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1 Introduction

Sequence searching is an essential part of biology research. The word research even originates from a word in Old
French meaning ‘to search’. Yet, the sheer amount of biological sequences to comb through can make (re)search feel
like finding a needle in a haystack. To avoid heading out on a wild goose chase, it’s important to master the ins and outs
of searching. The goal of this vignette is to help you leave no stone unturned as you scout out homologous sequences.

2 Getting Started

2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads a few other required packages.
> library (DECIPHER)

Searching makes use of the IndexSeqgs and SearchIndex functions. Help can be accessed through:
> ? SearchIndex

Once DECIPHER is installed, the code in this tutorial can be obtained via:

> browseVignettes ("DECIPHER")



2.2 Gathering the evidence

There are umpteen reasons to search through biological sequences. For the purposes of this vignette, we are going to
focus on finding homologous proteins in a genome. In this case, our pattern (query) is the protein sequence and the
subject (target) is a 6-frame translation of the genome. Feel free to follow along with your own (nucleotide or protein)
sequences or use those in the vignette:

> # specify the path to your file of pattern (query) sequences:

> fasl <- "<<path to pattern FASTA file>>"

> # OR use the example protein sequences:

> fasl <- system.file("extdata",
"PlanctobacteriaNamedGenes.fas.gz",
package="DECIPHER")

> # read the sequences into memory
> pattern <- readAAStringSet (fasl)
> pattern
AAStringSet object of length 2497:
width seqg names
[1] 227 MAGPKHVLLVSEHWDLFFQTKE...VGYLFSDDGDKKFSQQDTKLS AQOAOH3MDW1 |Root;N...
[2] 394 MKRNPHFVSLTKNYLFADLQKR...GKREDILAACERLQMAPALQS 084395|Root;2;6;1...
[3] 195 MAYGTRYPTLAFHTGGIGESDD...GFCLTALGFLNFENAEPAKVN Q9Z6M7|Root;4;1;1...
[4] 437 MMLRGVHRIFKCEFYDVVLVCAF...TASFDRTWRALKSYIPLYKNS Q46222 |Root;2;4;9...
[5] 539 MSFKSIFLTGGVVSSLGKGLTA...FIEFIRAAKAYSLEKANHEHR Q59321 |Root;6;3;4...
[2493] 1038 MFEEVLQESFDEREKKVLKFWQ. ..EGTDWDLNGEPTKIIIKKSEY Q6MDY1|Root;6;1;1...
[2494] 102 MVQIVSQDNFADSIASGLVLVD...VERSVGLKDKDSLVKLISKHQ Q9PJK3|Root;NoEC; ...
[2495] 224 MKPQDLKLPYFWEDRCPKIENH. ..NLWRSKGEKIFCTEFVKRVGI Q9PL91|Root;2;1;1...
[2496] 427 MLRRLEVSTFLIFGMVSLYAKD...KIVIGLGEKRFPSWGGFPNNQ Q256H8 |Root;NoEC; ...
[2497] 344 MLTLGLESSCDETACALVDAKG. ..GIHPCARYHWESISASLSPLP Q822Y4|Root;2;3;1...

Protein search is more accurate than nucleotide search, so we are going to import a genome and perform 6-frame
translation to get the subject sequences. Feel free to carry on without translating the sequences if you are searching
nucleotides or otherwise would prefer to skip translation. Note that SearchIndex only searches the nucleotides
in the direction they are provided, so if you desire to search both strands then you will need to combine with the
reverseComplement as shown below.

> # specify the path to your file of subject (target) sequences:

> fas2 <- "<<path to subject FASTA file>>"

> # OR use the example subject genome:

> fas2 <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

> # read the sequences into memory

> dna <- readDNAStringSet (fas2)

> dna

DNAStringSet object of length 1:

width seq names

] 1042519 GCGGCCGCCCGGGAAATTGCTA...GTTGGCTGGCCCTGACGGGGTA NC_000117.1 Chlam...

