The ReactomeGSA package is a client to the web-based Reactome Analysis System. Essentially, it performs a gene set analysis using the latest version of the Reactome pathway database as a backend.
This vignette shows how the ReactomeGSA package can be used to perform a pathway analysis of cell clusters in single-cell RNA-sequencing data.
To cite this package, use
Griss J. ReactomeGSA, https://github.com/reactome/ReactomeGSA (2019)
The ReactomeGSA
package can be directly installed from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA")
# install the ReactomeGSA.data package for the example data
if (!require(ReactomeGSA.data))
BiocManager::install("ReactomeGSA.data")
For more information, see https://bioconductor.org/install/.
As an example we load single-cell RNA-sequencing data of B cells extracted from the dataset published by Jerby-Arnon et al. (Cell, 2018).
Note: This is not a complete Seurat object. To decrease the size, the object only contains gene expression values and cluster annotations.
library(ReactomeGSA.data)
#> Loading required package: limma
#> Loading required package: edgeR
#> Loading required package: ReactomeGSA
#> Loading required package: Seurat
#> Loading required package: SeuratObject
#> Loading required package: sp
#>
#> Attaching package: 'SeuratObject'
#> The following object is masked from 'package:base':
#>
#> intersect
data(jerby_b_cells)
jerby_b_cells
#> An object of class Seurat
#> 23686 features across 920 samples within 1 assay
#> Active assay: RNA (23686 features, 0 variable features)
#> 2 layers present: counts, data
The pathway analysis is at the very end of a scRNA-seq workflow. This means, that any Q/C was already performed, the data was normalized and cells were already clustered.
The ReactomeGSA package can now be used to get pathway-level expression values for every cell cluster. This is achieved by calculating the mean gene expression for every cluster and then submitting this data to a gene set variation analysis.
All of this is wrapped in the single analyse_sc_clusters
function.
library(ReactomeGSA)
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = TRUE)
#> Calculating average cluster expression...
#> Converting expression data to string... (This may take a moment)
#> Conversion complete
#> Submitting request to Reactome API...
#> Compressing request data...
#> Reactome Analysis submitted succesfully
#> Converting dataset Seurat...
#> Mapping identifiers...
#> Performing gene set analysis using ssGSEA
#> Analysing dataset 'Seurat' using ssGSEA
#> Retrieving result...
The resulting object is a standard ReactomeAnalysisResult
object.
gsva_result
#> ReactomeAnalysisResult object
#> Reactome Release: 88
#> Results:
#> - Seurat:
#> 1795 pathways
#> 11138 fold changes for genes
#> No Reactome visualizations available
#> ReactomeAnalysisResult
pathways
returns the pathway-level expression values per cell cluster:
pathway_expression <- pathways(gsva_result)
# simplify the column names by removing the default dataset identifier
colnames(pathway_expression) <- gsub("\\.Seurat", "", colnames(pathway_expression))
pathway_expression[1:3,]
#> Name Cluster_1 Cluster_10 Cluster_11
#> R-HSA-1059683 Interleukin-6 signaling 0.1159352 0.10462527 0.1517403
#> R-HSA-109606 Intrinsic Pathway for Apoptosis 0.1058794 0.10394126 0.1123968
#> R-HSA-109703 PKB-mediated events 0.1276147 0.05271387 0.1066206
#> Cluster_12 Cluster_13 Cluster_2 Cluster_3 Cluster_4 Cluster_5
#> R-HSA-1059683 0.11409155 0.11079122 0.12396831 0.1210961 0.12010207 0.11390263
#> R-HSA-109606 0.10739733 0.12507170 0.10148719 0.1063453 0.10489221 0.10011365
#> R-HSA-109703 0.09573637 0.07356027 0.08361824 0.0844926 0.05582989 0.04651177
#> Cluster_6 Cluster_7 Cluster_8 Cluster_9
#> R-HSA-1059683 0.1055292 0.12451388 0.14341075 0.1106981
#> R-HSA-109606 0.1035446 0.11625429 0.11465198 0.1025526
#> R-HSA-109703 0.1242140 0.07739335 0.07855224 0.0144168
A simple approach to find the most relevant pathways is to assess the maximum difference in expression for every pathway:
# find the maximum differently expressed pathway
max_difference <- do.call(rbind, apply(pathway_expression, 1, function(row) {
values <- as.numeric(row[2:length(row)])
return(data.frame(name = row[1], min = min(values), max = max(values)))
}))
max_difference$diff <- max_difference$max - max_difference$min
# sort based on the difference
max_difference <- max_difference[order(max_difference$diff, decreasing = T), ]
head(max_difference)
#> name min
#> R-HSA-350864 Regulation of thyroid hormone activity -0.4874224
#> R-HSA-8964540 Alanine metabolism -0.5061642
#> R-HSA-190374 FGFR1c and Klotho ligand binding and activation -0.3429471
#> R-HSA-140180 COX reactions -0.3451306
#> R-HSA-9024909 BDNF activates NTRK2 (TRKB) signaling -0.3752625
#> R-HSA-9025046 NTF3 activates NTRK2 (TRKB) signaling -0.3961674
#> max diff
#> R-HSA-350864 0.3757906 0.8632131
#> R-HSA-8964540 0.2563346 0.7624988
#> R-HSA-190374 0.4160945 0.7590416
#> R-HSA-140180 0.3726064 0.7177369
#> R-HSA-9024909 0.3236396 0.6989021
#> R-HSA-9025046 0.2994801 0.6956475
The ReactomeGSA package contains two functions to visualize these pathway results. The first simply plots the expression for a selected pathway:
For a better overview, the expression of multiple pathways can be shown as a heatmap using gplots
heatmap.2
function:
# Additional parameters are directly passed to gplots heatmap.2 function
plot_gsva_heatmap(gsva_result, max_pathways = 15, margins = c(6,20))
The plot_gsva_heatmap
function can also be used to only display specific pahtways:
# limit to selected B cell related pathways
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result,
pathway_ids = relevant_pathways, # limit to these pathways
margins = c(6,30), # adapt the figure margins in heatmap.2
dendrogram = "col", # only plot column dendrogram
scale = "row", # scale for each pathway
key = FALSE, # don't display the color key
lwid=c(0.1,4)) # remove the white space on the left
This analysis shows us that cluster 8 has a marked up-regulation of B Cell receptor signalling, which is linked to a co-stimulation of the CD28 family. Additionally, there is a gradient among the cluster with respect to genes releated to antigen presentation.
