SynaptomeDB: database for Synaptic proteome

Manual for querying SynaptomeDB

Oksana Sorokina, Anatoly Sorokin, J. Douglas Armstrong

11.10.2023

Introduction

58 published synaptic proteomic datasets (2000-2022 years) that describe over 8,000 proteins were integrated and combined with direct protein-protein interactions and functional metadata to build a network resource.

The set includes 29 post synaptic proteome (PSP) studies (2000 to 2019) contributing a total of 5,560 mouse and human unique gene identifiers; 19 presynaptic studies (2004 to 2022) describe 2,772 unique human and mouse gene IDs, and 11 studies that span the whole synaptosome and report 7,198 unique genes.

NB: With the latest update of the database we have added 6 new studies: 1 presynaptic and 5 postsynaptic, new compsrtment (Synaptic Vesicle), and coding mutations for Autistic Spectral Disorder (ASD) and epilepsy (Epi).

To reconstruct protein-protein interaction (PPI) networks for the pre- and post-synaptic proteomes we used human PPI data filtered for the highest confidence direct and physical interactions from BioGRID, Intact and DIP. The resulting postsynaptic proteome (PSP) network contains 4,817 nodes and 27,788 edges in the Largest Connected Component (LCC). The presynaptic network is significantly smaller and comprises 2,221 nodes and 8,678 edges in the LCC.

The database includes: proteomic and interactomic data with supporting information on compartment, specie and brain region, GO function information for three species: mouse, rat and human, disease annotation for human (based on Human Disease Ontology (HDO) and GeneToModel table, which links certain synaptic proteins to existing computational models of synaptic plasticity and synaptic signal transduction

The original files are maintained at Eidnburgh Datashare https://doi.org/10.7488/ds/3017. Updated database file could be found here: https://doi.org/10.7488/ds/3771

The dataset was described in the paper:

  1. Sorokina, O., Mclean, C., Croning, M.D.R. et al.
    A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 11, 9967 (2021). https://doi.org/10.1038/s41598-021-88945-7.

Database content overview

Following diagrams illustrate content of the database available for analysis by the package functions. Source code for construction of figures ar available in the Appendix statistics code section.

Presynaptic datasets

Number of identified proteins in Presynaptic datasets

Postsynaptic datasets

Number of identified proteins in Postsynaptic datasets

Synaptic Vesicle

Number of identified proteins in Synaptic Vesicle datasets (note the difference in the color scale)

Brain region distribution

Number of identified proteins in different Brain Regions(stacked)

Number of identified proteins in different Brain Regions(grouped)

Overview of capabilities

1.Get information for a specific gene or gene set.

The dataset can be used to answer frequent questions such as “What is known about my favourite gene? Is it pre- or postsynaptic? Which brain region was it identified in?”, “Which publication it was reported in?” Information could be obtained by submitting gene EntrezID or Gene name

t <- getGeneInfoByEntrez(1742) 
pander(head(t))
Table continues below
GeneID Localisation MGI HumanEntrez MouseEntrez HumanName
1 Postsynaptic MGI:1277959 1742 13385 DLG4
1 Postsynaptic MGI:1277959 1742 13385 DLG4
1 Postsynaptic MGI:1277959 1742 13385 DLG4
1 Postsynaptic MGI:1277959 1742 13385 DLG4
1 Postsynaptic MGI:1277959 1742 13385 DLG4
1 Postsynaptic MGI:1277959 1742 13385 DLG4
Table continues below
MouseName PaperPMID Paper Dataset Year SpeciesTaxID
Dlg4 10818142 WALIKONIS_2000 FULL 2000 10116
Dlg4 10862698 HUSI_2000 FULL 2000 10090
Dlg4 11895482 SATON_2002 FULL 2002 10090
Dlg4 14532281 LI_2004 FULL 2004 10116
Dlg4 14720225 YOSHIMURA_2004 FULL 2004 10116
Dlg4 15020595 PENG_2002 FULL 2004 10116
BrainRegion
Forebrain
Forebrain
Forebrain
Forebrain
Forebrain
Forebrain

t <- getGeneInfoByName("CASK")
pander(head(t))
Table continues below
GeneID Localisation MGI HumanEntrez MouseEntrez HumanName
409 Postsynaptic MGI:1309489 8573 12361 CASK
409 Postsynaptic MGI:1309489 8573 12361 CASK
409 Postsynaptic MGI:1309489 8573 12361 CASK
409 Postsynaptic MGI:1309489 8573 12361 CASK
409 Postsynaptic MGI:1309489 8573 12361 CASK
409 Postsynaptic MGI:1309489 8573 12361 CASK
Table continues below
MouseName PaperPMID Paper Dataset Year SpeciesTaxID
Cask 15169875 JORDAN_2004 FULL 2004 10090
Cask 16635246 COLLINS_2006 FULL 2006 10090
Cask 17623647 DOSEMESI_2007 FULL 2007 10116
Cask 18056256 TRINIDAD_2008 FULL 2008 10090
Cask 18056256 TRINIDAD_2008 FULL 2008 10090
Cask 18056256 TRINIDAD_2008 FULL 2008 10090
BrainRegion
Brain
Forebrain
Cerebral cortex
Midbrain
Cerebellum
Hippocampus

t <- getGeneInfoByName(c("CASK", "DLG2"))
pander(head(t))                      
Table continues below
GeneID Localisation MGI HumanEntrez MouseEntrez HumanName
6 Postsynaptic MGI:1344351 1740 23859 DLG2
6 Postsynaptic MGI:1344351 1740 23859 DLG2
6 Postsynaptic MGI:1344351 1740 23859 DLG2
6 Postsynaptic MGI:1344351 1740 23859 DLG2
6 Postsynaptic MGI:1344351 1740 23859 DLG2
6 Postsynaptic MGI:1344351 1740 23859 DLG2
Table continues below
MouseName PaperPMID Paper Dataset Year SpeciesTaxID
Dlg2 10862698 HUSI_2000 FULL 2000 10090
Dlg2 11895482 SATON_2002 FULL 2002 10090
Dlg2 14532281 LI_2004 FULL 2004 10116
Dlg2 14720225 YOSHIMURA_2004 FULL 2004 10116
Dlg2 15169875 JORDAN_2004 FULL 2004 10090
Dlg2 15748150 TRINIDAD_2005 FULL 2005 10090
BrainRegion
Forebrain
Forebrain
Forebrain
Forebrain
Brain
Brain

2.Get internal GeneIDs for the list of genes.

