cellCellSimulate
functionscTensor 2.14.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] AnnotationHub_3.12.0
## [2] BiocFileCache_2.12.0
## [3] dbplyr_2.5.0
## [4] scTGIF_1.18.0
## [5] Homo.sapiens_1.3.1
## [6] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [7] org.Hs.eg.db_3.19.1
## [8] GO.db_3.19.1
## [9] OrganismDbi_1.46.0
## [10] GenomicFeatures_1.56.0
## [11] GenomicRanges_1.56.0
## [12] GenomeInfoDb_1.40.0
## [13] AnnotationDbi_1.66.0
## [14] IRanges_2.38.0
## [15] S4Vectors_0.42.0
## [16] Biobase_2.64.0
## [17] BiocGenerics_0.50.0
## [18] scTensor_2.14.0
## [19] BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] fs_1.6.4 matrixStats_1.3.0
## [3] bitops_1.0-7 enrichplot_1.24.0
## [5] HDO.db_0.99.1 httr_1.4.7
## [7] webshot_0.5.5 RColorBrewer_1.1-3
## [9] Rgraphviz_2.48.0 tools_4.4.0
## [11] backports_1.4.1 utf8_1.2.4
## [13] R6_2.5.1 lazyeval_0.2.2
## [15] withr_3.0.0 prettyunits_1.2.0
## [17] graphite_1.50.0 gridExtra_2.3
## [19] schex_1.18.0 fdrtool_1.2.17
## [21] cli_3.6.2 TSP_1.2-4
## [23] scatterpie_0.2.2 entropy_1.3.1
## [25] sass_0.4.9 genefilter_1.86.0
## [27] meshr_2.10.0 Rsamtools_2.20.0
## [29] yulab.utils_0.1.4 gson_0.1.0
## [31] txdbmaker_1.0.0 DOSE_3.30.0
## [33] MeSHDbi_1.40.0 AnnotationForge_1.46.0
## [35] nnTensor_1.2.0 plotrix_3.8-4
## [37] maps_3.4.2 RSQLite_2.3.6
## [39] visNetwork_2.1.2 generics_0.1.3
## [41] gridGraphics_0.5-1 GOstats_2.70.0
## [43] BiocIO_1.14.0 dplyr_1.1.4
## [45] dendextend_1.17.1 Matrix_1.7-0
## [47] fansi_1.0.6 abind_1.4-5
## [49] lifecycle_1.0.4 yaml_2.3.8
## [51] SummarizedExperiment_1.34.0 qvalue_2.36.0
## [53] SparseArray_1.4.0 grid_4.4.0
## [55] blob_1.2.4 misc3d_0.9-1
## [57] crayon_1.5.2 lattice_0.22-6
## [59] msigdbr_7.5.1 cowplot_1.1.3
## [61] annotate_1.82.0 KEGGREST_1.44.0
## [63] pillar_1.9.0 knitr_1.46
## [65] fgsea_1.30.0 tcltk_4.4.0
## [67] rjson_0.2.21 codetools_0.2-20
## [69] fastmatch_1.1-4 glue_1.7.0
## [71] outliers_0.15 ggfun_0.1.4
## [73] data.table_1.15.4 vctrs_0.6.5
## [75] png_0.1-8 treeio_1.28.0
## [77] spam_2.10-0 rTensor_1.4.8
## [79] gtable_0.3.5 assertthat_0.2.1
## [81] cachem_1.0.8 xfun_0.43
## [83] mime_0.12 S4Arrays_1.4.0
## [85] tidygraph_1.3.1 survival_3.6-4
## [87] SingleCellExperiment_1.26.0 seriation_1.5.5
## [89] iterators_1.0.14 fields_15.2
## [91] nlme_3.1-164 Category_2.70.0
## [93] ggtree_3.12.0 bit64_4.0.5
## [95] progress_1.2.3 filelock_1.0.3
## [97] bslib_0.7.0 colorspace_2.1-0
## [99] DBI_1.2.2 tidyselect_1.2.1
## [101] bit_4.0.5 compiler_4.4.0
## [103] curl_5.2.1 httr2_1.0.1
## [105] graph_1.82.0 xml2_1.3.6
## [107] DelayedArray_0.30.0 plotly_4.10.4
## [109] bookdown_0.39 shadowtext_0.1.3
## [111] rtracklayer_1.64.0 checkmate_2.3.1
## [113] scales_1.3.0 hexbin_1.28.3
## [115] RBGL_1.80.0 plot3D_1.4.1
## [117] rappdirs_0.3.3 stringr_1.5.1
## [119] digest_0.6.35 rmarkdown_2.26
## [121] ca_0.71.1 XVector_0.44.0
## [123] htmltools_0.5.8.1 pkgconfig_2.0.3
## [125] MatrixGenerics_1.16.0 fastmap_1.1.1
## [127] rlang_1.1.3 htmlwidgets_1.6.4
## [129] UCSC.utils_1.0.0 farver_2.1.1
## [131] jquerylib_0.1.4 jsonlite_1.8.8
## [133] BiocParallel_1.38.0 GOSemSim_2.30.0
## [135] RCurl_1.98-1.14 magrittr_2.0.3
## [137] GenomeInfoDbData_1.2.12 ggplotify_0.1.2
## [139] dotCall64_1.1-1 patchwork_1.2.0
## [141] munsell_0.5.1 Rcpp_1.0.12
## [143] babelgene_22.9 ape_5.8
## [145] viridis_0.6.5 stringi_1.8.3
## [147] tagcloud_0.6 ggraph_2.2.1
## [149] zlibbioc_1.50.0 MASS_7.3-60.2
## [151] plyr_1.8.9 parallel_4.4.0
## [153] ggrepel_0.9.5 Biostrings_2.72.0
## [155] graphlayouts_1.1.1 splines_4.4.0
## [157] hms_1.1.3 igraph_2.0.3
## [159] biomaRt_2.60.0 reshape2_1.4.4
## [161] BiocVersion_3.19.1 XML_3.99-0.16.1
## [163] evaluate_0.23 BiocManager_1.30.22
## [165] foreach_1.5.2 tweenr_2.0.3
## [167] tidyr_1.3.1 purrr_1.0.2
## [169] polyclip_1.10-6 heatmaply_1.5.0
## [171] ggplot2_3.5.1 ReactomePA_1.48.0
## [173] ggforce_0.4.2 xtable_1.8-4
## [175] restfulr_0.0.15 reactome.db_1.88.0
## [177] tidytree_0.4.6 viridisLite_0.4.2
## [179] tibble_3.2.1 aplot_0.2.2
## [181] ccTensor_1.0.2 memoise_2.0.1
## [183] registry_0.5-1 GenomicAlignments_1.40.0
## [185] cluster_2.1.6 concaveman_1.1.0
## [187] GSEABase_1.66.0