Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] AnnotationHub_3.12.0                   
##  [2] BiocFileCache_2.12.0                   
##  [3] dbplyr_2.5.0                           
##  [4] scTGIF_1.18.0                          
##  [5] Homo.sapiens_1.3.1                     
##  [6] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [7] org.Hs.eg.db_3.19.1                    
##  [8] GO.db_3.19.1                           
##  [9] OrganismDbi_1.46.0                     
## [10] GenomicFeatures_1.56.0                 
## [11] GenomicRanges_1.56.0                   
## [12] GenomeInfoDb_1.40.0                    
## [13] AnnotationDbi_1.66.0                   
## [14] IRanges_2.38.0                         
## [15] S4Vectors_0.42.0                       
## [16] Biobase_2.64.0                         
## [17] BiocGenerics_0.50.0                    
## [18] scTensor_2.14.0                        
## [19] BiocStyle_2.32.0                       
## 
## loaded via a namespace (and not attached):
##   [1] fs_1.6.4                    matrixStats_1.3.0          
##   [3] bitops_1.0-7                enrichplot_1.24.0          
##   [5] HDO.db_0.99.1               httr_1.4.7                 
##   [7] webshot_0.5.5               RColorBrewer_1.1-3         
##   [9] Rgraphviz_2.48.0            tools_4.4.0                
##  [11] backports_1.4.1             utf8_1.2.4                 
##  [13] R6_2.5.1                    lazyeval_0.2.2             
##  [15] withr_3.0.0                 prettyunits_1.2.0          
##  [17] graphite_1.50.0             gridExtra_2.3              
##  [19] schex_1.18.0                fdrtool_1.2.17             
##  [21] cli_3.6.2                   TSP_1.2-4                  
##  [23] scatterpie_0.2.2            entropy_1.3.1              
##  [25] sass_0.4.9                  genefilter_1.86.0          
##  [27] meshr_2.10.0                Rsamtools_2.20.0           
##  [29] yulab.utils_0.1.4           gson_0.1.0                 
##  [31] txdbmaker_1.0.0             DOSE_3.30.0                
##  [33] MeSHDbi_1.40.0              AnnotationForge_1.46.0     
##  [35] nnTensor_1.2.0              plotrix_3.8-4              
##  [37] maps_3.4.2                  RSQLite_2.3.6              
##  [39] visNetwork_2.1.2            generics_0.1.3             
##  [41] gridGraphics_0.5-1          GOstats_2.70.0             
##  [43] BiocIO_1.14.0               dplyr_1.1.4                
##  [45] dendextend_1.17.1           Matrix_1.7-0               
##  [47] fansi_1.0.6                 abind_1.4-5                
##  [49] lifecycle_1.0.4             yaml_2.3.8                 
##  [51] SummarizedExperiment_1.34.0 qvalue_2.36.0              
##  [53] SparseArray_1.4.0           grid_4.4.0                 
##  [55] blob_1.2.4                  misc3d_0.9-1               
##  [57] crayon_1.5.2                lattice_0.22-6             
##  [59] msigdbr_7.5.1               cowplot_1.1.3              
##  [61] annotate_1.82.0             KEGGREST_1.44.0            
##  [63] pillar_1.9.0                knitr_1.46                 
##  [65] fgsea_1.30.0                tcltk_4.4.0                
##  [67] rjson_0.2.21                codetools_0.2-20           
##  [69] fastmatch_1.1-4             glue_1.7.0                 
##  [71] outliers_0.15               ggfun_0.1.4                
##  [73] data.table_1.15.4           vctrs_0.6.5                
##  [75] png_0.1-8                   treeio_1.28.0              
##  [77] spam_2.10-0                 rTensor_1.4.8              
##  [79] gtable_0.3.5                assertthat_0.2.1           
##  [81] cachem_1.0.8                xfun_0.43                  
##  [83] mime_0.12                   S4Arrays_1.4.0             
##  [85] tidygraph_1.3.1             survival_3.6-4             
##  [87] SingleCellExperiment_1.26.0 seriation_1.5.5            
##  [89] iterators_1.0.14            fields_15.2                
##  [91] nlme_3.1-164                Category_2.70.0            
##  [93] ggtree_3.12.0               bit64_4.0.5                
##  [95] progress_1.2.3              filelock_1.0.3             
##  [97] bslib_0.7.0                 colorspace_2.1-0           
##  [99] DBI_1.2.2                   tidyselect_1.2.1           
## [101] bit_4.0.5                   compiler_4.4.0             
## [103] curl_5.2.1                  httr2_1.0.1                
## [105] graph_1.82.0                xml2_1.3.6                 
## [107] DelayedArray_0.30.0         plotly_4.10.4              
## [109] bookdown_0.39               shadowtext_0.1.3           
## [111] rtracklayer_1.64.0          checkmate_2.3.1            
## [113] scales_1.3.0                hexbin_1.28.3              
## [115] RBGL_1.80.0                 plot3D_1.4.1               
## [117] rappdirs_0.3.3              stringr_1.5.1              
## [119] digest_0.6.35               rmarkdown_2.26             
## [121] ca_0.71.1                   XVector_0.44.0             
## [123] htmltools_0.5.8.1           pkgconfig_2.0.3            
## [125] MatrixGenerics_1.16.0       fastmap_1.1.1              
## [127] rlang_1.1.3                 htmlwidgets_1.6.4          
## [129] UCSC.utils_1.0.0            farver_2.1.1               
## [131] jquerylib_0.1.4             jsonlite_1.8.8             
## [133] BiocParallel_1.38.0         GOSemSim_2.30.0            
## [135] RCurl_1.98-1.14             magrittr_2.0.3             
## [137] GenomeInfoDbData_1.2.12     ggplotify_0.1.2            
## [139] dotCall64_1.1-1             patchwork_1.2.0            
## [141] munsell_0.5.1               Rcpp_1.0.12                
## [143] babelgene_22.9              ape_5.8                    
## [145] viridis_0.6.5               stringi_1.8.3              
## [147] tagcloud_0.6                ggraph_2.2.1               
## [149] zlibbioc_1.50.0             MASS_7.3-60.2              
## [151] plyr_1.8.9                  parallel_4.4.0             
## [153] ggrepel_0.9.5               Biostrings_2.72.0          
## [155] graphlayouts_1.1.1          splines_4.4.0              
## [157] hms_1.1.3                   igraph_2.0.3               
## [159] biomaRt_2.60.0              reshape2_1.4.4             
## [161] BiocVersion_3.19.1          XML_3.99-0.16.1            
## [163] evaluate_0.23               BiocManager_1.30.22        
## [165] foreach_1.5.2               tweenr_2.0.3               
## [167] tidyr_1.3.1                 purrr_1.0.2                
## [169] polyclip_1.10-6             heatmaply_1.5.0            
## [171] ggplot2_3.5.1               ReactomePA_1.48.0          
## [173] ggforce_0.4.2               xtable_1.8-4               
## [175] restfulr_0.0.15             reactome.db_1.88.0         
## [177] tidytree_0.4.6              viridisLite_0.4.2          
## [179] tibble_3.2.1                aplot_0.2.2                
## [181] ccTensor_1.0.2              memoise_2.0.1              
## [183] registry_0.5-1              GenomicAlignments_1.40.0   
## [185] cluster_2.1.6               concaveman_1.1.0           
## [187] GSEABase_1.66.0