Obtaining Internal database GeneIDs is a useful intermediate step for more complex queries including those for building protein-protein interaction (PPI) networks for compartments and brain regions. Internal GeneID is specie-neutral and unique, which allows exact identification of the object of interest in case of redundancy (e.g. one Human genes matches on a few mouse ones, etc.)

t <- findGenesByEntrez(c(1742, 1741, 1739, 1740))
pander(head(t))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
1 MGI:1277959 1742 13385 29495 DLG4
6 MGI:1344351 1740 23859 64053 DLG2
15 MGI:1888986 1741 53310 58948 DLG3
46 MGI:107231 1739 13383 25252 DLG1
MouseName RatName
Dlg4 Dlg4
Dlg2 Dlg2
Dlg3 Dlg3
Dlg1 Dlg1

t <- findGenesByName(c("SRC", "SRCIN1", "FYN"))
pander(head(t))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
48 MGI:1933179 80725 56013 56029 SRCIN1
585 MGI:98397 6714 20779 83805 SRC
710 MGI:95602 2534 14360 25150 FYN
MouseName RatName
Srcin1 Srcin1
Src Src
Fyn Fyn

3.Get disease information for the gene set

Synaptic genes are annotated with disease information from Human Disease Ontology, where available. To get disease information one can submit the list of Human Entrez Is or Human genes names, it could be also the list of Internal GeneIDs if using getGeneDiseaseByIDs function

t <- getGeneDiseaseByName (c("CASK", "DLG2", "DLG1"))
pander(head(t))
HumanEntrez HumanName HDOID Description
1740 DLG2 DOID:936 brain_disease
8573 CASK DOID:936 brain_disease
1739 DLG1 DOID:331 central_nervous_system_disease
1740 DLG2 DOID:331 central_nervous_system_disease
8573 CASK DOID:331 central_nervous_system_disease
1739 DLG1 DOID:863 nervous_system_disease

t <- getGeneDiseaseByEntres (c(8573, 1742, 1739))
pander(head(t))
HumanEntrez HumanName HDOID Description
8573 CASK DOID:936 brain_disease
1739 DLG1 DOID:331 central_nervous_system_disease
1742 DLG4 DOID:331 central_nervous_system_disease
8573 CASK DOID:331 central_nervous_system_disease
1739 DLG1 DOID:863 nervous_system_disease
1742 DLG4 DOID:863 nervous_system_disease

5.Get information about the studies, combined into dataset

One can obtain the overview of synaptic proteome papers combined into the database, which includes paper PMID, specie Tax ID, year of publication, subcellular localisation, brain region and number of proteins identified in the paper. This information may help to choose the specific study(ies) for further work.

p <- getPapers()
pander(head(p))
Table continues below
PaperPMID SpeciesTaxID Year Name Localisation BrainRegion
10818142 10116 2000 WALIKONIS_2000 Postsynaptic Forebrain
10862698 10090 2000 HUSI_2000 Postsynaptic Forebrain
11895482 10090 2002 SATON_2002 Postsynaptic Forebrain
14532281 10116 2004 LI_2004 Postsynaptic Forebrain
14720225 10116 2004 YOSHIMURA_2004 Postsynaptic Forebrain
15007177 10116 2004 BLONDEAU_2004 Presynaptic Brain
Method Ngenes
Shotgun 29
Shotgun 77
Shotgun 45
Shotgun 138
Shotgun 436
Shotgun 209

6.Get the table of frequently identified proteins

It is also possible to obtain the list of proteins found in more than one study, for the whole synaptic proteome. For that, the user needs to provide a “count” value as a desired minimal number of identifications (e.g. 2 or more). The command returns the table with gene identifiers and “Npmid” column, which contains the number of studies where this gene was identified.

#find all proteins in synaptic proteome identified 2 times or more
gp <- findGeneByPaperCnt(cnt = 2)
pander(head(gp))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
1 MGI:1277959 1742 13385 29495 DLG4
2 MGI:88256 815 12322 25400 CAMK2A
3 MGI:96568 9118 226180 24503 INA
4 MGI:98388 6711 20742 305614 SPTBN1
5 MGI:88257 816 12323 24245 CAMK2B
6 MGI:1344351 1740 23859 64053 DLG2
MouseName RatName Npmid
Dlg4 Dlg4 48
Camk2a Camk2a 54
Ina Ina 50
Sptbn1 Sptbn1 45
Camk2b Camk2b 46
Dlg2 Dlg2 43

7.Get the table of proteins identified in specific studies

Following section 5, when the information for all considered proteomic studies was obtained, user can select specific study(ies) by PMID and get the proteins identified in those studies. By providing count value user can extract either all proteins from specified studies (count = 1), or just frequently found ones (count >=2). As above, the command returns the table with gene identifiers with Npmid column, which contains the number of studies where this protein was identified

spg <- findGeneByPapers(p$PaperPMID[1:5], cnt = 1)
pander(head(spg))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
1 MGI:1277959 1742 13385 29495 DLG4
2 MGI:88256 815 12322 25400 CAMK2A
3 MGI:96568 9118 226180 24503 INA
4 MGI:98388 6711 20742 305614 SPTBN1
5 MGI:88257 816 12323 24245 CAMK2B
6 MGI:1344351 1740 23859 64053 DLG2
MouseName RatName Npmid
Dlg4 Dlg4 5
Camk2a Camk2a 5
Ina Ina 5
Sptbn1 Sptbn1 4
Camk2b Camk2b 4
Dlg2 Dlg2 4

8.Get the table of proteins frequently identified in specific compartment

Most of the times, user is interested in the specific compartment rather then in total synaptic proteome. To help identify the genes most probably residenting in the specific compartment and exclude possible contaminants,
findGeneByCompartmentPaperCnt function provides the table of proteins found cnt or more times in different compartment-paper pairs.

