BiocParallel enables use of random number streams in a
reproducible manner. This document applies to the following
*Param()
:
SerialParam()
: sequential evaluation in a single R process.SnowParam()
: parallel evaluation in multiple independent R
processes.MulticoreParam())
: parallel evaluation in R sessions running in
forked threads. Not available on Windows.The *Param()
can be used for evaluation with:
bplapply()
: lapply()
-like application of a user-supplied
function FUN
to a vector or list of elements X
.bpiterate()
: apply a user-supplied function FUN
to an unknown
number of elements resulting from successive calls to a
user-supplied function ITER.
The reproducible random number implementation also supports:
bptry()
and the BPREDO=
argument, for re-evaluation of elements
that fail (e.g., because of a bug in FUN
).bplapply()
and RNGseed=
Attach BiocParallel and ensure that the version is greater than 1.27.5
library(BiocParallel)
stopifnot(
packageVersion("BiocParallel") > "1.27.5"
)
For reproducible calculation, use the RNGseed=
argument in any of the
*Param()
constructors.
result1 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
result1
## [[1]]
## [1] 0.7393338
##
## [[2]]
## [1] 0.8216743 0.7451087
##
## [[3]]
## [1] 0.1962909 0.5226640 0.6857650
Repeating the calculation with the same value for RNGseed=
results
in the same result; a different random number seed results in
different results.
result2 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
stopifnot(
identical(result1, result2)
)
result3 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 200))
result3
## [[1]]
## [1] 0.9757768
##
## [[2]]
## [1] 0.6525851 0.6416909
##
## [[3]]
## [1] 0.6710576 0.5895330 0.7686983
stopifnot(
!identical(result1, result3)
)
Results are invariant across *Param()
result4 <- bplapply(1:3, runif, BPPARAM = SnowParam(RNGseed = 100))
stopifnot(
identical(result1, result4)
)
if (!identical(.Platform$OS.type, "windows")) {
result5 <- bplapply(1:3, runif, BPPARAM = MulticoreParam(RNGseed = 100))
stopifnot(
identical(result1, result5)
)
}
Parallel backends can adjust the number of workers
(processes
performing the evaluation) and tasks
(how elements of X
are
distributed between workers). Results are invariant to these
parameters. This is illustrated with SnowParam()
, but applies also
to MulticoreParam()
.
result6 <- bplapply(1:3, runif, BPPARAM = SnowParam(workers = 2, RNGseed = 100))
result7 <- bplapply(1:3, runif, BPPARAM = SnowParam(workers = 3, RNGseed = 100))
result8 <- bplapply(
1:3, runif,
BPPARAM = SnowParam(workers = 2, tasks = 3, RNGseed = 100)
)
stopifnot(
identical(result1, result6),
identical(result1, result7),
identical(result1, result8)
)
Subsequent sections illustrate results with SerialParam()
, but identical
results are obtained with SnowParam()
and MulticoreParam()
.
bpiterate()
bpiterate()
allows parallel processing of a ’stream’ of data as a
series of tasks, with a task consisting of a portion of the overall
data. It is useful when the data size is not known or easily
partitioned into elements of a vector or list. A real use case might
involve iterating through a BAM file, where a task represents
successive records (perhaps 100,000 per task) in the file. Here we
illustrate with a simple example – iterating through a vector x = 1:3
ITER_FUN_FACTORY <- function() {
x <- 1:3
i <- 0L
function() {
i <<- i + 1L
if (i > length(x))
return(NULL)
x[[i]]
}
}
ITER_FUN_FACTORY()
is used to create a function that, on each invocation,
returns the next task (here, an element of x
; in a real example, perhaps
100000 records from a BAM file). When there are no more tasks, the function
returns NULL
ITER <- ITER_FUN_FACTORY()
ITER()
## [1] 1
ITER()
## [1] 2
ITER()
## [1] 3
ITER()
## NULL
In our simple example, bpiterate()
is performing the same
computations as bplapply()
so the results, including the random
number streams used by each task in bpiterate()
, are the same
result9 <- bpiterate(
ITER_FUN_FACTORY(), runif,
BPPARAM = SerialParam(RNGseed = 100)
)
stopifnot(
identical(result1, result9)
)
bptry()
bptry()
in conjunction with the BPREDO=
argument to bplapply()
or bpiterate()
allows for graceful recovery from errors. Here a
buggy FUN1()
produces an error for the second element. bptry()
allows evaluation to continue for other elements of X
, despite the
error. This is shown in the result.
FUN1 <- function(i) {
if (identical(i, 2L)) {
## error when evaluating the second element
stop("i == 2")
} else runif(i)
}
result10 <- bptry(bplapply(
1:3, FUN1,
BPPARAM = SerialParam(RNGseed = 100, stop.on.error = FALSE)
))
result10
## [[1]]
## [1] 0.7393338
##
## [[2]]
## <remote_error in FUN(...): i == 2>
## traceback() available as 'attr(x, "traceback")'
##
## [[3]]
## [1] 0.1962909 0.5226640 0.6857650
##
## attr(,"REDOENV")
## <environment: 0x55775aece0c8>
FUN2()
illustrates the flexibility of bptry()
by fixing the bug
when i == 2
, but also generating incorrect results if invoked for
previously correct values. The identity of the result to the original
computation shows that only the error task is re-computed, and that
the random number stream used by the task is identical to the original
stream.
