Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:
dce::df_pathway_statistics %>%
arrange(desc(node_num)) %>%
head(10) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
reactome | R-HSA-162582 | Signaling Pathways | 2488 | 62068 |
reactome | R-HSA-1430728 | Metabolism | 2047 | 85543 |
reactome | R-HSA-392499 | Metabolism of proteins | 1894 | 52807 |
reactome | R-HSA-1643685 | Disease | 1774 | 55469 |
reactome | R-HSA-168256 | Immune System | 1771 | 58277 |
panther | P00057 | Wnt signaling pathway | 1644 | 195344 |
reactome | R-HSA-74160 | Gene expression (Transcription) | 1472 | 32493 |
reactome | R-HSA-597592 | Post-translational protein modification | 1394 | 26399 |
kegg | hsa:01100 | Metabolic pathways | 1343 | 22504 |
reactome | R-HSA-73857 | RNA Polymerase II Transcription | 1339 | 25294 |
Let’s see how many pathways each database provides:
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
pathbank | 48685 |
smpdb | 48671 |
reactome | 2406 |
wikipathways | 640 |
kegg | 323 |
panther | 94 |
pharmgkb | 90 |
Next, we can see how the pathway sizes are distributed for each database:
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
pathbank = c("Lactose Synthesis"),
kegg = c("Fatty acid biosynthesis")
)
)
lapply(pathways, function(x) {
plot_network(
as(x$graph, "matrix"),
visualize_edge_weights = FALSE,
arrow_size = 0.02,
shadowtext = TRUE
) +
ggtitle(x$pathway_name)
})
## [[1]]
##
## [[2]]
sessionInfo()
## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] dce_1.12.0 graph_1.82.0
## [3] cowplot_1.1.3 lubridate_1.9.3
## [5] forcats_1.0.0 stringr_1.5.1
## [7] dplyr_1.1.4 purrr_1.0.2
## [9] readr_2.1.5 tidyr_1.3.1
## [11] tibble_3.2.1 tidyverse_2.0.0
## [13] TCGAutils_1.24.0 curatedTCGAData_1.25.4
## [15] MultiAssayExperiment_1.30.0 SummarizedExperiment_1.34.0
## [17] Biobase_2.64.0 GenomicRanges_1.56.0
## [19] GenomeInfoDb_1.40.0 IRanges_2.38.0
## [21] S4Vectors_0.42.0 BiocGenerics_0.50.0
## [23] MatrixGenerics_1.16.0 matrixStats_1.3.0
## [25] ggraph_2.2.1 ggplot2_3.5.1
## [27] BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 httr_1.4.7
## [3] GenomicDataCommons_1.28.0 prabclus_2.3-3
## [5] Rgraphviz_2.48.0 numDeriv_2016.8-1.1
## [7] tools_4.4.0 utf8_1.2.4
## [9] R6_2.5.1 vegan_2.6-4
## [11] mgcv_1.9-1 sn_2.1.1
## [13] permute_0.9-7 withr_3.0.0
## [15] graphite_1.50.0 gridExtra_2.3
## [17] flexclust_1.4-2 cli_3.6.2
## [19] sandwich_3.1-0 labeling_0.4.3
## [21] sass_0.4.9 diptest_0.77-1
## [23] mvtnorm_1.2-4 robustbase_0.99-2
## [25] proxy_0.4-27 Rsamtools_2.20.0
## [27] FMStable_0.1-4 Linnorm_2.28.0
## [29] plotrix_3.8-4 limma_3.60.0
## [31] RSQLite_2.3.6 generics_0.1.3
## [33] BiocIO_1.14.0 gtools_3.9.5
## [35] wesanderson_0.3.7 Matrix_1.7-0
## [37] fansi_1.0.6 logger_0.3.0
## [39] abind_1.4-5 lifecycle_1.0.4
## [41] multcomp_1.4-25 yaml_2.3.8
## [43] edgeR_4.2.0 mathjaxr_1.6-0