gcp <- findGeneByCompartmentPaperCnt(cnt = 2)
pander(head(gcp))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
1 MGI:1277959 1742 13385 29495 DLG4
1 MGI:1277959 1742 13385 29495 DLG4
1 MGI:1277959 1742 13385 29495 DLG4
1 MGI:1277959 1742 13385 29495 DLG4
2 MGI:88256 815 12322 25400 CAMK2A
2 MGI:88256 815 12322 25400 CAMK2A
MouseName RatName Localisation Npmid
Dlg4 Dlg4 Postsynaptic 29
Dlg4 Dlg4 Presynaptic 4
Dlg4 Dlg4 Synaptosome 16
Dlg4 Dlg4 Synaptic_Vesicle 3
Camk2a Camk2a Postsynaptic 28
Camk2a Camk2a Presynaptic 13
# Now user can select the specific compartment and proceed working with 
# obtained list of frequently found proteins
presgp <- gcp[gcp$Localisation == "Presynaptic",]
dim(presgp)
#> [1] 1542   10
pander(head(presgp))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
1 MGI:1277959 1742 13385 29495 DLG4
2 MGI:88256 815 12322 25400 CAMK2A
3 MGI:96568 9118 226180 24503 INA
4 MGI:98388 6711 20742 305614 SPTBN1
5 MGI:88257 816 12323 24245 CAMK2B
6 MGI:1344351 1740 23859 64053 DLG2
MouseName RatName Localisation Npmid
Dlg4 Dlg4 Presynaptic 4
Camk2a Camk2a Presynaptic 13
Ina Ina Presynaptic 12
Sptbn1 Sptbn1 Presynaptic 8
Camk2b Camk2b Presynaptic 8
Dlg2 Dlg2 Presynaptic 3

9.Get PPI interactions for my list of genes

Custom Protein-protein interactions based on bespoke subsets of molecules could be extracted in two general ways: “induced” and “limited”. In the first case, the command will return all possible interactors for the genes within the whole interactome. In the second case it will return only interactions between the genes of interest. PPIs could be obtained by submitting list of EntrezIDs or gene names, or Internal IDs - in all cases the interactions will be returned as a list of interacting pairs of Intenal GeneIDs.

t <- getPPIbyName(
    c("CASK", "DLG4", "GRIN2A", "GRIN2B","GRIN1"), 
    type = "limited")
pander(head(t))
A B
38 1
7 1
1 7
1 38
1 9
9 1

t <- getPPIbyEntrez(c(1739, 1740, 1742, 1741), type='induced')
pander(head(t))
A B
1 2871
6 2871
15 2871
1 617
1 30
156 1
 #obtain PPIs for the list of frequently found genes in presynaptc compartment
t <- getPPIbyEntrez(presgp$HumanEntrez, type='induced')
pander(head(t))
A B
365 148
1048 148
52 365
52 1048
321 1048
321 365

10.Get the molecular structure of synaptic compartment

Three main synaptic compartments considered in the database are “presynaptic”, “postsynaptic” and “synaptosome”. Genes are classified to compartments based on respective publications, so that each gene can belong to one or two, or even three compartments. The full list of genes for specific compartment could be obtained with command getAllGenes4Compartment, which returns the table with main gene identifiers, like internal GeneIDs, MGI ID, Human Entrez ID, Human Gene Name, Mouse Entrez ID, Mouse Gene Name, Rat Entrez ID, Rat Gene Name.

If you need to check which genes of your list belong to specific compartment, you can use getGenes4Compartment command, which will select from your list only genes associated with specific compartment. To obtain the PPI network for compartment one has to submit the list of Internal GeneIDs obtained with previous commands.

#getting the list of compartment
comp <- getCompartments()
pander(comp)
ID Name Description
1 Postsynaptic Postsynaptic
2 Presynaptic Presynaptic
3 Synaptosome Synaptosome
4 Synaptic_Vesicle Synaptic_Vesicle

#getting all genes for postsynaptic compartment
gns <- getAllGenes4Compartment(compartmentID = 1) 
pander(head(gns))
Table continues below
GeneID MGI HumanEntrez MouseEntrez RatEntrez HumanName
1 MGI:1277959 1742 13385 29495 DLG4
2 MGI:88256 815 12322 25400 CAMK2A
3 MGI:96568 9118 226180 24503 INA
4 MGI:98388 6711 20742 305614 SPTBN1
5 MGI:88257 816 12323 24245 CAMK2B
6 MGI:1344351 1740 23859 64053 DLG2
MouseName RatName
Dlg4 Dlg4
Camk2a Camk2a
Ina Ina
Sptbn1 Sptbn1
Camk2b Camk2b
Dlg2 Dlg2

#getting full PPI network for postsynaptic compartment
ppi <- getPPIbyIDs4Compartment(gns$GeneID,compartmentID =1, type = "induced")
pander(head(ppi))
A B
365 148
1048 148
52 365
52 1048
321 1048
321 365

11.Get the molecular structure of the brain region.

Three are 12 brain regions considered in the database based on respective publications, so that each gene can belong to the single or to the several brain regions. Brain regions differ between species, and specie brain region information is not 100% covered in the database(e.g. we don’t have yet studies for Human Striatum, but do have for Mouse and Rat), that’s why when querying the database for brain region information you will need to specify the specie. The full list of genes for specific region could be obtained wuth command getAllGenes4BrainRegion, which returns the table with main gene identifiers, like internal Gene IDs, MGI ID, Human Entrez ID, Human Gene Name, Mouse Entrez ID, Mouse Gene Name, Rat Entrez ID, Rat Gene Name.

If you need to check which genes of your list were identified in specific region, you can use getGenes4BrainRegion command, which will select only genes associated with specific region from your list.

To obtain the PPI network for brain region you need to submit the list of Internal GeneIDs obtained with previous commands.

