06 2.96401 1.02959e-04 0.999918
#> ENSG00000122644 10124 1.62178e-06 4.51605 4.83868e-05 0.999961
#> adj.P.Val B
#> <numeric> <numeric>
#> ENSG00000019169 0.000084371 3.65960
#> ENSG00000260400 0.325280946 1.21448
#> ENSG00000011201 0.325280946 1.55562
#> ENSG00000068438 0.325280946 1.43237
#> ENSG00000151229 0.327315930 1.15523
#> ... ... ...
#> ENSG00000141556 0.999863 -6.30298
#> ENSG00000125804 0.999911 -5.80161
#> ENSG00000228998 0.999911 -6.07834
#> ENSG00000149636 0.999961 -5.84217
#> ENSG00000122644 0.999961 -6.13228
#> -------
#> seqinfo: 25 sequences from an unspecified genome; no seqlengths
## Optionally check the memory size
# lobstr::obj_size(de_genes_prenatal_human_brain_smoking)
# 3.73 MB
## Access data of human genes as normally do with other GenomicRanges::GRanges()
## objects or re-cast it as a data.frame
de_genes_df <- as.data.frame(de_genes_prenatal_human_brain_smoking)
head(de_genes_df)
#> seqnames start end width strand Length Symbol
#> ENSG00000019169 chr2 119699742 119752236 52495 + 2079 MARCO
#> ENSG00000260400 chr10 70458257 70460551 2295 + 2295
#> ENSG00000011201 chrX 8496915 8700227 203313 - 7131 KAL1
#> ENSG00000068438 chrX 48334541 48344752 10212 + 2740 FTSJ1
#> ENSG00000151229 chr12 40148823 40499891 351069 - 10027 SLC2A13
#> ENSG00000136319 chr14 20724717 20774153 49437 - 9705 TTC5
#> EntrezID logFC AveExpr t P.Value
#> ENSG00000019169 8685 -1.60327659 -1.801830 -6.145143 4.669893e-09
#> ENSG00000260400 NA 0.15158127 1.171418 4.098360 6.182984e-05
#> ENSG00000011201 3730 0.14231431 4.245759 4.093917 6.292772e-05
#> ENSG00000068438 24140 -0.04950860 4.306597 -4.059746 7.201659e-05
#> ENSG00000151229 114134 0.08427416 7.026246 4.001149 9.058392e-05
#> ENSG00000136319 91875 -0.09445164 3.683599 -3.931427 1.186235e-04
#> adj.P.Val B
#> ENSG00000019169 8.437096e-05 3.659604
#> ENSG00000260400 3.252809e-01 1.214477
#> ENSG00000011201 3.252809e-01 1.555617
#> ENSG00000068438 3.252809e-01 1.432373
#> ENSG00000151229 3.273159e-01 1.155227
#> ENSG00000136319 3.497224e-01 1.000380
The smokingMouse package and the smoking mouse project were made possible thanks to:
This package was developed using biocthis.
Date the vignette was generated.
#> [1] "2024-05-02 11:22:53 EDT"
Wallclock time spent generating the vignette.
#> Time difference of 17.882 secs
R
session information.
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.0 beta (2024-04-15 r86425)
#> os Ubuntu 22.04.4 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2024-05-02
#> pandoc 2.7.3 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> abind 1.4-5 2016-07-21 [2] CRAN (R 4.4.0)
#> AnnotationDbi 1.66.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> AnnotationHub * 3.12.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> backports 1.4.1 2021-12-13 [2] CRAN (R 4.4.0)
#> bibtex 0.5.1 2023-01-26 [2] CRAN (R 4.4.0)
#> Biobase * 2.64.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> BiocFileCache * 2.12.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> BiocGenerics * 0.50.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> BiocManager 1.30.22 2023-08-08 [2] CRAN (R 4.4.0)
#> BiocStyle * 2.32.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> BiocVersion 3.19.1 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> Biostrings 2.72.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> bit 4.0.5 2022-11-15 [2] CRAN (R 4.4.0)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.4.0)
#> blob 1.2.4 2023-03-17 [2] CRAN (R 4.4.0)
#> bookdown 0.39 2024-04-15 [2] CRAN (R 4.4.0)
#> bslib 0.7.0 2024-03-29 [2] CRAN (R 4.4.0)
#> cachem 1.0.8 2023-05-01 [2] CRAN (R 4.4.0)
#> cli 3.6.2 2023-12-11 [2] CRAN (R 4.4.0)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.4.0)
#> curl 5.2.1 2024-03-01 [2] CRAN (R 4.4.0)
#> DBI 1.2.2 2024-02-16 [2] CRAN (R 4.4.0)
#> dbplyr * 2.5.0 2024-03-19 [2] CRAN (R 4.4.0)
#> DelayedArray 0.30.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> digest 0.6.35 2024-03-11 [2] CRAN (R 4.4.0)
#> dplyr 1.1.4 2023-11-17 [2] CRAN (R 4.4.0)
#> evaluate 0.23 2023-11-01 [2] CRAN (R 4.4.0)
#> ExperimentHub * 2.12.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> fansi 1.0.6 2023-12-08 [2] CRAN (R 4.4.0)
#> fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.4.0)
#> filelock 1.0.3 2023-12-11 [2] CRAN (R 4.4.0)