## [45] SparseArray_1.4.0 BiocFileCache_2.12.0
## [47] Rtsne_0.17 grid_4.4.0
## [49] blob_1.2.4 promises_1.3.0
## [51] gdata_3.0.0 ppcor_1.1
## [53] bdsmatrix_1.3-7 ExperimentHub_2.12.0
## [55] crayon_1.5.2 lattice_0.22-6
## [57] GenomicFeatures_1.56.0 chromote_0.2.0
## [59] KEGGREST_1.44.0 magick_2.8.3
## [61] pillar_1.9.0 knitr_1.46
## [63] rjson_0.2.21 fpc_2.2-12
## [65] corpcor_1.6.10 codetools_0.2-20
## [67] mutoss_0.1-13 glue_1.7.0
## [69] RcppArmadillo_0.12.8.2.1 data.table_1.15.4
## [71] vctrs_0.6.5 png_0.1-8
## [73] Rdpack_2.6 mnem_1.20.0
## [75] gtable_0.3.5 kernlab_0.9-32
## [77] assertthat_0.2.1 amap_0.8-19
## [79] cachem_1.0.8 xfun_0.43
## [81] mime_0.12 rbibutils_2.2.16
## [83] S4Arrays_1.4.0 RcppEigen_0.3.4.0.0
## [85] tidygraph_1.3.1 survival_3.6-4
## [87] tinytex_0.50 fastICA_1.2-4
## [89] statmod_1.5.0 TH.data_1.1-2
## [91] tsne_0.1-3.1 nlme_3.1-164
## [93] naturalsort_0.1.3 bit64_4.0.5
## [95] gmodels_2.19.1 filelock_1.0.3
## [97] bslib_0.7.0 colorspace_2.1-0
## [99] DBI_1.2.2 nnet_7.3-19
## [101] mnormt_2.1.1 tidyselect_1.2.1
## [103] processx_3.8.4 bit_4.0.5
## [105] compiler_4.4.0 curl_5.2.1
## [107] rvest_1.0.4 expm_0.999-9
## [109] xml2_1.3.6 TFisher_0.2.0
## [111] ggdendro_0.2.0 DelayedArray_0.30.0
## [113] shadowtext_0.1.3 bookdown_0.39
## [115] rtracklayer_1.64.0 harmonicmeanp_3.0.1
## [117] sfsmisc_1.1-18 scales_1.3.0
## [119] DEoptimR_1.1-3 RBGL_1.80.0
## [121] rappdirs_0.3.3 apcluster_1.4.13
## [123] digest_0.6.35 snowfall_1.84-6.3
## [125] rmarkdown_2.26 XVector_0.44.0
## [127] htmltools_0.5.8.1 pkgconfig_2.0.3
## [129] highr_0.10 dbplyr_2.5.0
## [131] fastmap_1.1.1 rlang_1.1.3
## [133] UCSC.utils_1.0.0 farver_2.1.1
## [135] jquerylib_0.1.4 zoo_1.8-12
## [137] jsonlite_1.8.8 BiocParallel_1.38.0
## [139] mclust_6.1.1 RCurl_1.98-1.14
## [141] magrittr_2.0.3 modeltools_0.2-23
## [143] GenomeInfoDbData_1.2.12 munsell_0.5.1
## [145] Rcpp_1.0.12 viridis_0.6.5
## [147] stringi_1.8.3 zlibbioc_1.50.0
## [149] MASS_7.3-60.2 plyr_1.8.9
## [151] AnnotationHub_3.12.0 org.Hs.eg.db_3.19.1
## [153] flexmix_2.3-19 parallel_4.4.0
## [155] ggrepel_0.9.5 Biostrings_2.72.0
## [157] graphlayouts_1.1.1 splines_4.4.0
## [159] multtest_2.60.0 hms_1.1.3
## [161] locfit_1.5-9.9 qqconf_1.3.2
## [163] ps_1.7.6 igraph_2.0.3
## [165] fastcluster_1.2.6 reshape2_1.4.4
## [167] BiocVersion_3.19.1 XML_3.99-0.16.1
## [169] evaluate_0.23 metap_1.10
## [171] pcalg_2.7-11 BiocManager_1.30.22
## [173] tzdb_0.4.0 tweenr_2.0.3
## [175] polyclip_1.10-6 clue_0.3-65
## [177] BiocBaseUtils_1.6.0 ggforce_0.4.2
## [179] restfulr_0.0.15 e1071_1.7-14
## [181] later_1.3.2 viridisLite_0.4.2
## [183] class_7.3-22 snow_0.4-4
## [185] websocket_1.4.1 ggm_2.5.1
## [187] memoise_2.0.1 AnnotationDbi_1.66.0
## [189] GenomicAlignments_1.40.0 ellipse_0.5.0
## [191] cluster_2.1.6 timechange_0.3.0
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.