#getting the full list of brain regions
reg <- getBrainRegions()
pander(reg)
ID Name Description InterlexID ParentID
1 Brain Whole brain ILX:0101431 1
2 Forebrain Whole forebrain ILX:0104355 1
3 Midbrain Midbrain ILX:0106935 1
4 Cerebellum Cerebellum ILX:0101963 1
5 Telencephalon Telencephalon ILX:0111558 2
6 Hypothalamus Hypothalamus ILX:0105177 2
7 Hippocampus Hippocampus ILX:0105021 5
8 Striatum Striatum ILX:0111098 5
9 Cerebral cortex Neocortex ILX:0101978 5
10 Frontal lobe Frontal lobe/frontal cortex ILX:0104451 9
11 Occipital lobe Occipital lobe ILX:0107883 9
12 Temporal lobe Temporal lobe ILX:0111590 9
13 Parietal lobe Parietal lobe ILX:0108534 9
14 Prefrontal cortex Prefrontal cortex ILX:0109209 10
15 Motor cortex Motor cortex ILX:0107119 10
16 Visual cortex Visual cortex ILX:0112513 11
17 Medial cortex Medial cortex ILX:0106634 9
18 Caudal cortex Caudal cortex NA 9

#getting all genes for mouse Striatum
gns <- getAllGenes4BrainRegion(brainRegion = "Striatum",taxID = 10090)
pander(head(gns))
Table continues below
GeneID Localisation MGI HumanEntrez MouseEntrez HumanName
1 Postsynaptic MGI:1277959 1742 13385 DLG4
2 Postsynaptic MGI:88256 815 12322 CAMK2A
3 Postsynaptic MGI:96568 9118 226180 INA
4 Postsynaptic MGI:98388 6711 20742 SPTBN1
6 Postsynaptic MGI:1344351 1740 23859 DLG2
7 Postsynaptic MGI:95821 2904 14812 GRIN2B
MouseName PMID Paper Year SpeciesTaxID BrainRegion
Dlg4 30071621 ROY_2018 2018 10090 Striatum
Camk2a 30071621 ROY_2018 2018 10090 Striatum
Ina 30071621 ROY_2018 2018 10090 Striatum
Sptbn1 30071621 ROY_2018 2018 10090 Striatum
Dlg2 30071621 ROY_2018 2018 10090 Striatum
Grin2b 30071621 ROY_2018 2018 10090 Striatum

#getting full PPI network for postsynaptic compartment
ppi <- getPPIbyIDs4BrainRegion(
    gns$GeneID, brainRegion = "Striatum", 
    taxID = 10090, type = "limited")
pander(head(ppi))
A B
365 148
1048 148
52 365
52 1048
321 1048
321 365

12.Checking third-party list against Synaptic Proteome db

#check which genes from 250 random EntrezIds are in the database
listG<-findGenesByEntrez(1:250) 
dim(listG)
#> [1] 124   8
head(listG)
#> # A tibble: 6 × 8
#>   GeneID MGI       HumanEntrez MouseEntrez RatEntrez HumanName MouseName RatName
#>    <int> <chr>           <int>       <int>     <int> <chr>     <chr>     <chr>  
#> 1     34 MGI:87994         226       11674     24189 ALDOA     Aldoa     Aldoa  
#> 2     35 MGI:2137…          87      109711     81634 ACTN1     Actn1     Actn1  
#> 3     39 MGI:1019…         160       11771    308578 AP2A1     Ap2a1     Ap2a1  
#> 4     54 MGI:87918         118       11518     24170 ADD1      Add1      Add1   
#> 5     85 MGI:87919         119       11519     24171 ADD2      Add2      Add2   
#> 6     97 MGI:1890…          81       60595     63836 ACTN4     Actn4     Actn4

#check which genes from subset identified as synaptic are presynaptic
getCompartments()
#> # A tibble: 4 × 3
#>      ID Name             Description     
#>   <int> <chr>            <chr>           
#> 1     1 Postsynaptic     Postsynaptic    
#> 2     2 Presynaptic      Presynaptic     
#> 3     3 Synaptosome      Synaptosome     
#> 4     4 Synaptic_Vesicle Synaptic_Vesicle
presG <- getGenes4Compartment(listG$GeneID, 2) 
dim(presG)
#> [1] 67  8
head(presG)
#> # A tibble: 6 × 8
#>   GeneID MGI       HumanEntrez MouseEntrez RatEntrez HumanName MouseName RatName
#>    <int> <chr>           <int>       <int>     <int> <chr>     <chr>     <chr>  
#> 1     34 MGI:87994         226       11674     24189 ALDOA     Aldoa     Aldoa  
#> 2     35 MGI:2137…          87      109711     81634 ACTN1     Actn1     Actn1  
#> 3     39 MGI:1019…         160       11771    308578 AP2A1     Ap2a1     Ap2a1  
#> 4     54 MGI:87918         118       11518     24170 ADD1      Add1      Add1   
#> 5     85 MGI:87919         119       11519     24171 ADD2      Add2      Add2   
#> 6     97 MGI:1890…          81       60595     63836 ACTN4     Actn4     Actn4

#check which genes from subset identified as synaptic are found in 
#human cerebellum
getBrainRegions()
#> # A tibble: 18 × 5
#>       ID Name              Description                 InterlexID  ParentID
#>    <int> <chr>             <chr>                       <chr>          <int>
#>  1     1 Brain             Whole brain                 ILX:0101431        1
#>  2     2 Forebrain         Whole forebrain             ILX:0104355        1
#>  3     3 Midbrain          Midbrain                    ILX:0106935        1
#>  4     4 Cerebellum        Cerebellum                  ILX:0101963        1
#>  5     5 Telencephalon     Telencephalon               ILX:0111558        2
#>  6     6 Hypothalamus      Hypothalamus                ILX:0105177        2
#>  7     7 Hippocampus       Hippocampus                 ILX:0105021        5
#>  8     8 Striatum          Striatum                    ILX:0111098        5
#>  9     9 Cerebral cortex   Neocortex                   ILX:0101978        5
#> 10    10 Frontal lobe      Frontal lobe/frontal cortex ILX:0104451        9
#> 11    11 Occipital lobe    Occipital lobe              ILX:0107883        9
#> 12    12 Temporal lobe     Temporal lobe               ILX:0111590        9
#> 13    13 Parietal lobe     Parietal lobe               ILX:0108534        9
#> 14    14 Prefrontal cortex Prefrontal cortex           ILX:0109209       10
#> 15    15 Motor cortex      Motor cortex                ILX:0107119       10
#> 16    16 Visual cortex     Visual cortex               ILX:0112513       11
#> 17    17 Medial cortex     Medial cortex               ILX:0106634        9
#> 18    18 Caudal cortex     Caudal cortex               <NA>               9
listR <- getGenes4BrainRegion(listG$GeneID, 
                              brainRegion = "Cerebellum", taxID = 10090) 
dim(listR)
#> [1] 186  12
head(listR)
#> # A tibble: 6 × 12
#>   GeneID Localisation MGI     HumanEntrez MouseEntrez HumanName MouseName   PMID
#>    <int> <chr>        <chr>         <int>       <int> <chr>     <chr>      <int>
#> 1     34 Postsynaptic MGI:87…         226       11674 ALDOA     Aldoa     1.81e7
#> 2     34 Postsynaptic MGI:87…         226       11674 ALDOA     Aldoa     3.01e7
#> 3     34 Synaptosome  MGI:87…         226       11674 ALDOA     Aldoa     3.20e7
#> 4     34 Synaptosome  MGI:87…         226       11674 ALDOA     Aldoa     3.21e7
#> 5     35 Postsynaptic MGI:21…          87      109711 ACTN1     Actn1     1.81e7
#> 6     35 Postsynaptic MGI:21…          87      109711 ACTN1     Actn1     3.01e7
#> # ℹ 4 more variables: Paper <chr>, Year <int>, SpeciesTaxID <int>,
#> #   BrainRegion <chr>