[1

> subject <- subseqg(rep(dna, 3), 1:3) # 3-frames

> subject <- c(subject, reverseComplement (subject)) # 6-frames

> subject <- suppressWarnings (translate (subject)) # 6-frame translation
>

subject



AAStringSet object of length 6:
width seq
1 347506
1 347506
1 347505
] 347506
] 347506
] 347505

AAAREIAKRWEQRVRDLODKGAA. .
RPPGKLLKDGSKELEIYKIKVLH. .
GRPGNC+KMGAKS*RSTR*RCCT. . .
YPVRASQLVRE *MIRALTCVRSH. .
YPVRASQLVRF *MIRALTCVRSH. .
YPVRASQLVRF *MIRALTCVRSH. .

.GCVHK*VRGSFRSEQVGWP *RG
.AAYTSECADHLEANKLAGPDGV

WLRTQVSARII+*KRTSWLALTG

.QHLYLVDL*LFAPIF*QFPGRP
.QHLYLVDL*LFAPIEF*QFPGRP
.VOQHLYLVDL+LFAPIFxQFPGR

3 Searching for hits between pattern and subject sequences

names

NC_000117.
NC_000117.
NC_000117.
NC_000117.
NC_000117.
NC_000117.

e

Once the sequences are imported, we need to build an InvertedIndex object from the subject sequences. We can
accomplish this with IndexSeqgs by specifying the k-mer length (K). If you don’t know what value to use for K,
then you can specify sensitivity, percentldentity, and patternLength in lieu of K. Here, we want to ensure we find 99%
(0.99) of sequences with at least 70% identity to a pattern with 300 or more residues. Note that sensitivity is defined
as a fraction, whereas percentldentity is defined as a percentage.

> index <- IndexSeqgs (subject,
sensitivity=0.99,
percentIdentity=70,
patternLength=300,
processors=1)

Time difference of 0.93 secs
> index
An InvertedIndex built with:

Amino acid sequences: 6
Total k-mers: 1,266,786
Alphabet: A, C, DE, FWY,
K-mer size: 5

Step size: 1

* 0k X X o

G, H, ILMV, N,

ST

P, Q, RK,

Printing the index shows that we created an InvertedIndex object containing over 1 million 5-mers in a re-
duced amino acid alphabet with 12 symbols. Before we can find homologous hits to our protein sequences with
SearchIndex, we must decide what type of results we desire. The default type, "one™", is to return the best hit per
subject sequence (i.e., one per subject). Alternatively, we could request only the "top™" hit per pattern sequence to
obtain up to a single hit per pattern sequence. For the purposes of this vignette, we are going to ask for "all" hits
above the minScore. If we do not specify minScore then it is automatically set based on the size of the InvertedIndex.

> hits <- SearchIndex (pattern,
index,
type="all",
processors=1)

Time difference of 7.19 secs
> dim(hits)
[1] 2220 4

Chlam...
Chlam...
Chlam...
Chlam...
Chlam...
Chlam...



> head(hits)

Pattern Subiject Score Position
1 2 2 902.3000 1, 394,
2 3 3 394.5042 3, 67, 1....
3 5 3 1225.5021 1, 539,
4 10 1 554.5294 5, 13, 2....
5 11 1 251.8765 5, 16, 2....
6 12 1 856.2874 1, 375,

The result of our search is a data.frame with four columns: Pattern (index in pattern), Subject (index in
subject), Score, and Position (of k-mer matches). We can take a closer look at the number of hits per protein, their
scores,andlocaﬁons(Fﬁg.E}:



