annotateGO |
Perform GO annotation of input data |
annotatePathways |
Annotate pathways for input data |
buildPairsbyFunctionMatrix |
Build binary matrix with int-pairs in rows, functions in cols |
checkLL_RR |
Manually change the annotation of L-L and R-R pairs |
circlePlot |
Plot circle plot |
combineAnnotations |
Combine GO annotation and pathways in a unique object |
createBarPlot1_ggplot |
Create ggplot barplot to be saved in tiff |
createBarPlot2_CV |
Create barplot of number of interaction for selected cluster |
createBarPlot2_ggplot |
Create ggplot barplot of Nint per cluster selected |
createBarPlot_CV |
Create Barplot cluster-verse |
createNetwork |
Create Network of clusters |
dendroIntPairModules |
Get dendrogram of int pair modules |
elbowPoint |
Determine the elbow point on a curve (from package akmedoids) |
ensemblLink |
Get html link to ensembl |
getBack2BackBarplot |
Get back-to-back barplot for 2 conditions comparison |
getBarplotDF |
Get dataframe for plotting barplot (all clusters) |
getBarplotDF2 |
Get dataframe for barplot (by cluster) |
getClusterA_Names |
Get cluster names only from sender cluster A |
getClusterColors |
Get colors for clusters |
getClusterNames |
Get clusters names from initial input data |
getClusterNetwork |
Creating edges dataframe for network of clusters |
getClusterSize |
Get Clusters size |
getDistinctCouplets |
Get table of unique int-pairs/clust-pairs couplets |
getDotPlot_selInt |
Functions to plot DotPlots |
getGeneTable |
Get table for gene-verse |
getGObiomaRt |
Connection to Ensembl via biomaRt to get GO terms |
getHitsf |
Subfunction to calculate significant functions by permutation test |
getIntFlow |
Get subset of interactions corresponding to a certain viewpoint and flow |
getNtermsBYdb |
Calculate number of terms of a database |
getNumLR |
Get number of unique ligands and receptors |
getPieChart |
Get Pie Chart of unique couplets |
getRadar_df |
#' Get radar plot of relative numbers of interactions for a certain cell type #' #' @param tab_c1 barplot dataframe from Viewpoint generated by getBarplotDF2() containing data for condition 1 #' @param tab_c2 barplot dataframe from Viewpoint generated by getBarplotDF2() containing data for condition 2 #' @param tab_c3 barplot dataframe from Viewpoint generated by getBarplotDF2() containing data for condition 3 #' @param lab_c1 label for condition 1 #' @param lab_c2 label for condition 2 #' @param lab_c3 label for condition 3 #' @param cell_name label of cell type of interest #' #' @return plot #' @importFrom fmsb radarchart #' @importFrom data.table transpose getRadarPlot <- function(tab_c1, tab_c2, tab_c3, lab_c1, lab_c2, lab_c3, cell_name) if(is.null(tab_c3)) df <- merge(tab_c1, tab_c2, by = "Clusters", all = TRUE) colnames(df) <- c("Clusters", "nint_c1", "nint_c2") else df <- merge(tab_c1, tab_c2, by = "Clusters", all = TRUE) df <- merge(df, tab_c3, by = "Clusters", all = TRUE) colnames(df) <- c("Clusters", "nint_c1", "nint_c2", "nint_c3") df[is.na(df)] <- 0 cluster_names <- df$Clusters # add max and min max_nint <- max(df[, -1]) df <- add_column(df, max_nint, .after = "Clusters") df <- add_column(df, "min_nint" = 0, .after = "max_nint") radar_df <- data.table::transpose(df[, -1]) if(is.null(lab_c3)) rownames(radar_df) <- c("max", "min", lab_c1, lab_c2) else rownames(radar_df) <- c("max", "min", lab_c1, lab_c2, lab_c3) colnames(radar_df) <- cluster_names color <- c("#438ECC", "#E97778", "#00BA38") fmsb::radarchart( radar_df, axistype = 1, # Customize the polygon pcol = color, pfcol = scales::alpha(color, 0.5), plwd = 2, plty = 1, # Customize the grid cglcol = "grey", cglty = 1, cglwd = 0.8, # Customize the axis axislabcol = "grey30", # Variable labels vlcex = 1.2, vlabels = colnames(radar_df), caxislabels = round(seq(from = 0, to = radar_df["max",1], length.out = 5)), title = cell_name ) legend( x = "bottomleft", legend = rownames(radar_df[-c(1,2),]), horiz = FALSE, bty = "n", pch = 20 , col = color, text.col = "black", cex = 1, pt.cex = 1.5 ) Get radar df of relative numbers of interactions for a certain cell type |
getRankedTerms |
Get table with ranked functional terms |
getSignificantFunctions |
Calculate significant function per intpair module |
getSignificantFunctions_multiCond |
Get significance of functional terms related to unique int-pairs per condition |
getSignif_table |
Wrapper for other functions to get significant table of func terms |
getSunburst |
Get Sunburst plot of selected functional terms |
getUMAPipModules |
Get UMAP for IP modules |
getUniqueDotplot |
Plot dotplot containing only unique int-pair/cluster pairs with many conditions |
getUniqueIntpairs_byCond |
Get table of unique int-pairs by condition |
goLink |
Get GO link |
input.data |
Input Data example |
read.cellchat |
Read dataframe of cell-cell communication from CellChat (ligand/receptor) |
read.CPDBv2 |
Read output from CellPhoneDB v2. |
read.customInput |
Read custom input file and re-structure it with InterCellar format |
read.icellnet |
Read ICELLNET dataframe |
read.SCsignalR |
Read output from SingleCellSignalR |
run_app |
Run the Shiny Application |
subsetAnnot_multiCond |
Subset int-pair by function matrices to unique int-pairs by condition |
subsetFuncMatBYFlow |
Subset pairs-function matrix by selected flow |
swap.RLint |
Swaps interaction pairs that are R-L to L-R |
uniprotLink |
Get html link to uniprot |
updateInputLR |
Function that orders all interaction pairs as L-R. Leaves unchanged the R-R and L-L |