13.Visualisatiion of PPI network with Igraph.

Combine information from PPI data.frame obtained with functions like getPPIbyName, getPPIbyEntrez, getPPIbyIDs4Compartment or getPPIbyIDs4BrainRegion with information about genes obtained from getGenesByID to make interpretable undirected PPI graph in igraph format. In this format network could be further analysed and visualized by algorithms from igraph package.

library(igraph)
#> 
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:dplyr':
#> 
#>     as_data_frame, groups, union
#> The following objects are masked from 'package:BiocGenerics':
#> 
#>     normalize, path, union
#> The following objects are masked from 'package:stats':
#> 
#>     decompose, spectrum
#> The following object is masked from 'package:base':
#> 
#>     union
g<-getIGraphFromPPI(
    getPPIbyIDs(c(48, 129,  975,  4422, 5715, 5835), type='lim'))
plot(g,vertex.label=V(g)$RatName,vertex.size=25)

1.Export of PPI network as a table.

If Igraph is not an option, the PPI network could be exported as an interpretible table to be processed with other tools, e.g. Cytoscape,etc.

tbl<-getTableFromPPI(getPPIbyIDs(c(48, 585, 710), type='limited'))
tbl
#> # A tibble: 2 × 16
#>       A     B MGI.A     HumanEntrez.A MouseEntrez.A RatEntrez.A HumanName.A
#>   <int> <int> <chr>             <int>         <int>       <int> <chr>      
#> 1   710   710 MGI:95602          2534         14360       25150 FYN        
#> 2   585   585 MGI:98397          6714         20779       83805 SRC        
#> # ℹ 9 more variables: MouseName.A <chr>, RatName.A <chr>, MGI.B <chr>,
#> #   HumanEntrez.B <int>, MouseEntrez.B <int>, RatEntrez.B <int>,
#> #   HumanName.B <chr>, MouseName.B <chr>, RatName.B <chr>

References

  1. Sorokina, O., Mclean, C., Croning, M.D.R. et al.
    A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 11, 9967 (2021). https://doi.org/10.1038/s41598-021-88945-7.

Appendix

Statistics graph code

gp<-findGeneByCompartmentPaperCnt(1)

# presynaptic stats
presgp <- gp[gp$Localisation == "Presynaptic",]
syngp <- gp[gp$Localisation == "Synaptosome",]
presg <- getGeneInfoByIDs(presgp$GeneID)
mpres <- merge(presgp, presg, by = c("GeneID","Localisation"))
mmpres <- mpres[, c('GeneID',
                    'HumanEntrez.x',
                    'HumanName.x',
                    'Npmid',
                    'PaperPMID',
                    'Paper',
                    'Year')]
papers <- getPapers()
prespap <- papers[papers$Localisation == "Presynaptic",]
mmmpres <- mmpres[mmpres$PaperPMID %in% prespap$PaperPMID,]
mmmpres$found <- 0
for(i in 1:dim(mmmpres)[1]) {
    if (mmmpres$Npmid[i] == 1) {
        mmmpres$found[i] <- '1'
    } else if (mmmpres$Npmid[i] > 1 & mmmpres$Npmid[i] < 4) {
        mmmpres$found[i] <- '2-3'
    } else if (mmmpres$Npmid[i] >= 4 & mmmpres$Npmid[i] < 10) {
        mmmpres$found[i] <- '4-9'
    } else if (mmmpres$Npmid[i] >= 10) {
        mmmpres$found[i] <- '>10'
    }
}

mmmpres$found<- factor(mmmpres$found,
                        levels = c('1','2-3','4-9','>10'),
                        ordered=TRUE)
tp<-unique(mmmpres$Paper)
mmmpres$Paper<- factor(mmmpres$Paper,
                        levels =tp[order(as.numeric(sub('^[^0-9]+_([0-9]+)',
                                                        '\\1',tp)))],
                        ordered=TRUE)