> layout (matrix(1l:4, nrow=2))
> hist (hits$Score,
breaks=100,
xlab="Score",
main="Distribution of scores")
> plot (NA,
x1lim=c (0, max(width (subject))),
ylim=c(1l, 6),
xlab="Genome position",
ylab="Genome frame",
main="Location of k-mer matches")
> segments (sapply (hits$Position, “[°, i=3), # third row
hits$Subject,
sapply (hits$Position, [, i=4), # fourth row
hits$Subject)
> plot (hits$Score,
sapply (hits$Position,
function (x)
sum(x[2,] - x[1,] + 1)),
xlab="Score",
ylab="Sum of k-mer matches",
main="Matches versus score",
log="xy")
> plot (table (tabulate (hits$Pattern, nbins=length (pattern))),
xlab="Hits per pattern sequence",
ylab="Frequency",
main="Number of hits per query")
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The calculated Score for each search hit is defined by the negative log-odds of observing the hit by chance. We
see that most scores were near zero, but there were many high scoring hits. Hits tended to be clustered along specific
frames of the genome, with some genome regions devoid of hits. Also, most pattern (protein) sequences were found at
zero or one location in the genome. As expected, a hit’s score is correlated with the length of k-mer matches, although
distance between matches lowers the score. One protein was found many times more than all the others. We can easily
figure out which protein was found the most times:

> w <— which.max (tabulate (hitsS$Pattern))

> hits[hits$Pattern == w, ]

Pattern Subject Score Position
1363 1622 1 19.24231 331, 335....
1364 1622 2 16.72343 226, 232....
1365 1622 2 19.00421 144, 148....
1366 1622 2 28.60440 203, 207....
1367 1622 3 15.53163 360, 364....
1368 1622 3 15.07425 228, 232....
1369 1622 3 15.28678 329, 334....
1370 1622 3 36.66560 461, 465....
1371 1622 3 23.51312 217, 223....
1372 1622 3 40.15768 329, 333....
1373 1622 3 24.29044 226, 231....
1374 1622 3 70.97239 618, 622....
1375 1622 3 37.29174 636, 640....
1376 1622 4 14.40465 8, 16, 3....
1377 1622 4 50.25471 460, 464....
1378 1622 4 28.52114 357, 361....
1379 1622 5 14.40465 8, 16, 3....
1380 1622 5 50.25471 460, 464....
1381 1622 5 28.52114 357, 361....
1382 1622 6 14.40466 8, 16, 3....
1383 1622 6 50.25471 460, 464....
1384 1622 6 28.52115 357, 36l....

> names (pattern) [w]
[1] "Q9Z899|Root; NoEC; pmp6"

The most frequent protein turned out to be from the class polymorphic membrane proteins (i.e., pmp) commonly
found in our target genome (Chlamydia). Likely these hits are to multiple paralogous genes on the genome, as can be
seen by the wide distribution of scores.

4 Aligning the search hits between pattern and subject

So far, we’ve identified the location and score of search hits without alignment. Aligning the hits would provide us
with their local start and stop boundaries, percent identity, and the locations of any insertions or deletions. Thankfully,
alignment is elementary once we’ve completed our search.

> aligned <- AlignPairs (pattern=pattern,
subject=subject,
pairs=hits,
processors=1)

Time difference of 0.84 secs



> head(aligned)
Pattern PatternStart PatternEnd Subject SubjectStart SubjectEnd Matches
1 2 1 394 2 148163 148556 394
2 3 1 195 3 141952 142146 173
3 5 1 539 3 68143 68681 539
4 10 1 370 1 280713 281082 297
5 11 1 369 1 280713 281080 199
6 12 1 375 1 280713 281087 375
Mismatches AlignmentLength Score PatternGapPosition PatternGapLength
1 0 394 2432.598
2 22 195 1153.484
3 0 539 3385.075
4 73 370 1946.666
5 168 370 1274.818 246 1
6 0 375 2354.977
SubjectGapPosition SubjectGapLength
1
2
3
4
5 273 2
6