FUN2 <- function(i) {
if (identical(i, 2L)) {
## the random number stream should be in the same state as the
## first time through the loop, and rnorm(i) should return
## same result as FUN
runif(i)
} else {
## if this branch is used, then we are incorrectly updating
## already calculated elements -- '0' in the output would
## indicate this error
0
}
}
result11 <- bplapply(
1:3, FUN2,
BPREDO = result10,
BPPARAM = SerialParam(RNGseed = 100, stop.on.error = FALSE)
)
stopifnot(
identical(result1, result11)
)
RNGseed=
and set.seed()
The global random number stream (influenced by set.seed()
) is
ignored by BiocParallel, and BiocParallel does
NOT increment the global stream.
set.seed(200)
value <- runif(1)
set.seed(200)
result12 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
stopifnot(
identical(result1, result12),
identical(value, runif(1))
)
When RNGseed=
is not used, an internal stream (not accessible to the
user) is used and BiocParallel does NOT increment the
global stream.
set.seed(100)
value <- runif(1)
set.seed(100)
result13 <- bplapply(1:3, runif, BPPARAM = SerialParam())
stopifnot(
!identical(result1, result13),
identical(value, runif(1))
)
bpstart()
and random number streamsIn all of the examples so far *Param()
objects are passed to
bplapply()
or bpiterate()
in the ’stopped’ state. Internally,
bplapply()
and bpiterate()
invoke bpstart()
to establish the
computational environment (e.g., starting workers for
SnowParam()
). bpstart()
can be called explicitly, e.g., to allow
workers to be used across calls to bplapply()
.
The cluster random number stream is initiated with bpstart()
. Thus
param <- bpstart(SerialParam(RNGseed = 100))
result16 <- bplapply(1:3, runif, BPPARAM = param)
bpstop(param)
stopifnot(
identical(result1, result16)
)
This allows a second call to bplapply
to represent a continuation of
a random number computation – the second call to bplapply()
results
in different random number streams for each element of X
.
param <- bpstart(SerialParam(RNGseed = 100))
result16 <- bplapply(1:3, runif, BPPARAM = param)
result17 <- bplapply(1:3, runif, BPPARAM = param)
bpstop(param)
stopifnot(
identical(result1, result16),
!identical(result1, result17)
)
The results from bplapply()
are different from the results from
lapply()
, even with the same random number seed. This is because
correctly implemented parallel random streams require use of a
particular random number generator invoked in specific ways for each
element of X
, as outlined in the Implementation notes section.
bplapply()
and lapply()
The results from bplapply()
are different from the results from
lapply()
, even with the same random number seed. This is because
correctly implemented parallel random streams require use of a
particular random number generator invoked in specific ways for each
element of X
, as outlined in the Implementation notes section.
set.seed(100)
result20 <- lapply(1:3, runif)
stopifnot(
!identical(result1, result20)
)
The implementation uses the L’Ecuyer-CMRG random number generator (see
?RNGkind
and ?parallel::clusterSetRNGStream
for additional
details). This random number generates independent streams and
substreams of random numbers. In BiocParallel, each
call to bp start()
creates a new stream from the L’Ecuyer-CMRG
generator. Each element in bplap
ply()
or bpiterate()
creates a
new substream. Each application of FUN
is therefore using the
L’Ecuyer-CMRG random number generator, with a substream that is
independent of the substreams of all other elements.
Within the user-supplied FUN
of bplapply()
or bpiterate()
, it is
a mistake to use RNGkind()
to set a different random number
generator, or to use set.seed()
. This would in principle compromise
the independence of the streams across elements.
sessionInfo()
## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] GenomicAlignments_1.40.0 Rsamtools_2.20.0
## [3] Biostrings_2.72.0 XVector_0.44.0
## [5] SummarizedExperiment_1.34.0 Biobase_2.64.0
## [7] MatrixGenerics_1.16.0 matrixStats_1.3.0
## [9] GenomicRanges_1.56.0 GenomeInfoDb_1.40.0
## [11] IRanges_2.38.0 S4Vectors_0.42.0
## [13] BiocGenerics_0.50.0 RNAseqData.HNRNPC.bam.chr14_0.41.0
## [15] BiocParallel_1.38.0 BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 sass_0.4.9 bitops_1.0-7
## [4] SparseArray_1.4.0 lattice_0.22-6 stringi_1.8.3
## [7] hms_1.1.3 digest_0.6.35 grid_4.4.0
## [10] evaluate_0.23 bookdown_0.39 fastmap_1.1.1
## [13] Matrix_1.7-0 jsonlite_1.8.8 progress_1.2.3
## [16] backports_1.4.1 BiocManager_1.30.22 httr_1.4.7
## [19] UCSC.utils_1.0.0 brew_1.0-10 codetools_0.2-20
## [22] jquerylib_0.1.4 abind_1.4-5 cli_3.6.2
## [25] rlang_1.1.3 crayon_1.5.2 DelayedArray_0.30.0
## [28] withr_3.0.0 cachem_1.0.8 yaml_2.3.8
## [31] S4Arrays_1.4.0 tools_4.4.0 parallel_4.4.0
## [34] debugme_1.2.0 checkmate_2.3.1 base64url_1.4
## [37] GenomeInfoDbData_1.2.12 vctrs_0.6.5 R6_2.5.1
## [40] lifecycle_1.0.4 zlibbioc_1.50.0 pkgconfig_2.0.3
## [43] bslib_0.7.0 data.table_1.15.4 xfun_0.43
## [46] batchtools_0.9.17 knitr_1.46 htmltools_0.5.8.1
## [49] snow_0.4-4 rmarkdown_2.26 compiler_4.4.0
## [52] prettyunits_1.2.0