ummpres<-unique(mmmpres[,c('GeneID','Paper','found')])
ggplot(ummpres) + geom_bar(aes(y = Paper, fill = found)) 
#postsynaptic stats
pstgp <- gp[gp$Localisation == "Postsynaptic",]
postg <- getGeneInfoByIDs(pstgp$GeneID)
mpost <- merge(pstgp, postg, by = c("GeneID","Localisation"))
mmpost <- mpost[, c('GeneID',
                    'HumanEntrez.x',
                    'HumanName.x','Npmid',
                    'PaperPMID','Paper','Year')]
postspap <- papers[papers$Localisation == "Postsynaptic",]
mmmpost <- mmpost[mmpost$PaperPMID %in% postspap$PaperPMID,]
mmmpost$found <- 0
for(i in 1:dim(mmmpost)[1]) {
    if (mmmpost$Npmid[i] == 1) {
        mmmpost$found[i] <- '1'
    } else if (mmmpost$Npmid[i] > 1 & mmmpost$Npmid[i] < 4) {
        mmmpost$found[i] <- '2-3'
    } else if (mmmpost$Npmid[i] >= 4 & mmmpost$Npmid[i] < 10) {
        mmmpost$found[i] <- '4-9'
    } else if (mmmpost$Npmid[i] >= 10) {
        mmmpost$found[i] <- '>10'
    }
}
mmmpost$found<- factor(mmmpost$found,levels = c('1','2-3','4-9','>10'),
                        ordered=TRUE)
tp<-unique(mmmpost$Paper)
mmmpost$Paper<- factor(mmmpost$Paper,
                        levels =tp[order(as.numeric(sub('^[^0-9]+_([0-9]+)',
                                                        '\\1',tp)))],
                        ordered=TRUE)
ummpos<-unique(mmmpost[,c('GeneID','Paper','found')])
ggplot(ummpos) + geom_bar(aes(y = Paper, fill = found)) 
svgp <- gp[gp$Localisation == "Synaptic_Vesicle",]
svg <- getGeneInfoByIDs(svgp$GeneID)
mpost <- merge(svgp, svg, by = c("GeneID","Localisation"))
mpost$Paper<-paste0(mpost$Paper,ifelse('FULL'==mpost$Dataset,'','_SVR'))
mmpost <- mpost[, c('GeneID','HumanEntrez.x','HumanName.x','Npmid',
                    'PaperPMID','Paper','Year')]
postspap <- papers[papers$Localisation == "Synaptic_Vesicle",]
mmmpost <- mmpost[mmpost$PaperPMID %in% postspap$PaperPMID,]
mmmpost$found <- 0
for(i in 1:dim(mmmpost)[1]) {
    if (mmmpost$Npmid[i] == 1) {
        mmmpost$found[i] <- '1'
    } else if (mmmpost$Npmid[i] > 1 & mmmpost$Npmid[i] < 4) {
        mmmpost$found[i] <- '2-3'
    } else if (mmmpost$Npmid[i] >= 4 & mmmpost$Npmid[i] < 6) {
        mmmpost$found[i] <- '4-5'
    } else if (mmmpost$Npmid[i] >= 6) {
        mmmpost$found[i] <- '>6'
    }
}

mmmpost$found<- factor(mmmpost$found,levels = c('1','2-3','4-5','>6'),
                        ordered=TRUE)
tp<-unique(mmmpost$Paper)
mmmpost$Paper<- factor(mmmpost$Paper,
                        levels =tp[order(as.numeric(sub('^[^0-9]+_([0-9]+)_?.*',
                                                        '\\1',tp)))],
                        ordered=TRUE)

ummpos<-unique(mmmpost[,c('GeneID','Paper','found')])
g<-ggplot(ummpos) + geom_bar(aes(y = Paper, fill = found)) 
g
#brain region statistics
totg <- getGeneInfoByIDs(gp$GeneID)
mtot <- merge(gp, totg, by = c("GeneID","Localisation"))
mmptot <- mtot[, c('GeneID',
                    'HumanEntrez.x',
                    'HumanName.x',
                    'Localisation',
                    'Npmid',
                    'Paper',
                    'BrainRegion')]
untot<-unique(mmptot[,c('GeneID','BrainRegion','Localisation')])
loccolors<-c("#3D5B59","#B5E5CF","#FCB5AC", "#B99095")
loccolors<-loccolors[1:length(unique(untot$Localisation))]
ggplot(untot) + geom_bar(aes(y = BrainRegion, fill = Localisation)) + 
    scale_fill_manual(values = loccolors)
table(untot$Localisation,untot$BrainRegion)-> m
as.data.frame(m)->udf
names(udf)<-c('Localisation','BrainRegion','value')
ggplot(udf, aes(fill=Localisation, y=value, x=BrainRegion)) + 
    geom_bar(position="dodge", stat="identity")+ 
    scale_fill_manual(values = loccolors) + 
    theme(axis.text.x = element_text(face="plain", 
                                        color="#993333", 
                                        angle=45,vjust = 1,
                                        hjust=1,size = rel(1.5)))