Therefore, we are able to further classify the observed B cell subtypes based on their pathway activity.
The pathway-level expression analysis can also be used to run a Principal Component Analysis on the samples. This is simplified through the function plot_gsva_pca
:
In this analysis, cluster 11 is a clear outlier from the other B cell subtypes and therefore might be prioritised for further evaluation.
sessionInfo()
#> R version 4.4.0 beta (2024-04-15 r86425)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ReactomeGSA.data_1.17.1 Seurat_5.0.3 SeuratObject_5.0.1
#> [4] sp_2.1-4 ReactomeGSA_1.18.0 edgeR_4.2.0
#> [7] limma_3.60.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.8 magrittr_2.0.3
#> [4] spatstat.utils_3.0-4 farver_2.1.1 rmarkdown_2.26
#> [7] vctrs_0.6.5 ROCR_1.0-11 spatstat.explore_3.2-7
#> [10] htmltools_0.5.8.1 progress_1.2.3 curl_5.2.1
#> [13] sass_0.4.9 sctransform_0.4.1 parallelly_1.37.1
#> [16] KernSmooth_2.23-22 bslib_0.7.0 htmlwidgets_1.6.4
#> [19] ica_1.0-3 plyr_1.8.9 plotly_4.10.4
#> [22] zoo_1.8-12 cachem_1.0.8 igraph_2.0.3
#> [25] mime_0.12 lifecycle_1.0.4 pkgconfig_2.0.3
#> [28] Matrix_1.7-0 R6_2.5.1 fastmap_1.1.1
#> [31] fitdistrplus_1.1-11 future_1.33.2 shiny_1.8.1.1
#> [34] digest_0.6.35 colorspace_2.1-0 patchwork_1.2.0
#> [37] tensor_1.5 RSpectra_0.16-1 irlba_2.3.5.1
#> [40] labeling_0.4.3 progressr_0.14.0 fansi_1.0.6
#> [43] spatstat.sparse_3.0-3 httr_1.4.7 polyclip_1.10-6
#> [46] abind_1.4-5 compiler_4.4.0 withr_3.0.0
#> [49] fastDummies_1.7.3 highr_0.10 gplots_3.1.3.1
#> [52] MASS_7.3-60.2 gtools_3.9.5 caTools_1.18.2
#> [55] tools_4.4.0 lmtest_0.9-40 httpuv_1.6.15
#> [58] future.apply_1.11.2 goftest_1.2-3 glue_1.7.0
#> [61] nlme_3.1-164 promises_1.3.0 grid_4.4.0
#> [64] Rtsne_0.17 cluster_2.1.6 reshape2_1.4.4
#> [67] generics_0.1.3 gtable_0.3.5 spatstat.data_3.0-4
#> [70] tidyr_1.3.1 hms_1.1.3 data.table_1.15.4
#> [73] utf8_1.2.4 BiocGenerics_0.50.0 spatstat.geom_3.2-9
#> [76] RcppAnnoy_0.0.22 ggrepel_0.9.5 RANN_2.6.1
#> [79] pillar_1.9.0 stringr_1.5.1 spam_2.10-0
#> [82] RcppHNSW_0.6.0 later_1.3.2 splines_4.4.0
#> [85] dplyr_1.1.4 lattice_0.22-6 survival_3.6-4
#> [88] deldir_2.0-4 tidyselect_1.2.1 locfit_1.5-9.9
#> [91] miniUI_0.1.1.1 pbapply_1.7-2 knitr_1.46
#> [94] gridExtra_2.3 scattermore_1.2 xfun_0.43
#> [97] Biobase_2.64.0 statmod_1.5.0 matrixStats_1.3.0
#> [100] stringi_1.8.3 lazyeval_0.2.2 yaml_2.3.8
#> [103] evaluate_0.23 codetools_0.2-20 tibble_3.2.1
#> [106] cli_3.6.2 uwot_0.2.2 xtable_1.8-4
#> [109] reticulate_1.36.1 munsell_0.5.1 jquerylib_0.1.4
#> [112] Rcpp_1.0.12 globals_0.16.3 spatstat.random_3.2-3
#> [115] png_0.1-8 parallel_4.4.0 ggplot2_3.5.1
#> [118] prettyunits_1.2.0 dotCall64_1.1-1 bitops_1.0-7
#> [121] listenv_0.9.1 viridisLite_0.4.2 scales_1.3.0
#> [124] ggridges_0.5.6 leiden_0.4.3.1 purrr_1.0.2
#> [127] crayon_1.5.2 rlang_1.1.3 cowplot_1.1.3