The AlignPairs function returns a data.frame containing the Pattern (i.e., pattern index), Subject (i.e.,
sub ject index), their start and end positions, the number of matched and mismatched positions, the alignment length
and its score, as well as the location of any gaps in the pattern or subject. We can use this information to calculate a
percent identity, which can be defined a couple of different ways (Fig. [2).
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PID1 <- aligned$Matches/ (aligned$Matches + alignedS$Mismatches)
PID2 <- aligned$Matches/aligned$AlignmentLength

layout (matrix (1:4, ncol=2))
plot (hits$Score, PID2,
xlab="Hit score",
ylab="Matches / (Aligned
plot (hits$Score, aligned$Score,
xlab="Hit score",
ylab="Aligned score")
plot (aligned$Score, PIDI1,
xlab="Aligned score",
ylab="Matches / (Matches
plot (PID1, PID2,

xlab="Matches / (Matches
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Figure 2: Scatterplots of different scores and methods of formulating percent identity.



AlignPairs gives us everything we need to align the sequences except the alignments themselves. If needed,
we can easily get the pairwise alignments using the location(s) of gaps (i.e., “-”) in the pattern and subject sequences.

> patterns <- replaceAt (subseqg(pattern[aligned$Pattern],
aligned$PatternStart,
alignedS$PatternEnd),
alignedS$PatternGapPosition,
lapply (aligned$PatternGapLength,
function (x)
sapply (%,
function (1)
paste (rep("-", 1), collapse=""))))
> subjects <- replaceAt (subseqg(subject[alignedS$Subject],
aligned$SubjectStart,
aligned$SubjectEnd),
aligned$SubjectGapPosition,
lapply (aligned$SubjectGapLength,
function (x)
sapply (x,
function (1)
paste(rep("-", 1), collapse=""))))
> c(patterns[1l], subjects[l]) # view the first pairwise alignment
AAStringSet object of length 2:
width seq names
[1] 394 MKRNPHFVSLTKNYLFADLQKRV...SLGKREDILAACERLQMAPALQS 084395|Root;2;6;1...
[2] 394 MKRNPHFVSLTKNYLFADLQKRV...SLGKREDILAACERLQMAPALQS NC_000117.1 Chlam...

5 Calibrating an expect value (E-value) from hit scores

SearchIndex returns a score with significant matches above minScore. However, it is often useful to compute an
expect value (E-value) representing the number of times we expect to see a hit at least as high scoring in a database
of the same size. A lesser known fact is that E-values are a function of the substitution matrix, gapOpening penalty,
gapExtension penalty, and other search parameters, so E-values must be empirically determined.

There are two straightforward ways to calibrate E-values: (1) create an equivalent database of random se-
quences with matched composition to the input, or (2) search for the reverse of the sequences under the assumption
that reverse hits are unexpected (i.e., false positives). The second approach is more conservative, because we will find
more hits than expected if its underlying assumption is not true. Here, we will try the second approach:

> revhits <- SearchIndex (reverse (pattern), # reverse the query
index, # keep the same target database
minScore=10, # set low to get many hits
type="all", # get all hits, as in the original query
processors=1)

Time difference of 6.75 secs
> dim(revhits)
[1] 148 4



Next, our goal is to fit the distribution of background scores (i.e., reverse hits), which is reasonably well-
modeled by an exponential distribution. We will bin the reverse hits’ scores into intervals of one score unit between
10 and 100. Then we will use the fact that the integral of e~"%*¢*® (with respect to x) is e ~"**¢** to fit the rate of
the distribution. Note how there is an outlying point that violated the assumption reversed sequences should not have
strong hits (Fig. [3). We can use the sum of absolute error (L1 norm) rather than the sum of squared error (L2 norm)

to make the fit more robust to outliers. We will perform the fit in log-space to emphasize points across many orders of
magnitude.