Session Info

version R version 4.3.1 (2023-06-16)
os Ubuntu 22.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C
ctype en_US.UTF-8
tz America/New_York
date 2023-10-11
pandoc 2.7.3 @ /usr/bin/ (via rmarkdown)
Table continues below
  package ondiskversion
AnnotationDbi AnnotationDbi 1.63.2
AnnotationHub AnnotationHub 3.9.2
Biobase Biobase 2.61.0
BiocFileCache BiocFileCache 2.9.1
BiocGenerics BiocGenerics 0.47.0
BiocManager BiocManager 1.30.22
BiocVersion BiocVersion 3.18.0
Biostrings Biostrings 2.69.2
bit bit 4.0.5
bit64 bit64 4.0.5
bitops bitops 1.0.7
blob blob 1.2.4
bslib bslib 0.5.1
cachem cachem 1.0.8
callr callr 3.7.3
cli cli 3.6.1
colorspace colorspace 2.1.0
crayon crayon 1.5.2
curl curl 5.1.0
DBI DBI 1.1.3
dbplyr dbplyr 2.3.4
devtools devtools 2.4.5
digest digest 0.6.33
dplyr dplyr 1.1.3
ellipsis ellipsis 0.3.2
evaluate evaluate 0.22
fansi fansi 1.0.5
farver farver 2.1.1
fastmap fastmap 1.1.1
filelock filelock 1.0.2
fs fs 1.6.3
generics generics 0.1.3
GenomeInfoDb GenomeInfoDb 1.37.6
GenomeInfoDbData GenomeInfoDbData 1.2.10
ggplot2 ggplot2 3.4.3
glue glue 1.6.2
gtable gtable 0.3.4
htmltools htmltools 0.5.6.1
htmlwidgets htmlwidgets 1.6.2
httpuv httpuv 1.6.11
httr httr 1.4.7
igraph igraph 1.5.1
interactiveDisplayBase interactiveDisplayBase 1.39.0
IRanges IRanges 2.35.2
jquerylib jquerylib 0.1.4
jsonlite jsonlite 1.8.7
KEGGREST KEGGREST 1.41.4
knitr knitr 1.44
labeling labeling 0.4.3
later later 1.3.1
lifecycle lifecycle 1.0.3
magrittr magrittr 2.0.3
memoise memoise 2.0.1
mime mime 0.12
miniUI miniUI 0.1.1.1
munsell munsell 0.5.0
pander pander 0.6.5
pillar pillar 1.9.0
pkgbuild pkgbuild 1.4.2
pkgconfig pkgconfig 2.0.3
pkgload pkgload 1.3.3
png png 0.1.8
prettyunits prettyunits 1.2.0
processx processx 3.8.2
profvis profvis 0.3.8
promises promises 1.2.1
ps ps 1.7.5
purrr purrr 1.0.2
R6 R6 2.5.1
rappdirs rappdirs 0.3.3
rbibutils rbibutils 2.2.15
Rcpp Rcpp 1.0.11
RCurl RCurl 1.98.1.12
Rdpack Rdpack 2.5
remotes remotes 2.4.2.1
rlang rlang 1.1.1
rmarkdown rmarkdown 2.25
RSQLite RSQLite 2.3.1
S4Vectors S4Vectors 0.39.2
sass sass 0.4.7
scales scales 1.2.1
sessioninfo sessioninfo 1.2.2
shiny shiny 1.7.5
stringi stringi 1.7.12
stringr stringr 1.5.0
synaptome.data synaptome.data 0.99.6
synaptome.db synaptome.db 0.99.15
tibble tibble 3.2.1
tidyselect tidyselect 1.2.0
urlchecker urlchecker 1.0.1
usethis usethis 2.2.2
utf8 utf8 1.2.3
vctrs vctrs 0.6.3
viridisLite viridisLite 0.4.2
withr withr 2.5.1
xfun xfun 0.40
xtable xtable 1.8.4
XVector XVector 0.41.1
yaml yaml 2.3.7
zlibbioc zlibbioc 1.47.0
Table continues below
  loadedversion attached is_base date
AnnotationDbi 1.63.2 FALSE FALSE 2023-10-10
AnnotationHub 3.9.2 TRUE FALSE 2023-10-10
Biobase 2.61.0 FALSE FALSE 2023-10-10
BiocFileCache 2.9.1 TRUE FALSE 2023-10-10
BiocGenerics 0.47.0 TRUE FALSE 2023-10-10
BiocManager 1.30.22 FALSE FALSE 2023-08-08
BiocVersion 3.18.0 FALSE FALSE 2023-10-10
Biostrings 2.69.2 FALSE FALSE 2023-10-10
bit 4.0.5 FALSE FALSE 2022-11-15
bit64 4.0.5 FALSE FALSE 2020-08-30
bitops 1.0-7 FALSE FALSE 2021-04-24
blob 1.2.4 FALSE FALSE 2023-03-17
bslib 0.5.1 FALSE FALSE 2023-08-11
cachem 1.0.8 FALSE FALSE 2023-05-01
callr 3.7.3 FALSE FALSE 2022-11-02
cli 3.6.1 FALSE FALSE 2023-03-23
colorspace 2.1-0 FALSE FALSE 2023-01-23
crayon 1.5.2 FALSE FALSE 2022-09-29
curl 5.1.0 FALSE FALSE 2023-10-02
DBI 1.1.3 FALSE FALSE 2022-06-18
dbplyr 2.3.4 TRUE FALSE 2023-09-26
devtools 2.4.5 FALSE FALSE 2022-10-11
digest 0.6.33 FALSE FALSE 2023-07-07
dplyr 1.1.3 TRUE FALSE 2023-09-03
ellipsis 0.3.2 FALSE FALSE 2021-04-29
evaluate 0.22 FALSE FALSE 2023-09-29
fansi 1.0.5 FALSE FALSE 2023-10-08
farver 2.1.1 FALSE FALSE 2022-07-06
fastmap 1.1.1 FALSE FALSE 2023-02-24
filelock 1.0.2 FALSE FALSE 2018-10-05
fs 1.6.3 FALSE FALSE 2023-07-20
generics 0.1.3 FALSE FALSE 2022-07-05
GenomeInfoDb 1.37.6 FALSE FALSE 2023-10-10
GenomeInfoDbData 1.2.10 FALSE FALSE 2023-06-20
ggplot2 3.4.3 TRUE FALSE 2023-08-14
glue 1.6.2 FALSE FALSE 2022-02-24
gtable 0.3.4 FALSE FALSE 2023-08-21
htmltools 0.5.6.1 FALSE FALSE 2023-10-06
htmlwidgets 1.6.2 FALSE FALSE 2023-03-17
httpuv 1.6.11 FALSE FALSE 2023-05-11
httr 1.4.7 FALSE FALSE 2023-08-15
igraph 1.5.1 TRUE FALSE 2023-08-10
interactiveDisplayBase 1.39.0 FALSE FALSE 2023-10-10
IRanges 2.35.2 FALSE FALSE 2023-10-10
jquerylib 0.1.4 FALSE FALSE 2021-04-26