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.4.0)
#> GenomeInfoDb * 1.40.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> GenomeInfoDbData 1.2.12 2024-04-16 [2] Bioconductor
#> GenomicRanges * 1.56.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> glue 1.7.0 2024-01-09 [2] CRAN (R 4.4.0)
#> htmltools 0.5.8.1 2024-04-04 [2] CRAN (R 4.4.0)
#> httr 1.4.7 2023-08-15 [2] CRAN (R 4.4.0)
#> IRanges * 2.38.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.4.0)
#> jsonlite 1.8.8 2023-12-04 [2] CRAN (R 4.4.0)
#> KEGGREST 1.44.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> knitr 1.46 2024-04-06 [2] CRAN (R 4.4.0)
#> lattice 0.22-6 2024-03-20 [3] CRAN (R 4.4.0)
#> lifecycle 1.0.4 2023-11-07 [2] CRAN (R 4.4.0)
#> lubridate 1.9.3 2023-09-27 [2] CRAN (R 4.4.0)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.4.0)
#> Matrix 1.7-0 2024-03-22 [3] CRAN (R 4.4.0)
#> MatrixGenerics * 1.16.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> matrixStats * 1.3.0 2024-04-11 [2] CRAN (R 4.4.0)
#> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.4.0)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.4.0)
#> pillar 1.9.0 2023-03-22 [2] CRAN (R 4.4.0)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.4.0)
#> plyr 1.8.9 2023-10-02 [2] CRAN (R 4.4.0)
#> png 0.1-8 2022-11-29 [2] CRAN (R 4.4.0)
#> purrr 1.0.2 2023-08-10 [2] CRAN (R 4.4.0)
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.4.0)
#> rappdirs 0.3.3 2021-01-31 [2] CRAN (R 4.4.0)
#> Rcpp 1.0.12 2024-01-09 [2] CRAN (R 4.4.0)
#> RefManageR * 1.4.0 2022-09-30 [2] CRAN (R 4.4.0)
#> rlang 1.1.3 2024-01-10 [2] CRAN (R 4.4.0)
#> rmarkdown 2.26 2024-03-05 [2] CRAN (R 4.4.0)
#> RSQLite 2.3.6 2024-03-31 [2] CRAN (R 4.4.0)
#> S4Arrays 1.4.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> S4Vectors * 0.42.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> sass 0.4.9 2024-03-15 [2] CRAN (R 4.4.0)
#> sessioninfo * 1.2.2 2021-12-06 [2] CRAN (R 4.4.0)
#> smokingMouse * 1.2.0 2024-05-02 [1] Bioconductor 3.19 (R 4.4.0)
#> SparseArray 1.4.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> stringi 1.8.3 2023-12-11 [2] CRAN (R 4.4.0)
#> stringr 1.5.1 2023-11-14 [2] CRAN (R 4.4.0)
#> SummarizedExperiment * 1.34.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> tibble 3.2.1 2023-03-20 [2] CRAN (R 4.4.0)
#> tidyselect 1.2.1 2024-03-11 [2] CRAN (R 4.4.0)
#> timechange 0.3.0 2024-01-18 [2] CRAN (R 4.4.0)
#> UCSC.utils 1.0.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> utf8 1.2.4 2023-10-22 [2] CRAN (R 4.4.0)
#> vctrs 0.6.5 2023-12-01 [2] CRAN (R 4.4.0)
#> withr 3.0.0 2024-01-16 [2] CRAN (R 4.4.0)
#> xfun 0.43 2024-03-25 [2] CRAN (R 4.4.0)
#> xml2 1.3.6 2023-12-04 [2] CRAN (R 4.4.0)
#> XVector 0.44.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#> yaml 2.3.8 2023-12-11 [2] CRAN (R 4.4.0)
#> zlibbioc 1.50.0 2024-05-01 [2] Bioconductor 3.19 (R 4.4.0)
#>
#> [1] /tmp/RtmpjWIOtx/Rinst2ffb29665b4a06
#> [2] /home/biocbuild/bbs-3.19-bioc/R/site-library
#> [3] /home/biocbuild/bbs-3.19-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
This vignette was generated using BiocStyle (Oleś, 2024) with knitr (Xie, 2024) and rmarkdown (Allaire, Xie, Dervieux et al., 2024) running behind the scenes.
Citations made with RefManageR (McLean, 2017).
[1] J. Allaire, Y. Xie, C. Dervieux, et al. rmarkdown: Dynamic Documents for R. R package version 2.26. 2024. URL: https://github.com/rstudio/rmarkdown.
[2] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in R”. In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.
[3] M. Morgan and L. Shepherd. ExperimentHub: Client to access ExperimentHub resources. R package version 2.12.0. 2024.
[4] A. Oleś. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R package version 2.32.0. 2024. URL: https://github.com/Bioconductor/BiocStyle.
[5] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2024. URL: https://www.R-project.org/.
[6] H. Wickham. “testthat: Get Started with Testing”. In: The R Journal 3 (2011), pp. 5–10. URL: https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.
[7] H. Wickham, W. Chang, R. Flight, et al. sessioninfo: R Session Information. R package version 1.2.2. 2021. URL: https://CRAN.R-project.org/package=sessioninfo.
[8] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.46. 2024. URL: https://yihui.org/knitr/.