BatchQC 2.0.0
This data set is from protein expression data captured for 39 proteins. It has two batches and two conditions corresponding to case and control.
library(BatchQC)
data(protein_data)
data(protein_sample_info)
se_object <- BatchQC::summarized_experiment(protein_data, protein_sample_info)
This data set is from signature data captured when activating different growth pathway genes in human mammary epithelial cells (GEO accession: GSE73628). This data consists of three batches and ten different conditions corresponding to control and nine different pathways
data(signature_data)
data(batch_indicator)
se_object <- BatchQC::summarized_experiment(signature_data, batch_indicator)
This data set is from bladder cancer data. This dataset has 57 bladder samples with 5 batches and 3 covariate levels (cancer, biopsy, control). Batch 1 contains only cancer, 2 has cancer and controls, 3 has only controls, 4 contains only biopsy, and 5 contains cancer and biopsy. This data set is from the bladderbatch package which must be installed to use this data example set (Leek JT (2023). bladderbatch: Bladder gene expression data illustrating batch effects. R package version 1.38.0).
se_object <- BatchQC::bladder_data_upload()
## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BatchQC_2.0.0 BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] DBI_1.2.2 bitops_1.0-7
## [3] testthat_3.2.1.1 rlang_1.1.3
## [5] magrittr_2.0.3 EBSeq_2.2.0
## [7] RSQLite_2.3.6 matrixStats_1.3.0
## [9] compiler_4.4.0 mgcv_1.9-1
## [11] DelayedMatrixStats_1.26.0 png_0.1-8
## [13] vctrs_0.6.5 reshape2_1.4.4
## [15] sva_3.52.0 stringr_1.5.1
## [17] pkgconfig_2.0.3 crayon_1.5.2
## [19] fastmap_1.1.1 XVector_0.44.0
## [21] scuttle_1.14.0 caTools_1.18.2
## [23] utf8_1.2.4 rmarkdown_2.26
## [25] UCSC.utils_1.0.0 purrr_1.0.2
## [27] bit_4.0.5 xfun_0.43
## [29] bluster_1.14.0 zlibbioc_1.50.0
## [31] cachem_1.0.8 beachmat_2.20.0
## [33] GenomeInfoDb_1.40.0 jsonlite_1.8.8
## [35] blob_1.2.4 DelayedArray_0.30.0
## [37] BiocParallel_1.38.0 irlba_2.3.5.1
## [39] parallel_4.4.0 cluster_2.1.6
## [41] R6_2.5.1 bslib_0.7.0
## [43] stringi_1.8.3 RColorBrewer_1.1-3
## [45] genefilter_1.86.0 limma_3.60.0
## [47] brio_1.1.5 GenomicRanges_1.56.0
## [49] jquerylib_0.1.4 Rcpp_1.0.12
## [51] bookdown_0.39 SummarizedExperiment_1.34.0
## [53] reader_1.0.6 knitr_1.46
## [55] IRanges_2.38.0 splines_4.4.0
## [57] Matrix_1.7-0 igraph_2.0.3
## [59] tidyselect_1.2.1 abind_1.4-5
## [61] yaml_2.3.8 gplots_3.1.3.1
## [63] codetools_0.2-20 lattice_0.22-6
## [65] tibble_3.2.1 plyr_1.8.9
## [67] KEGGREST_1.44.0 Biobase_2.64.0
## [69] evaluate_0.23 survival_3.6-4
## [71] Biostrings_2.72.0 RcppEigen_0.3.4.0.0
## [73] pillar_1.9.0 BiocManager_1.30.22
## [75] MatrixGenerics_1.16.0 KernSmooth_2.23-22
## [77] stats4_4.4.0 generics_0.1.3
## [79] S4Vectors_0.42.0 ggplot2_3.5.1
## [81] sparseMatrixStats_1.16.0 munsell_0.5.1
## [83] scales_1.3.0 xtable_1.8-4
## [85] gtools_3.9.5 glue_1.7.0
## [87] metapod_1.12.0 pheatmap_1.0.12
## [89] tools_4.4.0 data.table_1.15.4
## [91] ggnewscale_0.4.10 BiocNeighbors_1.22.0
## [93] ScaledMatrix_1.12.0 annotate_1.82.0
## [95] locfit_1.5-9.9 XML_3.99-0.16.1
## [97] scran_1.32.0 grid_4.4.0
## [99] tidyr_1.3.1 NCmisc_1.2.0
## [101] tidyverse_2.0.0 AnnotationDbi_1.66.0
## [103] edgeR_4.2.0 colorspace_2.1-0
## [105] SingleCellExperiment_1.26.0 nlme_3.1-164
## [107] GenomeInfoDbData_1.2.12 BiocSingular_1.20.0
## [109] blockmodeling_1.1.5 cli_3.6.2
## [111] rsvd_1.0.5 fansi_1.0.6
## [113] S4Arrays_1.4.0 ggdendro_0.2.0
## [115] dplyr_1.1.4 gtable_0.3.5
## [117] DESeq2_1.44.0 sass_0.4.9
## [119] digest_0.6.35 BiocGenerics_0.50.0
## [121] SparseArray_1.4.0 dqrng_0.3.2
## [123] memoise_2.0.1 htmltools_0.5.8.1
## [125] lifecycle_1.0.4 httr_1.4.7
## [127] statmod_1.5.0 bit64_4.0.5
## [129] MASS_7.3-60.2