jsonlite 1.8.7 FALSE FALSE 2023-06-29
KEGGREST 1.41.4 FALSE FALSE 2023-10-10
knitr 1.44 FALSE FALSE 2023-09-11
labeling 0.4.3 FALSE FALSE 2023-08-29
later 1.3.1 FALSE FALSE 2023-05-02
lifecycle 1.0.3 FALSE FALSE 2022-10-07
magrittr 2.0.3 FALSE FALSE 2022-03-30
memoise 2.0.1 FALSE FALSE 2021-11-26
mime 0.12 FALSE FALSE 2021-09-28
miniUI 0.1.1.1 FALSE FALSE 2018-05-18
munsell 0.5.0 FALSE FALSE 2018-06-12
pander 0.6.5 TRUE FALSE 2022-03-18
pillar 1.9.0 FALSE FALSE 2023-03-22
pkgbuild 1.4.2 FALSE FALSE 2023-06-26
pkgconfig 2.0.3 FALSE FALSE 2019-09-22
pkgload 1.3.3 FALSE FALSE 2023-09-22
png 0.1-8 FALSE FALSE 2022-11-29
prettyunits 1.2.0 FALSE FALSE 2023-09-24
processx 3.8.2 FALSE FALSE 2023-06-30
profvis 0.3.8 FALSE FALSE 2023-05-02
promises 1.2.1 FALSE FALSE 2023-08-10
ps 1.7.5 FALSE FALSE 2023-04-18
purrr 1.0.2 FALSE FALSE 2023-08-10
R6 2.5.1 FALSE FALSE 2021-08-19
rappdirs 0.3.3 FALSE FALSE 2021-01-31
rbibutils 2.2.15 FALSE FALSE 2023-08-21
Rcpp 1.0.11 FALSE FALSE 2023-07-06
RCurl 1.98-1.12 FALSE FALSE 2023-03-27
Rdpack 2.5 FALSE FALSE 2023-08-21
remotes 2.4.2.1 FALSE FALSE 2023-07-18
rlang 1.1.1 FALSE FALSE 2023-04-28
rmarkdown 2.25 FALSE FALSE 2023-09-18
RSQLite 2.3.1 FALSE FALSE 2023-04-03
S4Vectors 0.39.2 FALSE FALSE 2023-10-10
sass 0.4.7 FALSE FALSE 2023-07-15
scales 1.2.1 FALSE FALSE 2022-08-20
sessioninfo 1.2.2 FALSE FALSE 2021-12-06
shiny 1.7.5 FALSE FALSE 2023-08-12
stringi 1.7.12 FALSE FALSE 2023-01-11
stringr 1.5.0 FALSE FALSE 2022-12-02
synaptome.data 0.99.6 TRUE FALSE 2023-10-11
synaptome.db 0.99.15 TRUE FALSE 2023-10-11
tibble 3.2.1 FALSE FALSE 2023-03-20
tidyselect 1.2.0 FALSE FALSE 2022-10-10
urlchecker 1.0.1 FALSE FALSE 2021-11-30
usethis 2.2.2 FALSE FALSE 2023-07-06
utf8 1.2.3 FALSE FALSE 2023-01-31
vctrs 0.6.3 FALSE FALSE 2023-06-14
viridisLite 0.4.2 FALSE FALSE 2023-05-02
withr 2.5.1 FALSE FALSE 2023-09-26
xfun 0.40 FALSE FALSE 2023-08-09
xtable 1.8-4 FALSE FALSE 2019-04-21
XVector 0.41.1 FALSE FALSE 2023-10-10
yaml 2.3.7 FALSE FALSE 2023-01-23
zlibbioc 1.47.0 FALSE FALSE 2023-10-10
  source
AnnotationDbi Bioconductor
AnnotationHub Bioconductor
Biobase Bioconductor
BiocFileCache Bioconductor
BiocGenerics Bioconductor
BiocManager CRAN (R 4.3.1)
BiocVersion Bioconductor
Biostrings Bioconductor
bit CRAN (R 4.3.1)
bit64 CRAN (R 4.3.1)
bitops CRAN (R 4.3.1)
blob CRAN (R 4.3.1)
bslib CRAN (R 4.3.1)
cachem CRAN (R 4.3.1)
callr CRAN (R 4.3.1)
cli CRAN (R 4.3.1)
colorspace CRAN (R 4.3.1)
crayon CRAN (R 4.3.1)
curl CRAN (R 4.3.1)
DBI CRAN (R 4.3.1)
dbplyr CRAN (R 4.3.1)
devtools CRAN (R 4.3.1)
digest CRAN (R 4.3.1)
dplyr CRAN (R 4.3.1)
ellipsis CRAN (R 4.3.1)
evaluate CRAN (R 4.3.1)
fansi CRAN (R 4.3.1)
farver CRAN (R 4.3.1)
fastmap CRAN (R 4.3.1)
filelock CRAN (R 4.3.1)
fs CRAN (R 4.3.1)
generics CRAN (R 4.3.1)
GenomeInfoDb Bioconductor
GenomeInfoDbData Bioconductor
ggplot2 CRAN (R 4.3.1)
glue CRAN (R 4.3.1)
gtable CRAN (R 4.3.1)
htmltools CRAN (R 4.3.1)
htmlwidgets CRAN (R 4.3.1)
httpuv CRAN (R 4.3.1)
httr CRAN (R 4.3.1)
igraph CRAN (R 4.3.1)
interactiveDisplayBase Bioconductor
IRanges Bioconductor
jquerylib CRAN (R 4.3.1)
jsonlite CRAN (R 4.3.1)
KEGGREST Bioconductor
knitr CRAN (R 4.3.1)
labeling CRAN (R 4.3.1)
later CRAN (R 4.3.1)
lifecycle CRAN (R 4.3.1)
magrittr CRAN (R 4.3.1)
memoise CRAN (R 4.3.1)
mime CRAN (R 4.3.1)
miniUI CRAN (R 4.3.1)
munsell CRAN (R 4.3.1)
pander CRAN (R 4.3.1)
pillar CRAN (R 4.3.1)
pkgbuild CRAN (R 4.3.1)
pkgconfig CRAN (R 4.3.1)
pkgload CRAN (R 4.3.1)
png CRAN (R 4.3.1)
prettyunits CRAN (R 4.3.1)
processx CRAN (R 4.3.1)
profvis CRAN (R 4.3.1)
promises CRAN (R 4.3.1)
ps CRAN (R 4.3.1)
purrr CRAN (R 4.3.1)
R6 CRAN (R 4.3.1)
rappdirs CRAN (R 4.3.1)
rbibutils CRAN (R 4.3.1)
Rcpp CRAN (R 4.3.1)
RCurl CRAN (R 4.3.1)
Rdpack CRAN (R 4.3.1)
remotes CRAN (R 4.3.1)
rlang CRAN (R 4.3.1)
rmarkdown CRAN (R 4.3.1)
RSQLite CRAN (R 4.3.1)
S4Vectors Bioconductor
sass CRAN (R 4.3.1)
scales CRAN (R 4.3.1)
sessioninfo CRAN (R 4.3.1)
shiny CRAN (R 4.3.1)
stringi CRAN (R 4.3.1)
stringr CRAN (R 4.3.1)
synaptome.data Bioconductor
synaptome.db Bioconductor
tibble CRAN (R 4.3.1)
tidyselect CRAN (R 4.3.1)
urlchecker CRAN (R 4.3.1)
usethis CRAN (R 4.3.1)
utf8 CRAN (R 4.3.1)
vctrs CRAN (R 4.3.1)
viridisLite CRAN (R 4.3.1)
withr CRAN (R 4.3.1)
xfun CRAN (R 4.3.1)
xtable CRAN (R 4.3.1)
XVector Bioconductor
yaml CRAN (R 4.3.1)
zlibbioc Bioconductor