10
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T Ko< X

10:100 # score bins

tabulate (.bincode (revhits$Score, X), length(X) - 1)
Y/length (pattern) # average per query

which(Y > 0) # needed to fit in log-space

plot (X[w], Y[w],

logzuyn,
xlab="Score",
ylab="Average false positives per query")

fit <- function(rate) # integrate from bin start to end

sum (abs ((log((exp (=X [w] *xrate) -
exp (-X[w + 1l]*rate))+length(subject)) -
log(Y[w]))))

o <- optimize (fit, c(0.01, 2)) # optimize rate
lines (X[-length(X)], (exp(-X[-length (X)]*oSminimum) -

exp (- (X[-1]) *oSminimum) ) *length (subject))

> rate <- oSminimum
> print (rate)
[1]
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Figure 3: Fitting an exponential distribution to the score background.
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Now that we’ve optimized the rate parameter, it is feasible to convert our original scores into E-values. We
are interested in the number of false positive hits expected across all queries at every value of Score. This differs
from the standard definition of E-value, which is defined on a per query basis. However, since we are performing
multiple queries it is preferable to apply a multiple testing correction for the number of searches. We can convert our
original scores to E-values, as well as define score thresholds for a given number of acceptable false positives across
all pattern sequences:

> # convert each Score to an E-value

> Evalue <- exp(-ratexhits$Score)xlength (subject) *length (pattern)

> # determine minimum Score for up to 1 false positive hit expected
> log(l/length(subject)/length (pattern))/-rate

[1] 22.08397

As can be seen, for this particular combination of dataset and parameters, a score threshold of 22 is sufficient
to only permit one combined false positive across all queries. Since E-value is a function of the dataset’s size and
the specific search parameters, you should calibrate the E-value for each set of searches performed. Once you have
calibrated the rate, it is straightforward to find only those hits that are statistically significant:

> # determine minimum Score for 0.05 (total) false positive hits expected
> threshold <- log(0.05/length(subject)/length (pattern))/-rate
> hits <- hits[hits$Score > threshold, ]

6 Maximizing search sensitivity to find distant hits

We’ve already employed some strategies to improve search sensitivity: choosing a small value for k-mer length and
step size, searching amino acids rather than nucleotides, and masking low complexity regions and repeats. Although
k-mer search is very fast, sometimes k-mers alone are insufficient to find distant homologs. In these cases, search
sensitivity can be improved by providing the subject (target) sequences, which causes SearchIndex to extend
k-mer matches to their left and right. This is as simple as adding a single argument:

> # include the target sequences to increase search sensitivity
> hits <- SearchIndex (pattern,

index,

subject, # optional parameter

type="all",

processors=1)

Time difference of 16.07 secs
> dim (hits)

[1] 5190 4
> head (hits)

Pattern Subject Score Position
1 2 2 1159.81193 1, 394,
2 3 3 532.70804 1, 71, 1....
3 4 2 17.50102 15, 19,
4 4 2 14.48302 30, 35,
5 5 1 14.97818 5, 16, 7....
6 5 2 14.49230 5, 16, 2....

12



We can see that search took longer when providing sub ject sequences, but the number of hits also increased.

The dropScore parameter, which controls the degree of extension, can be adjusted to balance sensitivity and speed. In
this manner, high sensitivity can be achieved by providing subject sequences in conjunction with a low value of
k-mer length and dropScore.

7 Session Information

All of the output in this vignette was produced under the following conditions:

R Under development (unstable) (2024-01-16 r85808), x86_64-pc—-1linux—-gnu
Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.19-bioc/R/1ib/1ibRblas.so
LAPACK: /usr/1ib/x86_64-1inux—gnu/lapack/liblapack.so0.3.10.0
Base packages: base, datasets, graphics, grDevices, methods, stats, stats4, utils

Other packages: BiocGenerics 0.49.1, Biostrings 2.71.2, DECIPHER 2.31.3, GenomeInfoDb 1.39.6,
IRanges 2.37.1, S4Vectors 0.41.3, XVector 0.43.1

Loaded via a namespace (and not attached): bitops 1.0-7, compiler 4.4.0, crayon 1.5.2, DBI 1.2.2,
GenomelnfoDbData 1.2.11, KernSmooth 2.23-22, RCurl 1.98-1.14, tools 4.4.0, zlibbioc 1.49.0
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